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ABSTRACT

The rise of immersive technologies has been recently fuelled
by emerging applications which employ advanced content
representations. Among various alternatives, point clouds de-
note a promising solution which has recently drawn a signifi-
cant amount of interest, as witnessed by the latest activities of
standardization committees. However, subjective and objec-
tive quality assessments for this type of content still remain
an open problem. In this paper, we introduce a simple yet
efficient objective metric to capture perceptual degradations
of a distorted point cloud. Correlation with subjective quality
assessment scores carried out by human subjects shows the
proposed metric to be superior to the state of the art in terms
of predicting the visual quality of point clouds under realistic
types of distortions, such as octree-based compression.

Index Terms— Point cloud, objective quality metrics,
quality assessment

1. INTRODUCTION

In modern information technologies and communication sys-
tems, new visual modalities are employed to provide en-
hanced experiences to the users and faithfully reproduce real-
world sceneries. Point clouds have emerged as a viable repre-
sentation of immersive contents thanks to the ease in capture
and processing of such content. The commercial availabil-
ity of high resolution displays, along with the recent launch
of low-cost depth sensors (e.g., Kinect, Intel RealSense) and
their integration in hand-held devices, such as smartphones
and laptops (e.g., iPhone X, HP Spectre x2), has reinforced
the interest for this visual data representation.

As in any type of content, quality evaluation of point
clouds is critical, as it shapes the way scenes are acquired,
compressed, processed and rendered. The quality of a con-
tent is typically assessed through either subjective or objec-
tive testing. Objective quality assessment of point clouds is
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Fig. 1: Distances in the current objective metrics.

mainly carried out by full-reference metrics, which can be dis-
tinguished into three categories: (a) point-to-point, (b) point-
to-plane, and (c) point-to-mesh [1]. The latter are sub-optimal
approaches and will not be considered, as there is no unique
way to reconstruct an object from a set of points, and the ob-
jective scores heavily depend on the selected algorithm for
mesh generation.

The point-to-point metrics are based on geometric dis-
tances of associated points between the reference and the
content under evaluation. In particular, after identifying for
each point b; of the content under evaluation B its nearest
neighbor a; from the reference point cloud A, the Euclidean
distance F/(a;, b;) is calculated indicating the error between
points a; and b;, as illustrated in Figure 1.

The point-to-plane metrics are based on the projected er-
ror along the normal of a reference point and, essentially,
larger costs are assigned to points that deviate from the un-
derlying surface. After identifying for each point b; of the
content under evaluation B its nearest neighbor a; from the
reference point cloud A, the projected error E‘(ai, b;) is de-
rived across the normal of the reference point, 72 ¢, as demon-
strated in Figure 1. The point-to-plane metrics require the
presence of the normal vectors of the original content. In case
the latter is set as the reference, the computation is straight
forward, as explained above. Otherwise, if the distorted point
cloud is set as the reference, its normals are estimated by av-
eraging over the normals of associated nearest neighborhoods
that belong to the original content. Then, the projected error
is calculated across this average normal vector.

In both point-to-point and point-to-plane metrics, an indi-



vidual distance is associated with every point of the content
under evaluation, and the geometric similarity between the
test contents is expressed through an error value. This error
is computed either by taking the average of the distances as-
sociated with the points of the content under evaluation (Root
Mean Squared - RMS), or by taking the average squared dis-
tances (Mean Squared Error - MSE), or the Hausdorff dis-
tance'. Commonly, both the original and the processed stim-
uli are set as reference and both error values are calculated;
then, the symmetric error is obtained by keeping the maxi-
mum out of these values. Finally, for objective quality assess-
ment of contents of different scale, the Peak-to-Signal Noise
Ratio (PSNR) has been proposed. In the literature, PSNR is
defined as the ratio of the squared maximum distance of near-
est neighbours of the original content (potentially, multiplied
by a scalar), or the squared distance of the diagonal of the
minimum bounding box, divided by the squared error value
(i.e., squared RMS, MSE or squared Hausdorff distance).

As it was shown in [2], the current objective metrics are
able to capture geometric divergences, but they fail to accu-
rately predict the visual quality of point clouds after point re-
moval and structural loss. In this paper we propose a new ob-
jective quality metric based on the angular similarity between
two point clouds, which is falling into a fourth category,
namely, plane-to-plane. Correlation with subjective scores
reveals that the proposed approach outperforms the state of
the art in predicting the visual quality of geometry-only con-
tents after applying octree-based compression, while its per-
formance remains comparable to current metrics in presence
of Gaussian noise. Limitations of the proposed algorithm are
reported, along with the issues to be addressed in future.

