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ABSTRACT

A rapid increase in the video traffic together with an in-

creasing demand for higher quality videos has put a signif-

icant load on content delivery networks in the recent years.

Due to the relatively limited delivery infrastructure, the video

users in HTTP streaming often encounter dynamically vary-

ing quality over time due to rate adaptation, while the delays

in video packet arrivals result in rebuffering events. The user

quality-of-experience (QoE) degrades and varies with time

because of these factors. Thus, it is imperative to monitor

the QoE continuously in order to minimize these degradations

and deliver an optimized QoE to the users. Towards this end,

we propose a nonlinear state space model for efficiently and

effectively predicting the user QoE on a continuous time ba-

sis. The QoE prediction using the proposed approach relies

on a state space that is defined by a set of carefully chosen

time varying QoE determining features. An evaluation of the

proposed approach conducted on two publicly available con-

tinuous QoE databases shows a superior QoE prediction per-

formance over the state-of-the-art QoE modeling approaches.

The evaluation results also demonstrate the efficacy of the se-

lected features and the model order employed for predicting

the QoE. Finally, we show that the proposed model is com-

pletely state controllable and observable, so that the potential

of state space modeling approaches can be exploited for fur-

ther improving QoE prediction.

Index Terms— DASH, HTTP streaming, QoE, rebuffer-

ing, stalling, state space, time varying quality.

1. INTRODUCTION

Streaming videos on demand over Hyper Text Transfer Pro-

tocol (HTTP) has grown significantly in the recent years. Ac-

cording to Cisco’s VNI [1], videos accounted for 60% of the

total mobile data traffic in 2016. It is projected that more than

three-fourth of the world’s mobile data traffic will be consti-

tuted by videos by 2021. Such a massive growth in the video

traffic is putting a huge stress on the video delivery infrastruc-

ture.

In case of video streaming, a large volume of network

traffic can cause impairments such as congestion and packet

drops which in turn can result in significant delays in the

packet arrival at the end user causing the playback to stall.

Such events are referred to as rebuffering events [2]. In or-

der to minimize the occurrence of rebuffering events, HTTP

streaming solutions such as Dynamic Adaptive Streaming

over HTTP (DASH) allow their clients (or the video users)

to adapt the video rate in accordance with the changing net-

work conditions [3]. Since the media delivery in DASH is

based on reliable HTTP/TCP, there are no packet losses at the

end user. Rate adaptation is a key feature offered by the adap-

tive streaming frameworks that is useful in dynamic and time

varying transmission environments such as mobile networks.

However, the videos encoded at different rates offer differ-

ent video qualities and therefore, rate adaptation results in a

video quality that varies with time. Time varying video qual-

ity and rebuffering events can lead to significant degradation

of the end user QoE [4, 5]. Monitoring the continuous time

QoE is vital for the optimal utilization of shared resources

and thereby maximize the QoE of the video users in the net-

work. Continuous QoE evaluation is also useful in choosing

the appropriate video rate so that the QoE degradations can

be minimized.

In this paper, we make the following contributions:

1) We propose an efficient method for measuring the con-

tinuous QoE of video streaming users based on a non-

linear state space (NLSS) model. The proposed model

is based on the perceptual experience of the video

streaming users unlike the network based QoE evalu-

ation methods [2, 6].

2) We investigate three features for continuous QoE es-

timation, namely, (a) short time subjective quality, (b)

playback indicator, and (c) time elapsed since the last

rebuffering event [7].

3) We conduct an evaluation of the proposed model on two

continuous QoE databases and demonstrate a high QoE

estimation performance of the proposed model outper-

forming the state-of-the-art QoE evaluation methods.

The rest of the paper is organized as follows. Section

2 gives a brief overview of the existing QoE modeling ap-

proaches. The proposed QoE model is presented in Section
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3. Section 4 describes the QoE evaluation methodology using

the proposed approach. Performance evaluation and analysis

of the proposed QoE model is discussed in Section 5 followed

by concluding remarks in Section 6.

