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ABSTRACT 

Recent years, compressive sensing (CS) has improved greatly 

for the application of deep learning technology. For 

convenience, the input image is usually measured and 

reconstructed block by block. This usually causes block 

effect in reconstructed images. In this paper, we present a 

novel CNN-based network to solve this problem. In 

measurement part, the input image is adaptively measured 

block by block to acquire a group of measurements. While in 

reconstruction part, all the measurements from one image are 

used to reconstruct the full image at the same time. Different 

from previous methods recovering block by block, the 

structure information destroyed in measurement part is 

recovered in our framework. Block effect is removed 

accordingly. We train the proposed framework by mean 

square error (MSE) loss function. Experiments show that 

there is no block effect at all in the proposed method. And our 

results outperform 1.8 dB compared with existing methods.  

Index Terms— Compressive sensing, convolutional 

neural network (CNN), block-wise, full image recover 

1. INTRODUCTION

Compressive sensing (CS) theory shows that signal can be 

reconstructed under an extremely low sample rate because of 

its sparse structure. In conventional CS problem, signal is 

measured with Gaussian matrix in blocks and then recovered 

by optimization algorithms [1] [2] [3] [4] [5] [6]. 

Recently, CNN-based methods [7] [8] [9] [10] are 

proposed for CS problem. The network can adaptively learn 

a transform from measurements to reconstruction images by 

minimizing error between the original and the reconstructed 

images in large dataset. When it comes to testing, the speed 

and accuracy can be greatly improved. Most existing methods 

use block-wise approach, in which the input images are 

measured and recovered block by block [7] [8] [9] [11] [12]. 

It is convenient to implement. In addition, by segmenting 

images into blocks, images with any size can be measured. 

However, in these methods the blocks are reshaped   into 

columns [13], which damage the structure information and 

result in serious block effects especially in low measurement 

rate. Thus, denoising algorithms such as BM3D [14] are 

usually used to remove it. The method proposed in [15] firstly 

uses fully convolutional network to measure the full image 

directly. Because of the overlapped structure, the block effect 

is suppressed effectively in the measurement part. 

In this paper, we propose a novel CS framework which 

removes the block effect efficiently as is shown in Fig.1. In 

the measurement part, the input image is adaptively measured 

block by block, which can be easily implemented on optical 

system. Different from pervious methods, in reconstruction 

part, we employ resnet [16] to recover the full image from its 

block-wise measurements. During the reconstruction stage, 

block effect is also removed. By minimizing the error 

between the original and the reconstructed images, the 

network can be trained end-to-end. Experimental results 

show the excellent performance of proposed framework on 

both gray images and color images recovery. 

The organization of this paper is as follows. Section 2 

introduces some related work about CNN-based CS. Section 

3 describes the detailed architecture of the proposed method. 

Section 4 presents the experimental results of the proposed 

method compared to typical existing methods. Section 5 

draws the conclusion of our work. 

(a) Original (b) ReconNet with learned

measurement matrix

(c) DR2-Net (d) Proposed

Fig. 1. The figure shows the results recovered by ReconNet 

with learned measurement matrix, DR2-Net and proposed 

method for measurement rate 4%.  



 

2. RELATED WORK 

 

2.1. CNN-based CS 

In recent years, deep neural network is widely applied to CS 

problem. Mousavi, Patel, and Baraniuk [10] firstly apply 

deep neural network to CS problem. ReconNet [7] and 

DeepInverse [17] train convolutional neural networks to 

recover signals from measurements. Based on ReconNet, 

DR2-Net [8] obtains an improved result by learning the 

residual information between low resolution images and 

ground truth images. Adp-Rec [11], DeepCodec [12] and new 

ReconNet [9] jointly train the measurement and the 

reconstruction parts. They acquire excellent performance. 

Xie et. al. [15] firstly proposed fully convolutional 

measurement network where the input is measured by 

overlapped convolution operation. This method removes the 

block effect effectively. 

