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ABSTRACT
Planar object tracking (POT) is the basis of many indoor AR

applications. However, there still lacks a systematic way to

assess AR trackers. Existing benchmarks usually focus on the

tracking accuracy of an algorithm without sufficient details

about its sensitivity to various object properties and user be-

haviors, shedding limited light on possible resulting usability

issues. We therefore propose a comprehensive POT benchmark

system to understand the weakness of a tracker and derive cues

for system improvement. We first identify a set of objects that

are commonly used as indoor mobile AR markers and specify

their vision-related properties. We then construct a video col-

lection to record typical user interactions with these markers,

and statistically quantify the consequent changes as a result of

individual or multiple basic manipulations. Evaluation shows

that this work can expose a tracker’s sensitiveness to differ-

ent object properties and user behaviors, drawing insights for

system improvement and algorithm design.

.

Index Terms— planar object tracking, augmented reality

1. INTRODUCTION

The goal of planar object tracking(POT) is to estimate the

visual state, i.e., the positions of the four corners, of a planar

object in a video sequence given its initial location [1,2]. There

have been many POT algorithms employed in different appli-

cation domains, from augmented reality [1, 3] to robotics [4].

Existing benchmarks for POT algorithms mostly aim to deter-

mine the performance of algorithms [1,2,5]. Such a benchmark

usually consists of video sequences that capture tracked ob-

ject(s) in various scenarios, together with groundtruth labels

generated either manually or semi-automatically [1, 2]. While

enabling direct comparison among different POT algorithms

on a single performance measure like accuracy, these bench-

marks do not explain why one outperforms another. Moreover,

∗ denotes equal contribution.

Our dataset is available at https://github.com/NetEaseAI-CVLab/

ARBenchmark_PlanarObjTrack

the evaluation on such benchmarks does not establish know-

hows for system developers to understand which aspects could

be improved.

In the field of object detection, works have been done

to provide details rather than a single average performance

score by thorough analysis into the categories of objects, such

as the ImageNet Challenge [6]. However, to have such a

evaluation in AR is more challenging, given an AR system

is device-dependent and involves user interaction. The high

precision of a POT algorithm might not indicating a good user

experience. Perception and cognition issues resulting from

the use of systems have been identified in existing studies

[7]. For example, system latency can degrade the illusion of

stability [8] and perceived jitter has shown negative impacts

on users’ task performance [9].

Moreover, to designers of AR systems, only knowing

which type(s) of usability issues (and to what extent) the POT

algorithm can be deployed in their application may proof it in-

adequate for improving the user experience. They would need

to know how the severity of perceptual interference varies in

respect to typical user interactions under common conditions,

to deliver more informed design decisions in practice. In the

context of mobile AR for instance, different POT trackers may

have different sensitivities to changes in object illuminance,

scale, occlusion, etc. during user interaction. If designers

could be informed how tracking quality degrades with ranging

conditions, they could either improve the algorithm accord-

ingly or constrain usage scenarios to avoid bad cases. Although

some of the existing tracking benchmarks e.g., [1, 5] provide

videos captured under different scenes and motion patterns,

they do not provide sufficient details of these external con-

ditions. Evaluations on these benchmarks can not answer 1)

which factor, i.e., target object properties and basic manipu-

lations involved in user interactions, is more likely to cause

certain types of perception-focused usability issue, e.g., jitter,

stiffness, and error [7, 10]; and 2) how sensitive a tracker is to

changes in each factor.

To fill the gap, we propose a new benchmark system for

indoor planar object tracking to support perception-focused

usability diagnosis and comprehensive comparison across dif-

ferent POT algorithms and/or systems. Our tracking bench-

mark system mainly comprises three parts: 1)we design and



construct a benchmark dataset in AR scenarios consisting of

varying targets and motion. Moreover, we quantify target and

motion properties(we call these properties independent vari-

ables,a.k.a., IVs) and semi-manually annotate the groundtruth;

2)we summarize four perception measurement metrics(i.e., la-

tency, temporal jitter, spatial jitter, and alignment error) for

AR systems to quantify a tracker’s performance under our

dataset(we call these quantitative results dependent variables

a.k.a., DVs); 3)we conduct a sensitivity analysis to understand

how a DV responds to the change in an IV and seek to guide the

system design and improvements accordingly. We test three

algorithms and two systems under our benchmark system to

verify its efficacy. Their performance under different IVs mea-

sured by the user-center performance metrics is reported. A

case study is presented to showcase how these analyses can be

used to guide system improvement, demonstrating the value

of our proposed benchmark system. The main contributions

of this paper are as follows:

• To the best of our knowledge, it is the first benchmark that

captures videos in a way which involves possible variations

of dedicated factors. It supports comprehensive diagnoses

of a tracker’s weakness towards common types of markers

in natural settings and condition changes caused by user

interaction.