2. RELATED WORK

QoE centric design has gained a lot of importance owing to

several advantages to the multimedia service providers. Find-

ing feature descriptors for prediction models that quantify the

user QoE has been drawing a lot of attention lately [2, 8–10].

Measuring the end user QoE is a challenging task as the

QoE is highly subjective in nature. However, many subjec-

tive studies have shown that although individual preferences

vary, by and large the QoE of users concurs to a particular

trend [2, 4, 5, 9, 11].

Video quality assessment (VQA) forms a crucial part of

QoE estimation models in video streaming [5,7,11]. VQA has

been studied in several works in the literature [12–15]. [16]

provides a comprehensive study of various VQA metrics and

suggests that the metrics MS-SSIM [12] and MOVIE [13]

provide good video quality prediction performances. An op-

tical flow based VQA method proposed in [15] is shown to

provide a superior video quality prediction performance over

all the existing methods. Although VQA metrics incorporate

the aspects that determine user’s perceptual quality, they are

insufficient for determining the QoE [5, 11]. QoE is found to

be determined not just by the video quality but also by a se-

quence of events occurring at different time instants in a video

session such as rate adaptation and rebuffering.

There have been several efforts that address the challenge

of QoE prediction for video streaming. In [6], the authors

identify some of the QoE metrics that are defined in the 3GPP

DASH specification TS 26.247 standard. Some of them in-

clude the average throughput, initial playout delay, buffer

level etc. However, these metrics can only act as indicators

of the QoE and cannot measure the actual QoE as they do

not capture the perceptual experience of the user. There are

other factors that have been identified as the factors affect-

ing the QoE of a user such as the initial loading time, startup

delay and so on [2, 9, 17]. However, it is shown in these stud-

ies that the startup delays have minimal or almost negligible

impact on the QoE. Other QoE studies such as [2, 5, 9] indi-

cate that the rebuffering events degrade the QoE severely. It

is reported in these studies that the user is willing to sacrifice

higher resolutions (or equivalently better quality) for avoiding

interruptions in the playback.

In [11], Chen et al. propose the Hammerstein Wiener

model for measuring the perceptual time varying video qual-

ity due to rate adaptation. In [18], Yeganeh et al. propose the

delivery quality score model to estimate the overall percep-

tual QoE due to rebuffering. It is to be noted that these meth-

ods study and model the time varying quality and rebuffering

events separately and do not consider them jointly. In [19],

Duanmu et al. consider these QoE impairments jointly and

Fig. 1: Proposed nonlinear state space QoE model.

design the streaming quality index to measure QoE. However,

these QoE models evaluate only the overall QoE towards the

end of watching a video and not the dynamic QoE of the users

on a continuous time basis. There is a need for perceptually

motivated continuous QoE estimation methods for the opti-

mal utilization of network resources and thereby enhance the

user QoE in real time. In [4], Bampis et al. provide the LIVE

Netflix Database along with a subjective study of user QoE in

the presence of time varying quality and rebuffering together.

Over this QoE database, a nonlinear autoregressive model

(NARX) is proposed in [7] based on an autoregressive neu-

ral network to estimate the continuous QoE. In [5], Eswara

et al. conduct a subjective study of continuous QoE on the

videos at full high definition (FHD) and ultra high definition

(UHD) resolutions and present the LFOVIA QoE Database.

In addition, the authors also present a continuous QoE eval-

uation framework based on support vector regression (SVR-

QoE). Although NARX and SVR-QoE modeling approaches

address the continuous QoE estimation problem in the pres-

ence of both time varying quality and rebuffering, they are

validated only on their respective QoE databases for which

they are designed and proposed. We show in Section 5 that

each of the models’ QoE estimation performance drops when

trained and evaluated on other databases. Further, the QoE

analysis of these models is not easily interpretable as they are

built using machine learning algorithms.

Therefore, we propose a NLSS model for estimating con-

tinuous QoE that is more tractable for analysis. Using the

proposed model, we conduct a comprehensive evaluation of

the continuous QoE databases and show that the proposed

model performs consistently well across the databases. We

also show that the performance of the proposed QoE model is

superior to the state-of-the-art QoE methods.

