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ABSTRACT
The recognition ability of human beings is developed in a
progressive way. Usually, children learn to discriminate vari-
ous objects from coarse to fine-grained with limited supervi-
sion. Inspired by this learning process, we propose a simple
yet effective model for the Few-Shot Fine-Grained (FSFG)
recognition, which tries to tackle the challenging fine-grained
recognition task using meta-learning. The proposed method,
named Pairwise Alignment Bilinear Network (PABN), is an
end-to-end deep neural network. Unlike traditional deep bi-
linear networks for fine-grained classification, which adopt
the self-bilinear pooling to capture the subtle features of im-
ages, the proposed model uses a novel pairwise bilinear pool-
ing to compare the nuanced differences between base images
and query images for learning a deep distance metric. In order
to match base image features with query image features, we
design feature alignment losses before the proposed pairwise
bilinear pooling. Experiment results on four fine-grained clas-
sification datasets and one generic few-shot dataset demon-
strate that the proposed model outperforms both the state-of-
the-art few-shot fine-grained and general few-shot methods.

Index Terms— Few-shot Fine-grained , Pairwise Bilin-
ear, Feature Alignment

1. INTRODUCTION

Fine-grained image classification aims at distinguish dif-
ferent sub-categories belong to the same entry-level cate-
gory [1, 2, 3, 4]. This task is particularly challenging due
to the low inter-category variation yet high intra-category dis-
cordance caused by the various objects posture, illumination
condition and distance from the camera etc. Compared to the
part based fine-grained methods [5, 6], global feature based
fine-grained [7, 8, 9] approaches achieve the state-of-the-art
recognition performance. In addition, self-bilinear models
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Fig. 1. An example of general one-shot learning (Left) and
fine-grained one-shot learning (Right). For general one-shot
learning, it is easy to learn the concepts of objects with only
a single image. However, it is difficult to distinguish the sub-
classes of specific categories with one sample.

are the most widely used approaches [7, 8, 9]. The major-
ity of fine-grained recognition approaches need to be fed with
a large amount of training data before obtaining a decent clas-
sifier [5, 6, 7, 8, 9, 10]. However, labelling the fine-grained
data requires strong domain knowledge, e.g., only ornithol-
ogists can accurately identify different birds, which is sig-
nificantly expensive compared to generic object recognition
tasks. Moreover, in some fine-grained datasets [11, 12], the
amount of the well-labelled training samples is limited, e.g., it
is hard to collect large-scale samples of endangered species.
Therefore, how to tackle the fine-grained image recognition
with less training data is still an open problem.

Machine few-shot learning is first proposed by Li et
al. [13] based on the Bayesian theory. Recently, due to the
excellent performance of deep neural networks, machine few-
shot learning [14, 15, 16, 17] revives again and achieves sig-
nificant improvements against previous methods. In the cog-
nition process of human beings, preschoolers can easily dis-
tinguish the difference between ‘Dog’ and ‘Horse’ after see-
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Fig. 2. The framework of PABN under the one-shot fine-grained image recognition setting. There are three parts of PABN:
Encoder, Fine-grained Features Extractor, and Comparator. Encoder extracts coarse features from raw images. Fine-grained
Extractor captures the subtle features further. Comparator produces the final classification results.

ing few samples. However, they may be confused about
‘Husky Dogs’ and ‘Alaskan Dogs’ with only limited sam-
ples. This can be caused by the underdeveloped ability of
children to process information compared to adults, which in-
dicates that general few-shot methods cannot cope with the
fine-grained recognition task well. To this end, in this paper,
we focus on dealing with the FSFG classification in a ‘devel-
oped’ way.

Few-Shot Fine-Grained recognition (FSFG) task is re-
cently introduced by Wei et al. [18]. Two sub-networks are
employed to jointly tackle this problem. The first is a self-
bilinear encoder network, which adepts the matrix outer prod-
uct operation on convolved features to capture subtle image
features, while the second one is a mapping network that
learns the decision boundaries of the input data. Using the
meta-learning strategy on the auxiliary dataset, their model
can classify different samples in the testing dataset with few
labeled samples, i.e., few shots.