2. PROPOSED OBJECTIVE METRIC

In this section, the proposed metric is described along with
complexity details, followed by its limitations.

2.1. Definition

The human brain naturally tends to interpolate points in order
to perceive the underlying object. Thus, a measurement of the
perceptual degradation of a distorted point cloud with respect
to its original version could be obtained by estimating the sim-
ilarity of the fitting surfaces that can be used to reconstruct
these objects. This is comparable to geometry-based mesh-
to-mesh metrics which have already been proposed in the lit-
erature (e.g., [3]). However, simply adopting mesh-to-mesh
approaches to quantify the perceptual difference between two
point clouds brings the issue of sensitivity to the reconstruc-
tion algorithm employed to create the corresponding meshes.

A simpler way would be to consider the tangent planes
between associated points that belong to two point clouds

IThe Hausdorff distance is defined as the maximum of the distances of
each point in one set from its nearest neighbor in the other set.
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Fig. 2: Angular similarity in the proposed metric.

contents, instead of the surfaces that fit in the corresponding
neighbourhoods. Tangent planes can be viewed as a local lin-
ear approximation of the underlying surface of the model, and
the angular similarity between two tangent planes provides an
indication of the difference between local surfaces that pass
by the corresponding points. Thus, a metric that would ex-
amine the angular similarity between every pair of associated
points of two point clouds, may capture the perceptual differ-
ence between the inferred 3D objects.

Let us consider a point a;, with its associated normal vec-
tor 77¢, that belongs to a set of points A which represents
an object O 4. Let us also consider another point b;, with
its normal vector ﬁ?, that belongs to another set of points B
which represents another object Op. Let us finally assume
that the coordinates of a; and b; are identical, as shown in
Figure 2. The difference between normals 7¢ and 7 ;’ is
expressed through the angle 8, which is equal to the angle
between the corresponding tangent planes perpendicular to
these normals. Differently oriented tangent planes indicate
that different local surfaces connect the points a; and b; with
their corresponding neighbors in sets A and B. Thus, a larger
angle ¢ implies a larger difference between the local surfaces
in objects O 4 and Op, respectively.

Let us assume that point cloud A is the original content
and point cloud B is a degraded version. By setting the origi-
nal point cloud as the reference, for each point b; that belongs
to the distorted point cloud, the nearest point a; of the original
content is identified using the Euclidean distance. The angu-
lar similarity of a pair of associated points a; and b; is defined
as 1 — 0/, where 6 = arccos(cos(0)) is measured in radians
and denotes the estimated angle between the tangent planes
belonging to points a; and b;; notice that different notations
are used, as 0 € [0, 2] while 0 € [0, x] by the definition of
the inverse cosine. Thus, the cosine similarity x = cos(#) is
initially derived using the normal vectors 77 and 7 g, based
on Equation 1,
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with € [—1, 1]. Then, to compute the angular similarity,
the inverse cosine of the obtained value z is calculated. Con-
sidering that we are only interested in the angular similarity
between the tangent planes, we want to keep the minimum out
of the two angles that can be formed between the intersecting
planes; thus, we define § = min{f, 7—6}, with 6 € [0, 7 /2].
An equivalent expression is given by Equation 2,

0 = arccos(|x|) (2

where x is calculated using Equation 1. Finally, the angular
similarity is bounded in the range [0, 1] through Equation 3.
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After associating a similarity value to each point of the
point cloud under evaluation, in this case B, the weighted av-
erage (WAVG) can be calculated. In an analogous way, the
same computations are repeated after setting as reference the
distorted point cloud. Finally, the symmetric error is obtained
by keeping the minimum out of these two WAVG similarity
values. The description of the metric is summarized in Algo-
rithm 1 while a prototype implementation can be found in the
following repository: https://github.com/mmspg/
point-cloud-angular-similarity-metric.