3. NONLINEAR STATE SPACE MODEL

According to International Telecommunications Union, QoE

is defined as the overall quality of an application or a ser-

vice as perceived subjectively by the end user [20]. Many

psycho-visual experiments conducted on the visual system

suggest that the visual quality and the perceptual experience

is highly nonlinear in nature due to nonlinear response proper-

ties of the neurons in the primary visual cortex [13]. Further,

it is observed through several subjective studies that the visual

QoE varies dynamically according to various QoE influencing

events such as rate adaptation [4, 5, 11]. Such events result in

the hysteresis effect [21], where the continuous QoE involves

a memory of a sequence of past events influencing the cur-



rent QoE. Thus, in the proposed NLSS model, the nonlinear

properties of the neurons are captured using an explicit static

nonlinear function and the memory effects are modeled using

the state space design. Fig. 1 shows the proposed nonlinear

dynamic QoE estimation model. We evaluate the QoE on a

continuous time basis using the proposed system.

Let m be the number of inputs to the model. Let

R
m

≥0
represent the set of all nonnegative real numbers in

an m-dimensional space. Let a(t) ∈ R
m

≥0
represent the

m-dimensional input feature vector to the system. Let

u(t) ∈ R
m

≥0
represent the time-indexed m-dimensional vec-

tor serving as the input to the linear state-space for es-

timating the QoE represented as ŷ(t) ∈ R. Let βββ =

[β11 · · ·β51, β12 · · ·β52, · · · , β1m · · ·β5m] represent the set

of static nonlinear parameters of the model. We define the

nonlinearity as a sum of sigmoid function and linear function,

as mentioned in the following.

ui(t) =
β3i

1 + exp(−(β1iai(t) + β2i))
+ β4iai(t) + β5i,

∀i = 1, 2, · · · ,m.

Let x(t) be the state vector of the model at any time instant t.

Using standard state space equations [22], the output is given

by

ŷ(t) = Cx(t) +Du(t), (1)

where, C and D are the output matrix and the feed-forward

matrix, respectively. The state update equation is

x(t+ 1) = Ax(t) +Bu(t), (2)

where, A is the system matrix and B is the input matrix. In

our evaluation, the QoE estimation is performed every sec-

ond, i.e., at a granularity of t = 1 second. Next, we describe

the states in the model.

3.1. Identification of States

Let x ∈ R
s, implying that the number of state variables is

equal to s and the state transitions are controlled by the input

signals u(t). Since there are m such input signals, we set the

number of state variables s to be at least m i.e., s ≥ m. Fur-

thermore, we define the quantity r, r > 0 and r ≤ s such that

a set of r states are controlled by each of the m-dimensional

inputs distinctly. Let these r states be constituted by the pre-

vious r values of each input. Accordingly, the number of state

variables s is hence determined by the number of inputs which

is equal to m and the number of states r corresponding to each

input. Thus, we have the relation s = mr. Here, r represents

the model order since it accounts for the previous inputs while

making the state transition at any instant of time t. In addi-

tion, we impose the following constraints on the parameters

of the state update equation: 1) Rank(A) = s and 2) Rank(B)

= m. These constraints are imposed in order to make the state

space controllable [22].
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Fig. 2: Illustration of the QoE features. Figs. 2a, 2b, and 2c

depict the variation of features STSQ, PI, and TR with

playback time, respectively, for an arbitrarily chosen video

from the LFOVIA QoE Database [5].

3.2. Feature Selection

We consider three features as the input to the model as de-

scribed in the following:

1) Short Time Subjective Quality (STSQ): STSQ of the

current video segment can be calculated using any of

the sophisticated video quality assessment (VQA) met-

rics. STSQ measures the perceptual video quality of

the current video being rendered to the user.

2) Playback Indicator (PI): Since rebufferings result in a

significant drop in the QoE as indicated in several stud-

ies [4,5,17], we employ a binary indicator variable PI to

indicate whether the video currently is in the playback

state or in the rebuffering state.