 

2.2. Block by block recovery 

 

In most CNN-based methods [7] [9] [11] [12], the input is 

usually measured and recovered block by block. That is 

because measuring a full image directly needs a lot of 

computer memory. Moreover, block-based CS can be easily 

implemented by optical devices [7] [9] [18] [19] [20]. The 

architecture of ReconNet is shown in Fig. 2. The image block 

is firstly measured by Gaussian matrix. Then a fully 

connected layer is employed to get a low resolution image. 

After that, the ReconNet units is used to produce 

reconstruction image block. The loss function is given by 

𝐿({𝑊}) =
1

𝑇
∑ ‖𝑓(𝑦𝑖 , {𝑊}) − 𝑥𝑖‖2

2𝑇
𝑖  (1) 

where 𝑓(𝑦𝑖 , {W}) is the 𝑖−th reconstructed image block of 

ReconNet. And 𝑥𝑖 is the 𝑖–th original image block as well as 

the i−th label. {𝑊}  means the training parameters in 

ReconNet. T  is the total number of image blocks in the 

training dataset. In this method, since all the blocks are 

independent in both measurement and reconstruction parts, 

there is serious block effect in reconstructed image, 

especially at low measurement rates. The latest CS network 

[15] measures the scene by overlapped convolutional 

operation. It can remove block effect successfully, while the 

implementation is still in exploration. 

 

3. PROPOSED METHOD 

 

This paper proposes a block-based measurement and full 

image reconstruction network. It can be implemented by 

existing method. Meanwhile it can achieve pleasant visual 

experience with no block effect absolutely. 

 

3.1. Network architecture 

 

The architecture of the proposed framework is shown in Fig.3. 

The network is composed by measurement part and 
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Fig. 2. The framework of ReconNet. The scene is measured by Gaussian matrix block by block. And then the measurements are send 

to Reconnet units to acquire reconstructed blocks 
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Fig. 3. Proposed CS architecture. The network composed by measurement part and reconstruction part. The scene is measured block by 

block, while the reconstruction network recovers the full image from its measurements. 



reconstruction part. The measurements are obtained by non-

overlapped convolution operation. This is same as traditional 

block-based measurement. All the kernels make up an 

adaptive measurement matrix. They measure the input 

images block by block with sliding windows. It is easy to be 

implemented by the normally used optical devices. 

Different from block by block reconstruction, all the 

measurements are used to recover the image at the same time. 

As is shown in green dotted line in Fig.3. While the previous 

work is recovered block by block as is shown in Fig.2. In 

reconstruction phase, a deconvolutional layer is firstly used 

to produce a low resolution reconstruction image. Inspired by 

[21] [22] [16], we employ residual blocks in reconstruction 

network. Each residual block contains two convolution layers 

and a PReLU activation function. The detailed structure is 

shown in Fig.3.  

Accordingly, the loss function of proposed framework is 

given by 

𝐿({𝑊}) =
1

𝑇
∑ ‖𝑓(𝐼𝑖

ℎ𝑟 , {𝑊}) − 𝐼𝑖
ℎ𝑟‖

2

2𝑇
𝑖=1   (2) 

where {𝑊} represents the parameters of proposed network. T 

is the total number of full images in the training batch. 

Different between (1) and (2) is that in (2) the input is full 

image 𝐼𝑖
ℎ𝑟  but block measurement 𝑦𝑖  in (1). By minimizing 

the mean square error (MSE) loss function, the network can 

be trained end to end. 

 

3.2. Full image recover and deblock 

 

Block-based measurement usually destroy the structure 

information. After reconstructing block by block, all the 

image blocks are spliced together stiffly. In fact, there is no 

any connection among these blocks. And block effect appears 

accordingly.  As is shown in fig4 (b) and (c). In the proposed 

framework, however, the reconstruction network deals with 

all the measurements as a whole. Because of convolution 

operation whose kernel size and stride is small, the 

connection of block measurements is rebuild. In addition, the 

loss function of the proposed method guide reconstruction 

network to minimize the error of full images between the 

input and the output instead of image blocks. The obvious 

additional information in reconstruction images such as block 

effect is not tolerated. So, the recovery network remove block 

effect at its reconstruction end. 