Compared to the generic image classification, they use
self-bilinear pooling to extract more informative image rep-
resentations. However, for the unseen or new categories, the
data distribution could be different from the training data,
which means the trained self-bilinear feature extractor may
fail in distinguishing these classes. It would be better to
learn the relation or discrimination between different cate-
gories with extracting subtle features at the same time. To
solve this problem, in this paper, we propose a pairwise bi-
linear pooling operation between base and query images to
extract fine-grained features. Meanwhile, their relations are
explored by a non-linear comparator.

Most recently, Pahde et al. [19] propose a cross-model
FSFL method, which embeds the textual annotations and im-
age features into a common latent space. They also introduce

a discriminative text-conditional GAN for the sample genera-
tion, which selects the representative samples from the auxil-
iary data. However, it is both computation and time consum-
ing to obtain rich annotations for the fine-grained samples,
which we try to avoid. Yao et al. [20] propose a one-shot fine-
grained retrieval method, which employs the Convolutional
and Normalization Networks. Different from their method,
our model focuses on the image recognition task rather than
retrieval.

There are also series of related works of meta-learning
based few-shot recognition methods [14, 15, 16], among
which the Ration-Net [16] achieves the state-of-the-art per-
formance by combining a non-linear feature encoder and a re-
lation comparator. However, the feature extraction in Ration-
Net only concatenates the base and query feature maps in the
depth dimension, and cannot capture nuanced features for the
fine-grained classification.

To overcome the shortcomings of underdeveloped feature
extraction in [16] and naive self-bilinear pooling in [18], we
propose a novel end-to-end FSFG framework that captures the
fine-grained relations among different classes. This nuanced
compare ability of our models is inherently more intelligent
than simply modeling the data distribution. The whole frame-
work is shown in Figure 2. More specifically, the base images
and a query image are fed into the PABN simultaneously in
a paired manner, followed by the encoder network to gener-
ate embedded pair features. Then a pairwise bilinear pool-
ing operation is used to extract the subtle features from these
pairs. For each pair, the proposed feature alignment losses
are adopted to guarantee that the positions of base image fea-
tures match the query ones. Finally, pairwise bilinear features
pass through the non-linear comparator, which classifies the
query image into its corresponding category. In summary, the



main contributions of this work are as follows:

• We proposes a novel FSFG model, which mimics the
advanced learning process of human beings. We pro-
pose a new pairwise bilinear pooling operation to cap-
ture the subtle differences between the base and query
images.

• In order to acquire the accurate pairwise bilinear fea-
tures, we adopt the alignment losses to regularize the
embedding features.

• The proposed method achieves the state-of-the-art per-
formances compared to the general few-shot learning
and FSFG methods.

2. METHODOLOGY

2.1. Problem Definition

Given a fine-grained target dataset T :

T =
{
B = {(xb, yb)}

K×C̃
b=1

}
∪
{
N = {(xv)}Vv=1

}
,

yb ∈ {1, C̃}, x ∈ RN ,B ∩N = ∅, V � K × C̃.
(1)

For the FSFG task, the target dataset T contains two parts:
the labeled subset B and the unlabeled subset N . The model
needs to classify the unlabeled data fromN (xv represents the
raw image) according to the few labeled data from B (where
xb denotes the image and yb is the label of this image). If the
labeled data in the target dataset contains K labeled images
for each of C̃ different categories, this problem called C̃-way-
K-shot problem.

In order to get a perfect model that can identify the un-
labeled images from the target dataset N . Few-shot learning
usually employs a fully annotated dataset which has similar
property or data distribution with T as the auxiliary dataset
A:

A =
{
S = {(xi, yi)}Ii=1

}
∪
{
Q = {(xj , yj)}Jj=1

}
,

yi, yj ∈ {1, C}, x ∈ RN ,S ∩ Q = ∅,A ∩ T = ∅.
(2)

Where xi and xj represent images, yi and yj represent im-
age labels. In each round of training, the auxiliary dataset
A is randomly separated into two parts: Support dataset S
and Query dataset Q. With setting I = K × C̃, we can
simulate the composition of target dataset in each iteration.
Then A is used to learn a meta-learner F which can trans-
fer the knowledge from A to target data T . Once the meta-
learner is trained, it could be fine-tuned using labeled target
dataset B. Finally, the meta-learner could classify the sam-
ples from the unlabeled data N into their corresponding cat-
egories. This training setting that mimics the few-shot set-
ting of target problem is widely used in meta-learner train-
ing [14, 16, 18].