• In contrast to previous evaluations that merely emphasize

trackers’ precision, we incorporate perception-focus met-

rics to allow comprehensive evaluations from a user-center

perspective. Then, through regression analysis, we derive

the influence of each IV on DV, to help engineers improve

systems accordingly and to help designers have a better un-

derstanding of the design space, thereby communicating

with users an appropriate affordance of the application.

2. METHOD

Our goal is to diagnose 2D planar tracking systems and provide

insights for improvement. To this end, we first build a POT

dataset that considers both object properties and user behaviors.

Then we evaluate five typical trackers using the dataset and

apply unique statistic analysis to understand their affordance

to dedicated DVs.

2.1. Dataset Construction

2.1.1. Dataset Design

As taking all real scenarios into consideration is impractical,

we summarize the typical properties of objects and user behav-

iors involved in a POT dataset by surveying previous work and

representative applications in real scenarios. We then collect a

dataset covering these properties to ensure its generality. For

the object, we consider four properties: (1) Texture Richness,

the complexity of the visual texture of a target image; (2)

Homogeneity, the similarity of different regions in a target

image; (3) Smoothness, whether the surface of the object is

smooth so that specular reflection will be introduced when

being captured by a camera; (4) Deformation, whether the

object is deformed when used in real scene.

To quantify the object properties, we use the Gray-Level

Co-occurence Matrix [11] and the Neighbourhood Gray-Tone

Difference Matrix [12] to measure the homogeneity and texture

richness respectively for each object. We classify all objects

into two groups (i.e. low and high) for these two properties

based on the quantified value. For smoothness and deforma-

tion, we categorize objects into positive and negative groups

based on human observation. In total, we select nine objects

to cover the combinations of the four-group properties.

We classify seven types of user behaviors interacting with

trackers: (1)Object Scale, changing the proportion of the ob-

ject in the camera image; (2)In-plane Rotation, rotating the

angle of the camera around its optical axis; (3)Out-plane Ro-
tation, the angle between the normal axis of the reference ob-

ject and the optical axis of the camera;(4)Speed,representing

the liner velocity of the camera; (5)Illumination, the illumina-

tion intensity of the environment near a object; (6)Occlusion,

the proportion of the occluded part in the object; (7)Out-of-
view, the proportion of the out of image part in the object.

For each object, we record eight videos capturing

the following user behaviors interacting with the object:

Far-near movement (FN), In-plane Rotation (IP), Out-
plane Rotation (OP), Fast Movement (FM), Illumination
Change (ILL), Occlusion (OCC), Out-of-view (OV), Un-
constrained (UC), as shown in Fig1-1. The first seven videos

corresponds to seven user behaviors respectively, whereas the

last one is the random combination of multiple user behaviors.

We use a typical hand-held mobile device, iPhone 7, to record

all the videos. The videos are at 30 fps with a resolution of

1280×720. The process of quantifying user behaviors will be

described in Sec2.1.2.

2.1.2. Obtaining the Groundtruth

To attain the groundtruth of our videos, we semi-manually

annotate four reference points (four corners of the object) on

the target object in each frame. For Occlusion and Out-of-view

cases, we use four edges and the middle-corner of the target

object to annotate its location in the frame. Besides, for these

cases, we annotate the occlusion/out-of-view points for cal-

culating the corresponding occlusion/out-of-view proportion.

After annotating the four corners of the target object, we calcu-

late the real 6DOF pose of the camera through PnP [13] with

the known actual size of all objects. Then we get the corre-

sponding in-plane angle and out-plane angle directly from the

recovered poses. With the known corresponding timestamp,

angular velocity and liner velocity can be also measured. We

finally collect 72 video sequences, containing 37485 frames in

total together with the corresponding groundtruth.