Algorithm 1

Set as reference point cloud A = {ay, as, ...
for all j suchthat1 < j <ndo
Identify a; as the nearest neighbor of b; in A
Compute angular similarity s; ,(j) using Equation 3
0y wisp,a(d)
Z?:1 W
Set as reference point cloud B = {by, ba, ..., b, }
for all : suchthat1 <7 < k do
Identify b; as the nearest neighbor of a; in B
Compute angular similarity s, () using Equation 3
Sk witsa,b(4)
Zf:l Wi
: Compute symmetric error s = min{5p 4, 54,5}
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2.2. Complexity

The complexity of the proposed algorithm is limited by the
selection of the algorithm to identify nearest neighbors. In
particular, let us set point cloud A as the reference content.
Assuming a linear search approach, the computational com-
plexity to specify a nearest neighbor a; for a point b;, would
be O(k). Following a k-d tree approach, a space-partitioning
data structure of k points should be initially constructed,
which is an operation of O(k logk). Then, a search in the
k-d tree to determine a nearest neighbor a; for a point b, is
an operation of O(log k). After establishing a pair of associ-
ated points, the angular similarity is computed. Considering

that the calculation is constant with regards to the number of
points, a cost of O(1) is added on the top. The aforemen-
tioned procedure, excluding the potential k-d tree construc-
tion, is repeated Vj € {1,...,n}. Then, the computation of
the WAVG similarity poses an additional complexity of O(n),
as it is a function of the number of points of the point cloud
under evaluation B. Analogously, we obtain the computa-
tional costs after setting point cloud B as the reference. The
consolidated computational complexity of the proposed algo-
rithm is max{O(k log k), O(n logn)}, assuming a k-d tree,
or O(n k) assuming a linear search approach for the identifi-
cation of the nearest neighbors, and is asymptotically identi-
cal to the costs of the state-of-the-art metrics.

2.3. Limitations

The main limitations of the proposed metric are: (a) It is a
full-reference metric for geometry-only degradations, indicat-
ing that both the original and the distorted contents should be
available in order to compute an objective quality score for a
degraded content. (b) The angular similarity is calculated be-
tween pairs of points that are associated as nearest neighbors
using the Euclidean distance, which implies that it is vulner-
able to distorted point clouds by translation or scaling. (c) A
normal vector should be present for every point of both the
original and the distorted point cloud. This limitation indi-
cates that in case normals do not coexist with the coordinates,
they should be estimated. This dependency makes the per-
formance to be affected by the selected normal estimation al-
gorithm and its configuration. However, it should be empha-
sized that no specific methodology is imposed as part of the
objective metric. Although several techniques are available,
the investigation of the optimal choice is outside of the scope
of this paper. Based on the results of Section 4, we show that
even in the case of absence of normals, the predictive power
of the proposed metric is high, after using a common and sim-
ple normal estimation algorithm with a typical configuration.

3. VALIDATION METHODOLOGY

In this section, we describe the design of a subjective quality
assessment experiment to benchmark objective quality met-
rics. For more details, the reader may refer to [2].

3.1. Subjective experiment

A set of five simple geometry point clouds was selected to be
used in experiments that were conducted in a desktop setup.
The test contents were displayed as a collection of points. The
models have a density in the same order of magnitude and are
scaled to fit in a minimum bounding box of size 1. In particu-
lar, cube and sphere were artificially generated in order to ac-
count for synthetic contents with perfect geometry. Vase, was
manually scanned using an Intel RealSense Camera R200 and



(a) Bunny (35947)

(b) Cube (30246)

(¢) Dragon (22998)

(d) Sphere (30135) (e) Vase (36022)

Fig. 3: Selected contents.

represents a typical irregular content acquired from a low-cost
consumer device. Finally, bunny and dragon, were selected
from the Stanford 3D Scanning Repository?. The geometry
of these models is less irregular with very limited amount of
noise and smooth underlying surfaces. In Figure 3, the se-
lected test contents and their number of points are illustrated.

Two radically different types of degradations were se-
lected, namely, (i) Guassian noise which is a widely used
model for position errors, and (ii) octree-based compres-
sion that leads to sparser versions with structural loss. For
Gaussian noise, the coordinates of every point is displaced
along every dimension according to a target standard devi-
ation o = {0.0005,0.002,0.008,0.016}. For octree-based
compression, a suitable level-of-details is selected per con-
tent to maintain a target percentage of remaining points p =
{30%, 50%, 70%, 90%} with acceptable deviation of +2%.
This type of distortion is annotated as octree-pruning. The
degradation levels were selected in order to represent a wide
range of visible distortions. In Figure 4, degradations of
bunny are indicatively presented. The structural loss after
octree-pruning can be noticed, mainly, in the upper part of
the model’s body, from the selected viewport.