2.2. Framework

The whole framework of PABN is shown in Figure 2. Dif-
ferent from traditional few-shot embedding structures [14,
15, 16], we add the fine-grained image feature extractors as
shown in the dotted line box which is our main contribution.
In addition, we modify the non-linear comparator [16] and ap-
ply it to our fine-grained task. Fine-grained features extractor
can be divided into two structures: alignment loss regulariza-
tion and pair-wise bilinear pooling layer. The former aims to
match the features of the same position in the embedded im-
ages features. For example, the features of the bird’s head in
the target dataset B should match the query bird’s head fea-
tures fromQ. The latter pairwise bilinear pooling layer is de-
signed to extract the second-order comparative features from
pairs of base images (like samples from B) and query images
(like samples from N ).

Pairwise bilinear pooling layer is the core component of
PABN model which captures the nuanced comparative fea-
tures of image pairs and therefore decides the relations be-
tween base and query images which is crucial to the classifier.
However, if the pair of the images are not well matched, this
pairwise bilinear pooled features cannot result in the maxi-
mum classification performance gain. Thus we propose two
feature alignment losses to guarantee the registration between
pairs of images. In next section, we will firstly introduce the
pairwise bilinear pooling layer, then we will present the fea-
ture alignment regularization with two alignment losses.

2.3. Pairwise Bilinear Pooling Layer

Original Bilinear CNN images recognition can be defined as
a quadruple:

B-CNNs = (EI ,EII , fb, C),
E : I −→ X ∈ Rc×h×w,

fb(I,EI ,EII) =
1

hw

hw∑
i=1

fα,if
T
β,i.

(3)

EI and EII are two encoders. fb is the self-bilinear pool-
ing and C represents a classifier. I ∈ RH×W×C is a
image that has H height, W width and C color channels.
Through encoder E, the input image is transformed into a
tensorM ∈ Rh×w×c which has c feature channels and h,w
indicate the hight and width of the embedded feature map.
Given two specific functions EI : S −→ Xα ∈ Rc1×h×w
and EII : S −→ Xβ ∈ Rc2×h×w. fα,i ∈ Rc1×1 and
fβ,i ∈ Rc2×1 denote feature vectors at specific location in
each feature matrix Xα and Xβ with i ∈ [1, hw]. The pooled
feature is a c1 × c2 vector. C is a fully-connected layer with
the cross-entropy training loss between self-bilinear feature
and image label.

The self-bilinear operates on pairs of embedded features
from the same image. However, in our pairwise bilinear pool-
ing, given a pair of image IA (e.g., IA ∈ S ) and image IB



(e.g., IB ∈ Q ), an encoder Ẽ, pairwise bilinear pooling fpb
can be defined as

fpb(IA, IB, Ẽ) = Ẽ(IA)Ẽ(IB)T ,
Ẽ : I −→ X ∈ Rc×hw.

(4)

After obtaining this pairwise bilinear vectors, a sigmoid acti-
vation is used to generate the relation scores of the compared
pairs. The relation scores are then passed to the final com-
parator.

Note that in our pairwise bilinear pooling, we only have
one shared embedding functions Ẽ. Different from the self-
bilinear pooling that operates on the same input image, pair-
wise bilinear pooling uses matrix outer product on two dis-
parate samples. The training loss in our bilinear comparator
is mean square error (MSE) loss which regresses the relation
score to the images label similarity as discussed in [16]. In
this way, we can capture the fine-grained second-order com-
parative features in a pair-wise manner.

2.4. Feature Alignment Loss

In Equation 3, self-bilinear pooling operates on the same im-
age which means in any location of the embedded features
map, the operates features should be aligned. However, our
proposed pairwise bilinear pooling conducts on different sam-
ples, thus the encoded features may not always matched. In
order to overcome this problem, we design two feature align-
ment losses as follows:

Alignloss1(IA, IB, Ẽ) = MSE(Ẽ(IA), Ẽ(IB)). (5)

the first Alignloss1 loss is a rough approximation of two em-
bedded image descriptors which minimzing the Euclidean
distances of all elements of two features.