2.2. Performance Metrics

To evaluate a tracker in respect to a specific target and user

behavior, we take advantage of usability studies for general

AR systems [7, 8, 14, 15] and choose the following metrics

related to the performance of mobile AR applications:

• Tracking Accuracy: Following [1], we use the alignment

error by quantifying the position difference between the

four corner points of tracking results and the corresponding

Ground-Truth as the tracking error. To avoid the large error

resulting from the failed frames, we use area-under-the-

curve (AUC) [16] of alignment error to quantify overall

tracking accuracy.

• Latency: Latency is defined as the time interval between

a user query and the system’s response. It has an effect on

user experience in immersive environments as it can alter

the perceived illusion of stability [8], stiffness of virtual

objects [17], and the users’ sense of presence [15],etc.

• Jitter: Jitter can be classified into spatial jitter and tempo-

ral jitter [10]. Temporal jitter is the latency variation with

respect to time. Spatial jitter is perceived as noise produced

in the relative tracking result between consecutive frames.

3. EVALUATION

3.1. Selected Algorithms and Systems

Through our benchmark system, we aim to expose a track-

ing system’s sensitivity to various conditions. We choose

three state-of-the-art tracking algorithms and two popular com-

mercial AR systems to evaluate our benchmark: Gracker
[18],Ferns [4],SOL [19],ARToolKit1,insightAR2. For the

three algorithms (Gracker,Ferns,SOL), we use their open-

source codes implemented on a PC platform with the default

parameters, and test them on a desktop PC(Intel core i5-6500

CPU). For the two systems (ARToolKit, insightAR), we test

them on a selected mobile smart-phone device (iphone 7).

3.2. Result Analysis

3.2.1. Overall performance

The performance of the five trackers measured by the given

metrics is shown in Table 1. Among the three algorithms,

Gracker shows highestlatency and temporal jitter in all cases,

indicating its high and unstable computation cost. This is be-

cause Gracker formulates POT tracking as graph-based struc-

ture matching instead of direct keypoints matching, thereby

has higher computation complexity than the other two feature-

based methods. SOL has smaller latency and temporal jitter

than Gracker, but still performs worse than Ferns. It deploys

an online structured learning scheme to improve keypoints

matching. It thus has relatively high and unstable computation

1http://www.artoolkit.org
2http://dongjian.163.com

complexity as well. Instead, Ferns uses an offline training

method, which saves training results offline rather, reducing

online computation cost. Though the temporal jitter of ferns

is low, it has worse performance in ”OV”,”OCC”,”UC”, pos-

sibly due to frequently occurring target lost and re-detection

process.

When considering spatial jitter and alignment er-

ror, Gracker has stable performance in all cases except

”OV”,”OCC”,”UC”. While showing poorer overall perfor-

mance, Gracker outperforms others in ”OV” and ”OCC”. Such

advantage comes from the graph-based matching method that

considers structured information. SOL performs worse in

most cases. It is possibly because the binary feature it used can

not effectively handle cases like rotation, distortion and blur.

Ferns shows the best performance in all cases except ”OV” and

”OCC”. As Ferns always matches under-tracking images with

a trained template, the performance degrades rapidly when the

target is partial invisible. As for the two systems, insightAR1.0

has smaller latency than ARToolKit while with larger temporal

jitter. Regarding the resulted spatial jitter, insightAR1.0 out-

performs ARToolKit in all cases except ”OP” and ”UC” but it

is worse in terms of tracking accurary.

3.2.2. Sensitivity Analysis

Sensitivity to object properties Understanding the sensitiv-

ity of a tracker to objects’ properties is critical to AR marker

design. Our benchmark provides this value by observing how

a tracker responses differently to objects with different proper-

ties. In particular, we first estimate a tracker’s performance on

each object when keeping the other conditions identical. Then

for each tracker, we sort the objects based on the tracker’s

mean performance over the four measurements. The objects

are listed in descending order, where the one with the tracker’s

best performance is at the leftmost as shown in Figure 1-3.

The result shows that the five trackers perform differently on

the nine objects. As shown in Figure.1-3, Ferns and SOL

can better handle the objects like Book2 and ARCard2 with

high surface smoothness and the two systems can more easily

track objects which have deformation like Newspaper. To

look deeper into the result, we run a Wilcoxon signed-rank

test analysis [20] to see whether a tracker’s performance on

two objects is significantly different. We first normalize all

measurements into zero to one and pair the comparison to keep

other IVs identical. The paired DVs are then taken as the input

of the analysis. Overall, the three algorithms(Pavg = 0.041) are

comparatively less sensitive to object properties than the two

systems (Pavg = 0.013) given their higher average P-value.

