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ABSTRACT
To parse images into fine-grained semantic parts, the complex
fine-grained elements will put it in trouble when using off-
the-shelf semantic segmentation networks. In this paper, for
image parsing task, we propose to parse images from coarse
to fine with progressively refined semantic classes. It is
achieved by stacking the segmentation layers in a segmenta-
tion network several times. The former segmentation module
parses images at a coarser-grained level, and the result will
be feed to the following one to provide effective contextual
clues for the finer-grained parsing. To recover the details
of small structures, we add skip connections from shallow
layers of the network to fine-grained parsing modules. As for
the network training, we merge classes in groundtruth to get
coarse-to-fine label maps, and train the stacked network with
these hierarchical supervision end-to-end. Our coarse-to-
fine stacked framework can be injected into many advanced
neural networks to improve the parsing results. Extensive
evaluations on several public datasets including face parsing
and human parsing well demonstrate the superiority of our
method.

Index Terms— Coarse-to-fine image parsing, stacked
networks, hierarchical supervision

1. INTRODUCTION

Image parsing aims to segment an image into semantic
regions and corresponding elements with more fine-grained
semantics, which can provide full understanding of image
contents. An effective image parsing facilitates various
higher-level computer vision applications, such as image
editing [1], image retrieval [2], and artistic rendering [3].

Recently, fully convolutional networks (FCN) [4] based
methods have achieved great success in various pixel-wise
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prediction tasks, such as semantic segmentation [5] and
salient object detection [6]. Image parsing can usually be
cast as semantic segmentation problem with both tasks are to
label every single pixel in the image. However, image parsing
requires to segment images into more fine-grained semantic
parts than general semantic segmentation tasks do. Due to the
complex contextual of fine-grained parts, it will exhibit clear
limitations when using the segmentation network to parse
images. The accurate image parsing relies on the prior in-
formation of semantic part context and the details of semantic
part structure. And the major issue for current FCN based
models is lack of suitable strategy to utilize global contextual
clues [7]. Thus, existing image parsing works often focus on
the ways to complement the global context. For example, Li
et al. [1] proposed to input addition shape prior of semantic
parts as global constraint. Liang et al. [8] proposed to append
LSTM layers to the network to capture long-distance global
information from the whole image. To make good use of
global image-level priors, Zhao et al. [7] proposed to use the
pyramid pooling module to collet levels of information from
multiple scales. In a word, most of existing methods either
use prior knowledge of semantic parts as additional input, or
aggregate the whole image-level clues to provide the global
context for pixel-level image parsing. Considering the image
parsing process of human, people often firstly figure out the
object in an image, and then gradually recognize the detail
parts based on the context about that object. Inspired by
this, an alternative strategy can be introduced to parse images
progressively with refined semantic classes to incorporate part
context. Before the final fine-grained parsing, an image is
first parsed coarsely discarding the small elements to provide
coarse-grained context. This can be achieved by stacking
several segmentation networks with the former one parsing
images coarsely and the latter one parsing images finely,
while the former result is transmitted to the latter network
as additional input, just like that in image synthesis [9] and
salient object detection [6]. However, stacking full networks
crudely is a waste of computing resources and can make the
network hard to be trained.

In this paper, a coarse-to-fine image parsing framework is
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Fig. 1. Overview of the proposed method. The FC modules are the last layers in an FCN which output the prediction score
maps, and the Softmax modules are used to restore the resolution of the score maps and get the pixel-wise labels using softmax.
Best viewed in color

proposed to parse images progressively with refined semantic
classes by stacking several FCNs. The first network is
trained to segment images at a coarse-grained level, and the
last one is trained at the finest-grained level. To remove
the redundant computation in stacked networks, we propose
to share the image encoding parts (i.e., the former layers)
of each network, which results in a standard FCNs with
multiple stacked segmentation modules. To parse the fine-
grained semantic parts precisely, we add skip connections
from shallow layers which can provide more structural and
localization details to the fine-grained segmentation modules.
For the network training, we merge some classes in the
finest-grained groundtruth label map to get a set of coarse-to-
fine label maps, and train the network with this hierarchical
supervision. The stacked network can be trained end-to-
end and can get progressively refined hierarchical parsing
result in a single forward pass. In addition, the coarse-to-fine
stacking strategy can be injected into many advanced image
segmentation networks for image parsing tasks. Fig. 1 shows
the framework of our stacked networks.