Alignloss2(IA, IB,S) = MSE(S(IA),S(IB)),

MSE(S(IA),S(IB)) =
hw∑
1

(S(IA)−S(IB))2,

S(I) =
c∑
1

Ẽ(I), Ẽ : I −→ X ∈ Rc×hw.

(6)

the second Alignloss2 loss is a more concise feature align-
ment loss , where we sum all the raw features along the third-
channel first and then measures the MSE of summed features
as Equation 6 indicates.

By training with the proposed alignment losses, we en-
courage the network to automatically learn the matching fea-
tures to generate a better pairwise bilinear feature.

3. EXPERIMENT

In this section, we evaluate the proposed PABN on four
widely used fine-grained datasets and one generic few-shot

Table 1. The class split for four fine-grained datasets. Ctotal
is the original number of categories in the datasets, CA is the
number of categories in separated auxiliary datasets and CT
is the number of categories in target datasets.

Dataset CUB Birds DOGS CARS NABirds

C total 200 120 196 555
CA 150 90 147 416
CT 50 30 49 139

dataset. First, we will give a brief introduction to these
datasets. Then we introduce the experiment setup in detail.
Finally, we analyze the experimental results of the proposed
models and compare with other few-shot learning approaches.

3.1. Dataset

In our experiments, we utilize five datsets to investigate the
proposed models:

• CUB Birds [1] contains 200 categories of birds and to-
tally 11,788 images.

• DOGS [2] contains 120 categories of dogs and totally
20,580 images.

• CARS [3] contains 196 categories of cars and totally
16,185 images.

• NABirds [4] contains 555 categories of north American
birds and totally 48,562 images.

• MiniImageNet [14] consists 100 categories of 60,000
images. Each class has 600 examples.

In Section 2.1, we randomly divide these datasets into two
disjoint sub-datasets: the auxiliary dataset A and the target
dataset T as shown in Table 1. For CUB Birds, DOGS and
CARS datasets, we follow Wei’s [18] separation. For Mini-
ImageNet, we followed the separation of [16] which adopts
64, 16, and 20 classes as training set, validation set and test-
ing set, respectively. Notice that the validation set is only used
for monitoring the generalisation of performance.

3.2. Experimental Setup

In each round of training and testing, for one-shot image
recognition, the base sample number in each class equals 1
(in both B and S, K = 1). Therefore we use the embedded
features of these base sample as the classes’ features (Ẽ(IA)).
For few-shot image recognition, we extract the classes’ fea-
tures by summing all the embedded features in each category.
We compared four variations of the proposed PABN models:
PABNw/o, PABNloss1 and PABNloss2. PABNw/o represents
the model that does not use alignment loss on embedded pair



Table 2. Few-shot classification accuracy (%) comparison on four fine-grained datasets. The highest-accuracy methods are
highlighted. The second highest-accuracy methods are labeled with the underline. ‘-’ denotes not reported. All results are with
95% confidence intervals where reported.

Methods
CUB Birds CARS DOGS NABirds

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PCM [18] 42.10±1.96 62.48±1.21 29.63±2.38 52.28±1.46 28.78±2.33 46.92±2.00 - -

Ration-Net 63.77±1.37 74.92±0.69 56.28±0.45 68.39±0.21 51.95±0.46 64.91±0.24 65.17±0.47 78.35±0.21

PABNw/o 65.99±1.35 76.90±0.21 55.65±0.42 67.29±0.23 54.77±0.44 65.92±0.23 67.23±0.42 79.25±0.20

PABNloss1 65.04±0.44 76.46±0.22 55.89±0.42 68.53±0.23 54.06±0.45 65.93±0.24 66.62±0.44 79.31±0.22

PABNloss2 66.71±0.43 76.81±0.21 56.80±0.45 68.78±0.22 55.47±0.46 66.65±0.23 67.02±0.43 79.02±0.21

Table 3. Experiments results on MiniImageNet dataset.
The highest-accuracy methods are highlighted and the sec-
ond highest-accuracy methods are labeled with the underline.
With 95% confidence intervals.