To allow for detailed analysis of object properties’ impact

on trackers, we further compare each tracker’s performance

on two designated settings in which only one of the object

properties varies whereas the other IVs are managed to be

identical. We choose the pairs of onmyoji-card(Low) and

life-poster(High), minion-poster(Low) and life-poster(High),



Far-Near(FN) Fast(FM) Illumination(ILL) In-Plane(IP)

L TJ SJ AE L TJ SJ AE L TJ SJ AE L TJ SJ AE

AT 6.06 0.03 0.10 0.87 6.07 0.15 0.10 0.82 6.20 0.03 0.08 0.90 6.11 0.03 0.08 0.91
IA 5.87 0.59 0.08 0.86 5.94 2.13 0.09 0.75 4.71 1.89 0.08 0.79 4.68 0.23 0.07 0.84

FE 2.01 0.48 0.09 0.89 2.47 6.00 0.09 0.85 6.13 1.96 0.08 0.85 2.80 5.83 0.10 0.89

SO 58.12 38.94 0.12 0.79 46.19 98.46 0.13 0.60 57.61 27.04 0.09 0.80 56.46 32.07 0.11 0.74

GT 780.50 1527.00 0.11 0.78 695.00 2172.00 0.13 0.71 724.00 524.00 0.07 0.71 819.40 179.80 0.12 0.76

Out-Plane(OP) Out-of-View(OV) Occlusion(OCC) Unconstrained(UC)

L TJ SJ AE L TJ SJ AE L TJ SJ AE L TJ SJ AE

AT 6.48 0.02 0.06 0.87 6.40 0.14 0.10 0.52 6.40 0.14 0.10 0.52 6.12 0.09 0.08 0.81
IA 4.31 1.68 0.08 0.77 3.89 1.50 0.10 0.40 3.89 1.50 0.10 0.40 6.09 2.06 0.10 0.70

FE 2.04 0.17 0.05 0.76 8.47 37.03 0.09 0.51 8.47 37.03 0.09 0.51 5.70 25.81 0.01 0.73

SO 55.85 4.76 0.06 0.75 58.85 242.01 0.11 0.48 58.85 242.01 0.11 0.48 56.00 360.8 0.09 0.57

GT 791.90 36.13 0.07 0.80 699.60 6444.00 0.09 0.55 699.60 6444.00 0.09 0.55 1563 7859.00 0.13 0.54

Table 1. The summary of the five trackers’ performance under different IVs. AT, IA, FE, SO and GE are the abbreviations

of ARToolKit, insightAR, Ferns, SOL and Gracker respectively. L(/ms), SJ(/px), TJ(/ms) and AE(/%) correspond to latency,

spatial jitter, temporal jitter and the AUC of alignment error respectively.

geography-book(Low) and onmyoji-card(High), Christmas-
card(Low) and simple-book(High) to represent the two settings

of richness, homogeneity, smoothness and deformation respec-

tively, in a way that the other properties are approximately

identical in terms of their numerical value. For each tracker,

we report its performance by the four measurements. We then

conduct statistical analysis as the process mentioned above.

The result is shown in Table.3. It can be found that existing

deformation would always degrade trackers’ performance. For

all the trackers, they have either significant or marginal differ-

ences on objects’ richness and smoothness. We also observe

that both systems are robust to the variation of homogeneity

whereas two of the trackers show a significant difference.

Sensitivity to user behaviors To show the sensitivity of

a tracker to different users’ behaviors, we estimate how a

tracker responds to the changes of a designated independent

variable using regression analysis. Regression analysis is

used to model the relationship among variables,which al-

lows for the analysis of to what extent each IV contributes

to the DV [21]Specifically, we take each user behavior as an

observed variable and use all observed variables to regress one

of the four measurements. Then we can get the weight of each

IV in terms of its contribution to the prediction. Empirically,

we choose decision tree regression [22] as the solver. We have

also tried other regression methods but decision tree regression

achieves the best performance in terms of the R2 score.