3) Time elapsed since last rebuffering (TR): A rebuffering

event is usually followed by a recovery phase, where

the depreciated QoE due to rebuffering tries to recover

as the playback progresses [5]. Therefore, we hypothe-

size that the improvement in QoE in the recovery phase

is proportional to the time elapsed since the last re-

buffering. Hence, we employ TR as an input feature

to the model.

Fig. 2 illustrates the variation of the employed features

STSQ, PI, and TR with playback time for one of the videos

in the LFOVIA QoE Database [5]. Here, STRRED [14] is

used as VQA for STSQ. STRRED shares an inverse relation

with the video quality, i.e., a lower value of STRRED indi-

cates a better video quality and vice-versa. In Fig. 2, it can

be observed that while STSQ tracks the time-variation in the

quality, PI and TR are responsive to the rebuffering events.

Similar features have been employed in [7] for QoE mod-

eling as well. However, we would like to highlight that only

a limited set of features are available as part of the LIVE

Netflix QoE Database [4] upon which we evaluate the per-

formance of our proposed model. Further, only a few videos

of the database are made publicly available. This restricted us

from the exploration and the investigation of furthermore QoE

features, as the database is not available completely. Never-

theless, we demonstrate in Section 5 that even with this set



of limited features, the proposed QoE model is able to pro-

vide an excellent performance compared to the state-of-the-

art QoE estimation methods.

4. QOE ESTIMATION

In this section, we describe the procedure for QoE evalua-

tion using the proposed approach. Since there are three input

features to the model, namely, STSQ, PI, and TR, we have

m = 3. We consider the following VQA metrics for STSQ:

1) STRRED [14], 2) MS-SSIM [12], 3) PSNR [23], and (4)

NIQE [24]. PI and TR are simple dynamic features that can be

obtained directly by tracking the status of the playback. Fur-

ther, it has been observed in the previous studies that the user

QoE is heavily influenced by the past experience of about 2-3

seconds [11, 25]. Hence, we set the model order r = 3 imply-

ing the state space dimension s = mr = 9.

The proposed model is trained using the videos from the

training set and evaluated for its performance on the test set.

We consider non-overlapping training and test sets in all our

evaluations. During training, the nonlinearity function param-

etersβββ and the state space parameters, namely the matrices A,

B, C and D are determined by performing least squares min-

imization between the ground truth QoE and the estimated

QoE. While evaluating the trained model on the test set, it

must be noted that there are two unknowns to be determined

as per (1) - the state vector x and the output QoE ŷ. Since the

interest of evaluation is the QoE ŷ, the state vector x must be

initialized with an appropriate initial state x(0). To overcome

this problem, we resort to training data based state initializa-

tion methodology where in the state of the model is initialized

based on the feature-QoE pair of the videos that are used in

the training process. The best state initializer for the training

set is determined and is subsequently used for the evaluation

of the test video.

5. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we discuss the performance evaluation of the

proposed model on the QoE databases. We also evaluate the

performance of the linear state space (LSS) by excluding the

nonlinearity in Fig. 1. Both LSS and NLSS models are com-

pared against the state-of-the-art QoE methods.

The performance of QoE estimation using the proposed

model is quantified using the following three measures: 1)

Linear Correlation Coefficient (LCC), 2) Spearman Rank Or-

der Correlation Coefficient (SROCC), and 3) Normalized

Root Mean Squared Error (RMSEn). Since the QoE databases

have different QoE score ranges, we normalize the actual

RMSE values to obtain ‘RMSEn’. For a good performing

model, LCC and SROCC values should be higher and RMSEn

should be as low as possible.

We investigate the performance of the proposed model

over two publicly available continuous QoE databases: 1)

LIVE Netflix Database [4] and 2) LFOVIA QoE Database [5].

Table 1: Performance of the proposed QoE model over the

LIVE Netflix Database [4] under various VQA metrics for

STSQ. Text in italics indicates the state-of-the-art QoE

model. The best performing results are shown in bold.