Fig. 4: Bunny: (left) original, (middle) octree-pruning with
p = 50%, (right) Gaussian noise with o = 0.008.

The experiments were conducted in a laboratory that ful-
fills the ITU-R Recommendation BT.500-13 [4] for subjective
evaluation of visual data. A visualizer based on VTK library
and integrated in PCL [5] was used, along with an Apple Cin-
ema Display of 30 inch (res. 2560x1600). The subjects were
able to visualize the point clouds on the flat screen, interact
using the mouse, and provide their scores using the keyboard.

Zhttp://graphics.stanford.edu/data/3Dscanrep/

Two different subjective evaluation methodologies were
selected: (i) simultaneous Double Stimulus Impairment Scale
(DSIS), and (ii) Absolute Category Rating (ACR), both with
5-rating impairment scale. The first method is preferred for
its high discriminative power, as the subjects simultaneously
visualize both the degraded and the reference content whose
position is specified. The second method accounts for a more
realistic type of media consumption. As the nature of artifacts
introduced by the two different types of degradations drasti-
cally differs, the experiment was split in 4 sessions.

A training phase took place before each session, allowing
subjects to familiarize themselves with the the visible distor-
tions and the evaluation tool. To avoid contextual effects and
monitor defects that could introduce biases, a different per-
mutation of the order of contents was deployed per session,
the same content was never displayed consecutively, and the
side of the reference in the screen was selected randomly per
subject for the DSIS methodology. In each session a total of 5
contents and 4 degradation values were used, along with a
hidden reference for sanity check, leading to 25 stimuli per
session. A total of 20 naive subjects participated per session,
with the age ranging from 21 to 37 years old (average 28).

The subjective scores were processed by first detecting
and removing outliers based on the ITU-R Recommendation
BT.500-13 [4]. In DSIS with octree-pruning, one outlier was
found resulting in 19 scores, while for the remaining sessions
no outliers were identified leading to 20 scores. Then, the
mean opinion scores (MOS) and the 95% confidence inter-
vals, assuming a Student’s t-distribution, were computed for
each content under evaluation in every experiment.

3.2. Computation of the objective scores

Both the original and the distorted contents used in this exper-
iment had no associated normals with their coordinates. To
compute the normals, the methodology proposed by Hoppe et
al. [6] as implemented in PCL [5] was selected. Around each
point of interest 6 nearest neighbors were defined, as the test
contents are rather sparse. After associating the resulting nor-
mal vectors, the obtained contents were used to calculate the
scores from every objective metric. For the state-of-the-art
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Fig. 5: Subjective against objective scores for the best state-of-the-art (a-c-e-g) and the proposed objective metric (b-d-f-h).

Table 1: Performance indexes of the best state-of-the-art and the proposed objective metric.
Gaussian noise H Octree-pruning
| PCC SROCC RMSE  OR | PCC  SROCC RMSE  OR
ACR  PSNR - p2planeyjgg 0.9950  0.9846  0.1372  0.1000 0.2146  0.1332  0.8933  0.6500

ACR  p2planepsp 0.9360  0.9379  0.4836 0.7000 0.4028 -0.0211 0.8371 0.5500
ACR  Proposed metric 09645 0.9466  0.3660 0.3500 0.9530 0.9353 0.2771 0.1500

DSIS  PSNR - p2pointpausdortf || 09960 09782 0.1231  0.0500 03364 04384  0.8960  0.6000
DSIS  Proposed metric 0.9676  0.9665  0.3468  0.2500 0.8924 09032  0.4292  0.3500

techniques, the software described in [7] was used (ver. 0.02 dation ITU-T P.1401 [8], the Pearson linear correlation coef-
and 0.09). The point-to-point and point-to-plane metrics were  ficient (PCC), the Spearman rank order correlation coefficient
employed, each adopting the RMS, the MSE and the Haus- (SROCC), the root-mean-square error (RMSE), and the out-
dorff distances. The PSNR was computed for every combina-  lier ratio based on standard error (OR) are computed between
tion as the ratio of the squared maximum distance of nearest  the subjective and predicted MOS values, to account for lin-
neighbours of the original content divided by the squared er-  earity, monotonicity, accuracy and consistency, respectively.