The contributions of this paper are as follows:

• We propose to parse images starting from a coarse-
grained to the final fine-grained with gradual refine-
ment by a generic stacked framework. With the
contextual information from the coarse-grained result,
the fine-grained parsing can be done better.

• We propose to utilize the details and localization infor-
mation in the shallow layers to promote the fine-grained
parsing by adding skip connections.

• We propose to generate hierarchical label maps by
merging classes in groundtruth, and train the stacked
network by hierarchical supervision based on the
merged coarse-to-fine label maps.

2. METHOLOGY

2.1. Stacked networks for image parsing

When human observing an image, people usually firstly figure
out the prominent object in it, and then recognize the detail
parts based on prior knowledge about that object, which is a
coarse-to-fine parsing process. Inspired by this process, we
can use several FCNs to segment images progressively with
refined semantic classes for image parsing task. The most
intuitive way is to stack full FCNs one after another, with
the output of the former FCN combined with the raw image
feeding to the latter FCN as input, just as done in [10]. But
in fact, the raw image is re-fed to same modules multiple
times by doing this, which is a waste of computing resources.
And that the coarse parsing result from former FCN must
pass a full deep network, which could lead to information
attenuating due to the long computation chain [8].

In this paper, we propose to stack only the prediction
layers on top of each other rather than the whole network,
as shown in Fig. 1. The FC module is the last convolutional
layers in an FCN, which output a score map with C channel
(C is the number of classes in the corresponding parsing gran-
ularity), just like the fully connected layers in a classification
network. The corresponding pixel-wise segmentation can be
obtained by upsampling the score map of each FC module
to match the size of input and then feeding it to a soft-max
classifier. In fact, this framework is similar to stacking several
FCNs with shared former layers (i.e., layers before the FC
modules of each FCN are shared). By doing so, we only need
to feed the raw image to the network one time. Also, since
the score map at the coarser-grained level is directly fed to
the FC module at the finer-grained level, information from
the coarse-grained level can be retained better.

As shown in Fig. 2, given the input image in the first
column and the coarse-grained result in the second column,
stacking a full FCN after it will feed the coarse-grained result



Fig. 2. Comparison between stacking full FCNs and stacking
FC modules. It is clear that the fine-grained result is more
conform to the coarse-grained result when stacking FC.

to a deep network which results in inconsistency as shown in
the third column. But by stacking only FC modules, the fine-
grained result is more accord with the coarse-grained one as
shown in the fourth column, so the following FC modules
can pay more attention to parsing other details. It should be
pointed out that in Fig. 1, it shows a network stacking 3 FCs
at 3 grain levels, but in fact our framework can be extended to
more FC modules (2 to more).

2.2. Skip connections for fine-grained parsing

In a deep network, the receptive fields of deeper layers are
larger, but the small structures and localization information at
deep layers are lost due to the layer by layer convolution and
pooling operations. To get better parsing result with small
structures at the finer-grained level, we propose to add skip
connections from the shallow layers in the network to the fine-
grained FC modules. The finer the FC module is going to
parsing, the shallower layers should be connected to.

To be specific, as shown in Fig. 1, the first FC module
parses images in a coarsest-grained level, so it only need to
be connected to the network directly which composes a full
FCN. For the medium-grained FC, it need to recognize some
medium size structures. So we add a skip connection from
medium layers to it. Similarly, the fine-grained FC should
add connection from the shallow layers. That is to say, for
any of the finer-grained FC modules (any FC except for the
first one), the input comes from three: the feature map from
the last layer of the network (before the FC modules), the
score map from the former FC module, and the feature map
from a shallow layer of the network. Given these three input,
we first upsample the smaller feature maps to match the size
of the largest feature map via bilinear interpolation, and then
concatenate these features maps before feeding to that FC
module. It can be formulated as follows:

Pt = Ft (Up (f0)⊕Up (Pt−1)⊕Up (f−t)) , (1)

where Ft represents a composite function of operations of
the t-th FC module and Pt is the output, f0 is the feature

Fig. 3. Comparison between with and without skip connec-
tions from shallow layers at the fine-grained parsing.

map from the last layer of the network, f−t is the feature
map from corresponding shallow layer, Up (·) upsample the
smaller feature maps to match the size of the largest one,
and ⊕ represent the concatenate operation. Fig. 3 illustrates
the different performances between with and without skip
connections from shallow layers. From it we can see that,
after adding skip connections from shallow layers, the small
structures (e.g., eyes, browns and mouth) can be parsed more
precise.