The compared results of ReconNet, DR2-Net and the 

proposed method with measurement rate 4% are shown in 

Fig.4. It is obviously that our results have no block effect 

absolutely even if the measurement rate is very low. And the 

structure of the image is completely preserved. This makes 

the visual effect excellent. In addition, the PSNR is much 

higher than the other two methods. 

 

4. EXPERIMENTS 

 

In this section, we conduct the experiments on MSE loss with 

fully convolutional neural network for compressive sensing 

problem. 

We use the tensorflow [23] framework for network 

training and testing. Our computer is equipped with Intel 

Core i7-6700 CPU with frequency of 3.4GHz, 4 NVidia 

GeForce GTX Titan XP GPUs, 128 GB RAM, and the 

framework runs on the Ubuntu 16.04 operating system. The 

training dataset consists of 800 images from DIV2K dataset. 

Train images are obtained by cropping random 256 × 256 

high resolution images from train dataset. Before entered into 

the network, these images are converted to grayscale and are 

scaled the pixel values to [−1,1]. All the models at different 

measurement rate are trained with learning rate of 10−4 and 

1000 epochs. 

We compare the proposed framework with other three 

classical method ReconNet, DR2-Net and Adp-Rec 

respectively. Some examples of test images are shown in 

Fig.5. The proposed network is trained with measurement 

rate of 1%, 4%, 10% and 25%. The detailed compared results 

with four measurement rates is shown in Table.1. It obviously 

that the proposed method acquired best performance on both 

PSNR and visually effects. The block effects are removed 

clearly even if at low measurement rate. 

From Fig.5 (a) with measurement rate of 1%, it is clear 

that ReconNet, DR2-Net and Adp-Rec have serious block 

effects. It is even hard to distinguish the content in the first 

two reconstructed images. In contrast, the results of the 

proposed method have no any block effect even in such a low 

measurement rate. When measurement is 4% in Fig.5 (b), the 

block effect in first two results is obviously in high-frequency 

areas and the edges of reconstruction images. The result of 

Adp-Rec is better than the first two methods, but the block 

effect in eyes of ‘Lena’ influence the visual effect seriously. 

In Fig.5 (c), the results of Adp-Rec and the proposed method 

surpass the other two methods clearly. Though the block 

effect in Adp-Rec is weaken, there is still much noises 

  
(a) Original (b) ReconNet (18.19dB) 

  
(c) DR2-Net (18.93dB) (d) Proposed (24.69 dB) 

Fig. 4. The reconstruction result of proposed method compared 

with RceconNet and DR2 for measurement rate 4% 



compared with proposed method because of block recovery. 

When the measurement is 25%, there is no obvious block 

effect in all methods. While the proposed method have best 

visual experience.   

The detailed comparing results is show in Table. 1. It is 

obviously that the results of our method acquire the best 

performance. The PSNR is higher than the state-of-the-art 

method by 1.8 dB on average. The superiority is especially 

clear at the measurement rate 25%  

 

5. CONCLUSION 

 

This paper proposes a novel framework of CS where the 

measurements are measured block by block. Different from 

the previous framework, the full image is reconstructed at one 

time in our work. In addition, the proposed method is easier 

for implementation, and outperforms the state-of-the-art 

methods. In the future, we will apply the proposed method on 

hardware and set up a real-time compressive sensing camera 

with FPGA. 

 

ReconNet DR2-Net Adp-Rec Proposed 

    
15.39 dB 15.33 dB 17.70 dB 18.97 dB 

(a) 1% 

    
21.28 dB 22.13 dB 25.70 dB 26.67 dB 

(b) 4% 

    
21.28 dB 22.46 dB 24.97 dB 26.42 dB 

(c) 10% 

    
27.30 dB 30.09 dB 32.47 dB 35.21 dB 

(d) 25% 
Fig. 5. The reconstruction results for measurement rate 1%, 4%, 10% and 25%. 
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