QoE Model VQA LCC SROCC RMSEn(%)

NLSS

STRRED [14] 0.66 0.48 16.09

MS-SSIM [12] 0.58 0.42 18.22

PSNR [23] 0.47 0.33 24.29

NIQE [24] 0.53 0.30 14.50

LSS STRRED [14] 0.57 0.44 19.20

NARX [7] STRRED [14] 0.62 0.56 8.52

Table 2: Performance of the proposed QoE model over the

LFOVIA QoE Database [5] under various VQA metrics for

STSQ. Text in italics indicates the state-of-the-art QoE

models. The best performing results are shown in bold.

QoE Model VQA LCC SROCC RMSEn(%)

NLSS

STRRED [14] 0.77 0.69 7.59

MS-SSIM [12] 0.78 0.68 7.37

PSNR [23] 0.02 0.08 8119

NIQE [24] 0.83 0.79 6.97

LSS NIQE [24] 0.78 0.69 7.53

NARX [7] NIQE [24] 0.75 0.69 7.87

SVR-QoE [5] NIQE [24] 0.79 0.75 8.32

5.1. LIVE Netflix Database

We employ a standardized training and testing procedure with

a training-test split as described in [7]. Accordingly, only

one video in the database is considered in the test set in each

training-test split. The model is trained using the videos that

do not have the same content and the playout pattern as of

the video in the test set. This procedure is repeated for all the

videos in the database as the test set. Table 1 presents the QoE

estimation performance of the proposed model. Figs. 3a and

3b show the QoE estimation performance on sample test set

videos of the database.

5.2. LFOVIA QoE Database

A training-test procedure similar to that of the LIVE Netflix

Database is employed for QoE evaluation on the LFOVIA

QoE Database, where the videos having the playout pattern

same as that of the test video are excluded from training. Ta-

ble 2 presents the QoE estimation performance of the pro-

posed model over the LFOVIA QoE Database. Figs. 3c and

3d show the QoE estimation performance on sample test set

videos of the database.

From Figs. 3a and 3b, it can be observed that though there

is a gap between the estimated and the ground truth QoE, the

trend in the QoE evolution appears to be similar and coherent.

This is reflected in terms of higher LCC performance reported

in Table 1, although the proposed approach yields a perfor-



0 20 40 60 80 100
Time (seconds)

-2

-1

0

1

2

Q
o
E

95% CI

Ground Truth

Predicted

(a) Test Video 1

0 10 20 30 40 50 60
Time (seconds)

-2

-1

0

1

2

Q
o

E

95% CI

Ground Truth

Predicted

(b) Test Video 2

0 50 100 150
Time (seconds)

0

20

40

60

80

100

Q
o
E

95% CI

Ground Truth

Predicted

(c) Test Video 1

0 50 100 150 200
Time (seconds)

0

20

40

60

80

100

Q
o
E

95% CI

Ground Truth

Predicted

(d) Test Video 2

Fig. 3: QoE estimation performance of the proposed NLSS QoE model. Figs. 3a and 3b illustrate the performance of the

proposed model over two abritrarily chosen test videos from the LIVE Netflix Database with STRRED as VQA metric for

STSQ. Figs. 3c and 3d illustrate the performance of the proposed model over two abritrarily chosen test videos from the

LFOVIA QoE Database with NIQE as VQA metric for STSQ.

mance slightly inferior to NARX [7] in terms of SROCC and

RMSEn on the LIVE Netflix Database. However, it is to be

noted that the performance of the proposed model is achieved

using a model order of 3, unlike the NARX approach which

requires higher model orders (of the order of 15) to achieve a

similar performance. This reduction in the model order sig-

nificantly lowers the computational complexity of the QoE

estimator.

From Figs. 3c and 3d, and Table 2, it can be observed that

the QoE estimation performance using the proposed approach

is superior when compared to the state-of-the-art methods

NARX [7] and SVR-QoE [5] in terms of all the performance

measures on the LFOVIA QoE Database. Although NARX

performs well on the LIVE Netflix Database, its QoE predic-

tion performance is inferior on the LFOVIA QoE Database.