2.3. Training with coarse-to-fine supervision

To train the stacked network, we define the loss function as a
weighted combination of every individual grain level parsing
after each FC module:

Ltotal =
∑
i

λiLi, (2)

where Li is the loss at the i-th grained level image parsing,
and λi is the associated weight. We use equal weights,
and apply the pixel-wise cross-entropy loss at every grain
level in our experiments. Except for the last loss, others
can be regarded as auxiliary losses which give coarse-to-fine
hierarchical supervision help optimize the learning process.

For the training data, we use the fine-grained groundtruth
label map to build the coarse-to-fine label maps. Specifically,
we use the groundtruth label map directly for the last FC
module (i.e., the finest-grained one), and then we merge some
similar classes in the groundtruth label maps as coarse classes
to get the coarse-grained training data for the penultimate FC.
If there are more FC modules ahead, we continue to merge
classes in the coarse-grained classes to further get coarser-
grained training data. An example is shown in Fig. 1, given
the fine-grained groundtruth label map at the last FC module,
the two coarser-grained label maps at the former two FC
modules are built by merging classes in the groundtruth. A
fundamental principle of this merging process is do not put
small structures at coarse-grained label maps. Table 1 gives
an example of our label merging rules on three dataset.



Table 1. The predefined three-grained parsing hierarchy on three public datasets.

HELEN Face [11] PASCAL-Person-Parts [12] ATR [13]
Coarse
grained

background, face, hair
background, upper body,
lower body

background, head, torso, lower body, bag+carf

Medium
grained

background, face skin, eyes, nose, mouth,
hair

background, head+torso,
arms, upper legs, lower legs

background, hat+hair, sunglass+face, upper-clothes,
skirt+pants+dress+belt, arms, shoes, leg, bag+carf

Fine
grained

background, face skin, left eyebrow,
right eyebrow, left eye, right eye, nose,
upper lip, inner mouth, lower lip, hair

background, head, torso,
upper arms, lower arms,
upper legs, lower legs

background, hat, hair, sun glass, upper-clothes,
skirt, pants, dress, belt, left-shoe, right-shoe, face,
left-leg, right-leg, left-arm, right-arm, bag, scarf

3. EXPERIMENTS

3.1. Experimental settings

Dataset. Since our algorithm is built to parsing images
from coarse to fine, the test image must support hierarchy
parsing. In this regard, we select a face parsing dataset and
two person parsing datasets. For face parsing, we use the
HELEN dataset [11]. It is a face parsing dataset containing
2330 face images of arbitrary size, and each pixel is labeled
as one of 11 classes. We use 2,000 images for training and
the left for validation. For this dataset, we define the three
grained levels of semantic classes as shown in Table 1.

For person parsing, we use two datasets. The first is
the merged PASCAL-Person-Parts [12], which contains six
person part classes and one background class. It contains
3,533 images. We use the same setting of data splits as in [12]
with 1,716 images for training and the left for validation.
Since it contains only 6 classes which is not so enough for
a coarse-to-fine parsing, we add another dataset. That is
the ATR dataset [13] which contains as many as 18 person
part classes. Totally, 7,700 images are included in the ATR
dataset, with 6,000 for training, 1,000 for testing and 700
for validation. For these two datasets, we also build a three-
grained parsing hierarchy as shown in Table 1.