ror value, leading to a total of 12 metrics. For the proposed
metric, the WAVG angular similarity was calculated by set-

4. RESULT
ting weights equal to 1 in steps 5 and 10 of Algorithm 1. SULTS

In Figure 5, we demonstrate scatter plots of the subjective
3.3. Benchmarking of objective quality metrics against the objective scores as calculated from the proposed

and the best-performing alternative metrics from state of the
To evaluate how well an objective metric is able to estimate  art, for each type of degradation and subjective methodol-
perceptual quality, the MOS of the participating subjects is  ogy. The corresponding performance indexes are reported in
considered as the ground truth and is compared to predicted  Table 1. Regarding the best-performing state of the art, in
MOS values obtained from the objective metrics. To compute  the ACR experiment, the PSNR of point-to-plane with MSE,
the predicted MOS scores, a regression analysis using linear, and the point-to-plane with MSE outperformed the others
logistic and cubic functions was issued, with the former pro-  for Gaussian noise and octree-pruning, respectively. In the
viding better fitting results. Then, based on the Recommen-  DSIS experiment, the PSNR of point-to-point with Hausdorff



distance was the best for both types of degradations. Note
that point-to-point and point-to-plane metrics are annotated
as p2point and p2plane, respectively, in Figure 5 and Table 1.

Based on the performance indexes of Table 1, the pro-
posed metric outperforms the current methods in predicting
the subjective visual quality under compression-like artifacts.
Octree-based compression leads to elimination of high fre-
quency components, and structural loss from point removal
and displacement can be noticed. Thus, more severe visual
distortions are perceived in point clouds with high curvature
values and irregular structures, whereas the visual quality
of regular contents with planar underlying surfaces, such as
cube, is not significantly impacted. Although all considered
metrics are able to capture visual degradations of non-planar
surfaces, in case of planar contents the current metrics fail to
accurately predict perceptual quality. In particular, point-to-
point metrics do not consider underlying surface properties,
assigning the same error value to a deviation of a point from
the original position, independently of the underlying shape.
Point-to-plane metrics assign different errors based on the di-
rection of displacement of a point; that is, if a point deviates
along the tangent plane perpendicular to the reference normal
vector, no error occurs. However, a shift of every distorted
point that belongs to a planar surface (e.g., face of a cube) will
notably affect the objective score as a function of the shift-
ing direction, given that same pairs of nearest neighbors are
obtained, although minor visual degradations are perceived.
Conversely, such errors will not significantly affect the pro-
posed objective metric, which explains its high performance.

The high predictive power of our approach is remark-
ably achieved in a rather diverse point cloud data set, which
consists of simple objects with regular geometry and planar
surfaces (i.e., cube), more complex models with less regular
placement (i.e., dragon), and point clouds with totally irreg-
ular structure (i.e., vase). As can be observed, better correla-
tion results are obtained using the subjective scores collected
in the ACR experiment. Note that in this methodology, the
visual quality of the test contents is explicitly assessed. In
the DSIS methodology, based on our observations, subjects
tended to rate based on relative differences between contents,
including the number of points [2].

In the presence of Gaussian noise, strong correlation be-
tween objective and subjective scores can be observed, for
both the current and the proposed objective metrics. Provided
that the state of the art is based on geometric distances of
closest points between the reference and the distorted stimuli,
by increasing the standard deviation of the noise the objective
scores naturally worsen. The subjects were able to recognize
such distortions and identify the level of displacement. No-
tably, the proposed metric achieves comparable performance,
albeit the displacement of points typically leads to lower qual-
ity of normals. It should be mentioned that this high accuracy
is observed, partly, as a result of the selected normal estima-
tion algorithm, which is considered as robust against noise.

5. CONCLUSIONS

In this paper a promising alternative for objective quality as-
sessment of point clouds is introduced, based on the angular
similarity of associated points belonging to a reference and
a point cloud under evaluation. Benchmarking results show
that the proposed metric achieves high performance and accu-
rately captures the visual quality of point clouds degraded by
either Gaussian noise, or compression-like artifacts. For the
latter, this is the only metric with high predictive power. Fur-
ther experimentation on a larger set of contents and use cases
is needed in order to assess its limitations. Improvements may
be observed by optimizing the estimation of the normals, or
by associating larger weights on areas of the point cloud that
have higher impact on the perceptual quality.
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