Methods
MiniImageNet 5-way

1-shot 5-shot

Ration-Net [16] 50.44 ± 0.82% 65.32 ± 0.70%

PABNw/o 51.87 ± 0.45% 64.95 ± 0.71%

PABNloss1 50.55 ± 0.44% 64.80 ± 0.75%

PABNloss2 50.94 ± 0.43% 65.37 ± 0.68%

features. PABNloss1, and PABNloss2 are the models which
adopt the alignment loss Alignloss1 and Alignloss2 sepa-
rately in alignment layer. After pairwise bilinear pooling, we
conduct normalization operation on pairwise bilinear features
as [7] did.

In all our PABN models and Rational Network, we con-
duct 5-way-1-shot and 5-way-5-shot settings. Both of 5-way-
1-shot and 5-way-5-shot experiments have 15 query images
which means there are 15 × 5 + 1 × 5 = 80 images and
15 × 5 + 5 × 5 = 100 images separately for 5-way-1-shot
and 5-way-5-shot in each mini-batches. We resize all the in-
put images from all datasets to 84 × 84. All experiments use
Adam optimize method with initial learning rate 0.001 and all
models are trained end-to-end from scratch. We initialize all
networks randomly without involving additional datasets.

3.3. Results and Analysis

To the best of our knowledge, there are few methods proposed
for Few-shot Fine-grained image recognition [18, 19, 20].
[19] uses larger auxiliary dataset than our methods and [20]
is only applied for image retrieval task. It is unfair to com-
pare with these methods directly. Therefore we compare our
PABN with Piecewise Classifier Mapping (PCM) [18] which
is the first FSFG method. Moreover, we also compare our

methods with the state-of-the-art generic few-shot learning
method Ration-Net [16]. Original Rational Network does
not report the results on four fine-grained datasets under the
few-shot setting. We use the open source code of Rational
Network to conduct the FSFG image recognition on these
datasets.

We show the experimental results of five compared mod-
els in Table 2. As we can see, the proposed PABN mod-
els achieve siginificant improvements on both 1-shot and 5-
shot recognition tasks on four fine-grained datasets compared
to the state-of-the-art FSFG method and the state-of-the-art
generic few-shot method which indicates the effectiveness of
proposed framework. In addition, PABN models and Ration-
Net obtain around 10 to 20 percent higher in recognition ac-
curacy than PCM which demonstrates that a leaned non-linear
comparator outperforms a plain linear classifier.

Specifically, without feature alignment, PABNw/o
achieves higher averaged accuracies than Ration-Net on
CUB Birds, CARS and DOGS, except on CARS data that
is nearly 0.1% lower in accuracy than Ration-Net. Nev-
ertheless, by adding alignment layer with two alignment
losses, PABNloss2 and PABNloss1 obtain higher classify
accuracies for 1-shot and 5-shot on CARS separately which
indicates that well-matched pairwise bilinear features can
produce better recognition performance for FSFG tasks. It
can be observed that PABNloss2 achieves the best or second
best classification performance on almost datasets compared
to PABNloss1 under different experimental settings. This
indicates that a more precise feature alignment can result in a
better performance of pairwise bilinear pooling.

For a further analysis of our models, we conduct an ad-
ditional experiment on MiniImageNet [14] dataset which is a
standard generic few-shot learning dataset. Form Table 3, it
can be observed that our PABN models achieve higher per-
formance than Rational Network. In detail, in 1-shot recog-
nition scene, all the PABN models outperform Rational Net-
work with higher accuracy and lower standard deviations. As
for the 5-shot setting, PABNloss2 achieves the state-of-the-art
performance where other models are slightly lower in accura-



cies than Rational Network. Moreover, PABNloss2 achieves
the best classification performance in 5-shot learning and sec-
ond best classification performance in 1-shot learning. That
also demonstrates that a concise matching of compared fea-
tures can further improve the performance.

4. CONCLUSION

In this paper, we propose a novel few-shot fine-grained im-
age recognition method which is inspired by the advanced
information processing ability of human beings. The main
contribution is the pairwise bilinear pooling, which extracts
the second-order comparative features for the pair of base im-
ages and query images. Moreove, in order to get a more pre-
cise comparative feature, we propose two feature alignment
losses to match the embedded base image features with query
image features. Through comprehensive experiments on five
widely used datasets, we verify the effectiveness of the pro-
posed method. In our future work, we would like to design
a more accurate feature matching model as Section 3.3 dis-
cussed.
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