Network details. In our experiments, we use the Deeplab-
ResNet [5] without any tricks (incl. multi-scale inputs, data
augmentation, CRF and so on) as our base FCN. Layers after
res5c are regarded as FC module. For the three grain levels,
the coarsest-grained FC module is directly connected to layer
res5c, and the other two are stacked one by one after the first
FC. Besides, we add skip connections from layer res3b3 to
the medium-grained FC module, and from layer res2c to the
fine-grained FC module. To concatenate with these feature
maps from shallow layers, we upsample the current feature
map using bilinear interpolation to match the sizes. Before
training, we merge labels follows Table 1 to get coarse-to-
fine label maps as the hierarchical supervision. That is to
say, one training image has three corresponding label maps.
We implement the proposed stacked networks based on the
tensorflow implementationof Deeplab-ResNet, and fine-tune

the pre-trained deeplab network for our coarse-to-fine image
parsing.

3.2. The effectiveness of proposed method

We evaluate the effectiveness of proposed strategies on all
three dataset using the pre-defined parsing hierarchy. For
comparison, we also try to stack three full FCNs one after
another to parse images from coarse to fine. To investigate the
improvement over raw networks, for each grained level, we
also train a standalone basic network (i.e., Deeplab-ResNet
in this experiment) to parse images at that grained level. The
performance of each strategy is measured in terms of mean
pixel intersection-over-union over all classes (mIoU).

Table 2, Table 3 and Table 4 show the results on each
dataset respectively. It can be seen that stacking full FCNs
nearly show no improvement in comparison with an indi-
vidual FCN. But when selectively stacking the FC modules
with coarse-to-fine hierarchical supervision, the improvement
is significant for all three grained level. For HELEN and
ATR dataset, adding skip connections from shallow layers to
the finer-grained FC modules can further improve the perfor-
mance of the network. This demonstrates the effectiveness
of information from shallow layers for fine-grained parts
parsing. But for PASCAL-Person-Parts dataset, adding skip
connections has limited effects on the performance. We think
this is because the PASCAL-Person-Parts dataset is a pre-
merged dataset which have little inherent small structures, and
the scale and location of parts in these images various greatly.
This makes localization information from shallow layers can
give limited help for parsing images in the PASCAL-Person-
Parts dataset.

3.3. Compared with state-of-the-art

In this section, we compare the proposed method with strong
baselines on two human parsing datasets. We merge the
groundtruth classes as shown in Table 1, and train our stacked
network with the coarse-to-fine label maps. The trained
network is used to parsing images at the finest-grained level
which is consistent with the groundtruth. The performance



Table 2. Quantitative comparison of different strategies on
HELEN dataset.

mIoU
Coarse
grained

Medium
grained

Fine
grained

Standalone 0.766 0.645 0.478
Stack full FCNs 0.775 0.656 0.465

Stack FC modules 0.783 0.682 0.545
Stack FC modules with

skip connections
0.828 0.719 0.637

Table 3. Quantitative comparison of different strategies on
PASCAL-Person-Parts.

mIoU
Coarse
grained

Medium
grained

Fine
grained

Standalone 0.743 0.593 0.564
Stack full FCNs 0.741 0.585 0.567

Stack FC modules 0.760 0.618 0.596
Stack FC modules with

skip connections
0.760 0.615 0.604

of our stacked network and some strong baseline models are
compared.

For PASCAL-Person-Parts, we use the same setting of
data splits as in [12] with 1,716 images to train the network,
and test the network over the left images. The performance
is measured in terms of mIoU as in [12]. Table 5 shows
the performance of our stacking network and comparisons
with several state-of-the-art methods. Also, we have test the
performance of our baseline network. From the table we can
find that our baseline model can be obviously improved using
the proposed stacking framework. And the stacked network
can outperform the three state-of-the-art methods particularly.

For the ATR dataset, we train the network using 6,000
training images and evaluate the network over the 1,000
testing images. We use the same evaluation criterion as
in [13] and [14], including accuracy, accuracy over fore-
ground classes, average precision, average recall, and average
F-1 score over pixels. Table 6 shows the results. The stacking
framework can improve the baseline network with significant
gains. Except for the overall accuracy including background,
the stacked network outperform all the three state-of-the-art
methods over all other criterions by a wide margin. All these
demonstrates that our stacking strategy is significantly helpful
for human parsing tasks.