The results are shown in Figure.1-2. On one hand, the

trackers share some common behaviors, e.g., all the track-

ers show high sensitiveness to out-of-plane rotation but high

robustness against the change in illumination. And out-of-

plane rotation is the most influential IV for spatial jitter in all

cases. It reveals that the trackers can handle well the change

of illumination but still need improvement for out-of-plane ro-

tation. On the other hand, the five trackers response differently

to different independent variables. For example, latency of

Ferns is sensitive to out-of-view motion whereas its alignment

FN FM ILL IP OP OV OCC UC

L
IA1.0 5.87 5.94 4.71 4.68 4.31 3.89 5.40 6.09
IA1.1 5.67 6.70 5.83 5.50 7.31 4.84 5.16 7.65

TJ
IA1.0 0.59 2.13 1.89 0.23 1.68 1.50 1.58 2.06

IA1.1 0.21 2.05 0.86 0.08 0.18 1.35 1.14 1.61

SJ
IA1.0 0.08 0.09 0.08 0.07 0.08 0.10 0.12 0.10

IA1.1 0.06 0.07 0.07 0.03 0.06 0.09 0.10 0.07

AE
IA1.0 0.86 0.75 0.79 0.84 0.77 0.40 0.48 0.70

IA1.1 0.87 0.79 0.81 0.88 0.87 0.50 0.47 0.82

Table 2. Improvement from insightAR1.0 to insightAR1.1

error is largely affected by size change. But for ARToolkit,

out-of-plane rotation affects the latency and alignment error

significantly. Based the identified pattern, we propose specific

directions for enhancing system robustness.

3.2.3. Case Study For System Improvement

According to Figure.1-2, we find that the performance of in-

sightAR 1.0 on spatial jitter, alignment error, latency are all

sensitive to out-plane rotation. It implies that perspective dis-

tortion caused by the out-plane rotation primarily leads to

the degraded tracking performance. We thereby propose an

improved version insightAR 1.1 to deal with the perspective

distortion accordingly. Specifically, during the tracking pro-

cess, we update the target model with the newly tracked target

when the distortion is up to bound. This solution leads a sig-

nificant improvement on the tracking performance as shown

in Table2. The improved version (namely insightAR1.1) per-

forms better than insight1.0 on jitter and error in out-plane and

unconstrained cases although the latency is larger. It is likely

due to the increased computational complexity. But its latency

is still under the bound that users can perceive. Overall, with

the cost of a little increased latency, the insightAR1.1 achieves

more accurate and smoother tracking performance.



Fig. 1. (1): Examples of different user behaviors. (2): The regression analysis gives the importance of each IV that contributes to

the corresponding DV for different trackers. (3): Comparison between different markers. (∗ : 0.05 < p < 0.1,∗∗∗ : p < 0.05).

4. DISCUSSION AND CONCLUSION

Existing works have analyzed the performance of the selected

algorithms, e.g. SOL [18] demonstrated limited performance

in texture-less, low illumination and motion blur conditions.

While our result is consistent with the previous findings, our

analysis uniquely identifies that objects with higher homogene-

ity can be more easily tracked by SOL. Moreover, we show

that SOL is highly sensitive to objects’ smoothness and out-of-

plane rotation. For Ferns, a previous study revealed its poorer

performance under out-of-plane rotation (perspective distor-

tion) than that under scale change or in-plane rotation. We fur-

ther find that Ferns cannot well cope with out-of-view rotation

and occlusion, which indicates its high sensitiveness to size

change, objects’ smoothness and deformation. Gracker has

illustrated its robustness against occlusion, motion blur(fast

speed),in-plane rotation and out-plane rotation [18], but we

find that it fails to deal with occlusion and out-of-plane rotation

on our dataset. While most of the existing evaluations only

focus on precision measurement for trackers, our benchmarks

provide evaluations from a user-center perspective.

In this paper, we present a benchmark system with a com-

prehensive dataset to evaluate planar object tracking algo-

rithms/systems. In contrast to previous studies, we aim to

enable comprehensive diagnosis of a tracker’s weakness and

robustness in term of a user-center perspective. We summarize

representative object properties and user behaviors that are

commonly deployed in AR applications and collect videos to

cover the variations of those designated IVs. Three perception-

focused metrics are utilized to assess a trackers’ performance

in terms of user experience. Evaluation shows that our bench-

mark system can derive the influence of each IV on DV, thus

shedding light on system improvement and design.
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