On the other hand, the proposed QoE model provides a com-

parable performance on the LIVE Netflix Database and a su-

perior performance on the LFOVIA QoE database. These re-

sults demonstrate the efficacy of the employed features for

QoE estimation, thereby substantiating the hypothesis pre-

sented in Section 3.2.

It can be observed that STRRED emerges as the best per-

forming VQA metric for STSQ on the LIVE Netflix Database

whereas NIQE is found to be the best performing VQA met-

ric for STSQ on the LFOVIA QoE Database. PSNR performs

the least of all VQAs as it is not a perceptual VQA/QoE met-

ric. It can be noted that different VQA metrics yield vary-

ing QoE performances across the two databases. This could

be attributed to the VQA metrics’ ability to predict the video

quality at different resolutions. Video resolution is an im-

portant aspect while measuring the video quality. All of the

considered metrics for STSQ are demonstrated to perform

well at resolutions lower than high definition. However, their

VQA performance on videos having higher resolutions such

as FHD and UHD (which is actually the case in the consid-

ered databases) is unknown [5]. This suggests the need for

sophisticated VQA metrics that can provide excellent qual-

ity prediction performance consistently across all resolutions.

Such a VQA metric can be directly employed as the proposed

model provides enough flexibility to incorporate appropriate

VQA metric of choice for QoE evaluation.

A comparison between LSS and NLSS approaches shows

a clear improvement in the QoE estimation performance with

the addition of the nonlinearity. However, it is interesting

to note that even a LSS system is able to achieve a perfor-

mance comparable to that of the state-of-the-art QoE meth-

ods. Therefore, the LSS QoE model can serve as baseline for

comparison with nonlinear QoE modeling approaches. Thus,

the proposed approach using state space provides a new and

promising perspective for continuous QoE modeling and de-

sign of QoE centric networks.

5.3. Controllability and Observability Analysis

Since the state transitions in the model are driven by the in-

put signal u, it is important to check for the state dynam-

ics in order to ensure that the states do not enter into an

undesired state due to spurious transitions or end up be-

ing in a deadlock. Hence, we investigate the controllabil-

ity of the LSS by examining the rank of the controllability

matrix [B|AB| · · · |As−1B] as in [22]. In our analysis of

the trained models, it is found that the controllability ma-

trix is full rank with rank being equal to s in all cases of

training implying that the system is completely state con-

trollable. Similarly, the rank of the observability matrix

[CT |ATCT | · · · |(AT )s−1CT ] is also found to be full rank

in all training cases, implying that the system is completely

observable [22].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a nonlinear state space model for

continuous video QoE evaluation. The proposed model pre-

dicts the QoE continuously as the user watches videos that

involve time-varying qualities and interruptions in the play-

back due to rebuffering, that is typical of an HTTP streaming

scenario. We studied the QoE behavioral patterns from two

publicly available continuous QoE databases. We modeled



the evolution of user QoE using state transitions that are trig-

gered by a set of QoE influencing dynamic input features. The

proposed QoE model was trained and evaluated on these two

databases. On LFOVIA QoE Database, the proposed model

outperformed all state-of-the-art QoE models. On LIVE Net-

flix Database, the proposed model showed a competitive per-

formance and outperformed the state-of-the-art QoE model

for the LCC performance measure. It must be noted here that

this performance was achieved using a model order of 3, un-

like the NARX approach which requires higher model orders

to achieve a similar performance, thus significantly reducing

the computational complexity of the QoE evaluation system.

A reasonable performance of the proposed LSS QoE model

suggests that the simplified model can be used as baseline for

evaluating the performance of nonlinear QoE modeling ap-

proaches. The proposed QoE model is verified for both con-

trollability and observability, validating the robustness of the

model. In future, we intend to extend this model to investigate

the stochastic properties of the state space for QoE analysis.
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