3.4. The generalization of proposed stacking strategies

In this experiment, we will evaluate the generalization of the
proposed stacking strategies for other networks. We try to
inject our coarse-to-fine stacked framework into several popu-
lar image segmentation networks, including SegNet [17], FC-
DenseNet [18] and PSPNet [7], and compare the performance

Table 4. Quantitative comparison of different strategies on
ATR dataset.

mIoU
Coarse
grained

Medium
grained

Fine
grained

Standalone 0.791 0.751 0.600
Stack full FCNs 0.799 0.739 0.575

Stack FC modules 0.804 0.766 0.632
Stack FC modules with

skip connections
0.809 0.772 0.653

Table 5. Comparison with three state-of-the-art methods
when evaluating on PASCAL-Person-Parts.

Method mIoU(%)
Attention [12] 56.39
LG-LSTM [8] 57.97
Attention+SSL [15] 59.36
Deeplab (baseline) 56.43
Stacked Deeplab 60.35

of the raw network and the stacked network on HELEN
dataset. We define the coarse-to-fine parsing hierarchy as
shown in Table 1. For the raw networks, we train them with
the finest-grained label maps. And for the stacked networks,
we train them with the coarse-to-fine label maps. The finest-
grained parsing performances are measured in terms of mIoU
and compared.

For SegNet, we use the VGG16-based SegNet, and regard
layers after layer upsample1 (i.e., the last upsampling layer)
excluding the Softmax layer as the FC module. We directly
add two additional FC modules after the raw FC in the
network, and use these three FC for the coarse-to-fine parsing.
Since the raw SegNet has several pooling indices which
connect the shallow layers to the deeper layers firmly, we
donot add skip connections anymore. For FC-DenseNet,
we use the FC-DenseNet56 as our base network, and regard
the last convolution layers as the FC module. We add skip
connections from the third dense block to the medium-grained
FC module and from the first dense block to the fine-grained
FC module. For PSPNet, we use the ResNet18-based PSPNet
for simplicity, and regard the convolution layers after the
pyramid pooling module as the FC module. Two additional
FC modules are added after the raw FC in the network. Skip
connections from the third and the first residue blocks are
added to the second and third FC modules respectively.

Table 7 shows the result. The proposed stacking strategies
can improve existing image segmentation networks signifi-
cantly: 5.09% for SegNet, 3.48% for FC-DenseNet and
3.25% for PSPNet. The improvements for SegNet and FC-
DenseNet indicate that with the context prior from the coarse-
grained result, image parsing can be done better. And for
PSPNet, although the pyramid pooling module can provide



Table 6. Comparison with three state-of-the-art methods
when evaluating on ATR dataset.

acc.
f.g.
acc.

avg.
prec.

avg.
recall

avg.
F-1

M-CNN [16] 89.57 73.98 64.56 65.17 62.81
ATR [13] 91.11 71.04 71.69 60.25 64.38
Co-CNN [14] 95.23 80.90 81.55 74.42 76.95
Deeplab (baseline) 93.88 79.80 80.71 69.47 73.38
Stacked Deeplab 95.01 83.50 82.66 76.61 79.08

Table 7. Comparison between some popular FCN and their
stacked version using proposed method. The performance is
measured on HELEN dataset in terms of mIoU.

Method mIoU(%)
SegNet [17] 57.85
Stacked SegNet 62.94
FC-DenseNet [18] 49.80
Stacked FC-DenseNet 53.28
PSPNet [7] 49.40
Stacked PSPNet 52.65

effective global contextual prior, our coarse-to-fine stacking
framework can provide more contextual information to fur-
ther improve it.

4. CONCLUSION

In this paper, we propose a coarse-to-fine image parsing
framework to parse images progressively with refined se-
mantic classes by stacking the segmentation modules in
off-the-shelf semantic segmentation networks. The former
segmentation module is used to parse images at a coarser-
grained level, and the result will be feed to the following
one to provide effective contextual clues for the finer-grained
parsing. For finer-grained parsing modules, we add skip
connections from shallow layers in the network to recover
details of small structures. We merge classes in groundtruth
to get coarse-to-fine label maps, and train the stacked network
with these hierarchical supervision end-to-end. This type of
coarse-to-fine parsing framework can be injected into many
advanced neural networks to improve the results. Extensive
evaluations demonstrate the effectiveness of our method.
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