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ABSTRACT
Compared with single image based crowd counting, video
provides the spatial-temporal information of the crowd that
would help improve the robustness of crowd counting. But
translation, rotation and scaling of people lead to the change
of density map of heads between neighbouring frames. Mean-
while, people walking in/out or being occluded in dynamic
scenes leads to the change of head counts. To alleviate these
issues in video crowd counting, a Locality-constrained Spatial
Transformer Network (LSTN) is proposed. Specifically, we
first leverage a Convolutional Neural Networks to estimate the
density map for each frame. Then to relate the density maps
between neighbouring frames, a Locality-constrained Spatial
Transformer (LST) module is introduced to estimate the den-
sity map of next frame with that of current frame. To facil-
itate the performance evaluation, a large-scale video crowd
counting dataset is collected, which contains 15K frames
with about 394K annotated heads captured from 13 differ-
ent scenes. As far as we know, it is the largest video crowd
counting dataset. Extensive experiments on our dataset and
other crowd counting datasets validate the effectiveness of
our LSTN for crowd counting. All our dataset are released
in https://github.com/sweetyy83/Lstn_fdst_
dataset.

Index Terms— Convolutional Neural Network; Locality-
constrained Spatial Transformer Network; Video Crowd
Counting

1. INTRODUCTION

Crowd counting has been widely used in computer vision be-
cause of its potential applications in video surveillance, traffic
control, and emergency management. However, most previ-
ous works [1][2][3] focus on single image based crowd count-
ing. In real applications, we have videos at hand, and usually
the movement of crowd is predictable and consistent [4]. In
this paper, we target at exploiting the spatial-temporal con-
sistency among neighbouring frames for more robust video
crowd counting.

Previous crowd counting methods can be roughly catego-
rized into detection-based approaches and regression-based
∗Corresponding author.

approaches. Detection based approaches count crowd by de-
tecting heads or pedestrians, but these approaches usually fail
to detect tiny [5] or occluded [6] heads/bodies which are very
common in real scenarios. Thus regression-based approaches
are more commonly used. Recently, in light of the success
of Convolutional Neural Networks (CNN) for image classifi-
cation, it also has been introduced to crowd counting, where
CNN is used to learn a mapping from an input image to its
corresponding density map. To leverage the spatial-temporal
consistency among neighbouring frames for more accurate
density maps in videos, LSTM [7] or ConvLSTM [8] based
approaches have been proposed which accumulate features of
all history frames with LSTM or ConvLSTM for density map
estimation. These approaches have demonstrated their effec-
tiveness for video crowd counting, but they leverage history
information in an implicit way, and as people walk in/out or
are occluded, the identities of the crowd in the history frame
may be totally different from the ones in current frame. Con-
sequently, the features from these history may even hurt the
density map estimation of current frame.

Rather than using LSTM or ConvLSTM to implicitly
model the spatial-temporal dependencies in videos, in this
paper, we propose to leverage a Locality-constrained Spatial
Transformer (LST) module to explicitly model the spatial-
temporal correlation between neighbouring frames. Specif-
ically, on one hand, given the same population of the crowd,
previous work [4] has shown that the trajectories of crowd
can be well predicted. But because of the change of perspec-
tive, distance, rotation, and lighting, the appearance of the
same person may visually change a lot, and thus it sometimes
may be not easy to directly re-identify the people in two ad-
jacent frames. But density map ignores the appearances of
the people and is only related to the location of heads. Since
people’s trajectories are predictable, the density map of one
frame probably can be warped from that of its previous frame
with some transformations, including scaling and translation
caused by people walking away from or towards camera, rota-
tion caused by the motion of camera, etc.. On the other hand,
for videos, some people walk in/out of the imaging range of
camera or are occluded. In these cases, it is infeasible to esti-
mate the density maps for those people from previous frames.
By taking all these factors together, in our LST, rather than
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warping the density map for the whole frame, we propose
to divide each frame into blocks. Given two blocks with the
same location but from two neighbouring frames, we use their
similarity to weight the difference between the ground-truth
density map of the block and the one warped from the density
map of the other block. If these two blocks are similar, they
probably correspond to the same population, then the differ-
ence between ground-truth density map and warped density
map should be smaller. If someone walks in/out or is oc-
cluded, then we allow the warped density map from previous
frame to be slightly different from the ground-truth. Further,
since only the spatial-temporal dependencies between neigh-
bouring frames are used, our model can get rid of the effect of
irrelevant history frames in density map estimation. Experi-
ments validate the effectiveness of our model for video crowd
counting.

A large-scale dataset with multiple scenes is desirable
for video crowd counting. But most existing datasets are
too small and with only a few scenes. For example, the
WorldExpo’10 dataset, which is the largest one in previ-
ous works, only contains 5 scenes. Thus we propose to
build a new large-scale video crowd counting dataset named
Fudan-ShanghaiTech (FDST) with more scenes. Specifically,
FDST dataset contains 15,000 frames with 394,081 annotated
heads captured from 13 difference scenes, including shopping
malls, squares, hospitals, etc.. The dataset is much larger than
the WorldExpo’10 dataset, which only contains 3980 frames
with 199,923 annotated heads. Further, we provide the frame-
wise annotation while WordExPo’10 only provides the anno-
tation for every 30 seconds. Therefore FDST dataset is more
suitable for video crowd counting evaluation.

The main contributions of our work can be summarized as
follows: i) we propose a Locality-constrained Spatial Trans-
former Network (LSTN), which explicitly models the spatial-
temporal dependencies between neighbouring frames to fa-
cilitate the video crowd counting; ii) we collect a large-scale
video crowd counting dataset with frame-wise ground-truth
annotation, which would facilitate the performance evaluation
in video crowd counting; iii) extensive experiments validate
the effectiveness of our model for video crowd counting.

2. RELATED WORK

Since our work is related to deep learning based crowd count-
ing, here we only briefly discuss recent works on deep learn-
ing based crowd counting.

Crowd counting for single image. Recent works
[3][9][10] have shown the effectiveness of CNN for density
map estimation in single image crowd counting. To improve
the robustness of crowd counting for areas with different head
sizes and densities, different network architectures have been
proposed, including MCNN [3], Hydra CNN [11], Switch-
CNN [9], CSRNet [10], which basically leverages networks
with different local receptive fields for density maps estima-
tion. Further, recently, people also propose to leverage detec-

tion [12] or localization [13] tasks to assist the crowd counting
task. But these single image crowd counting methods may
lead to inconsistent head counts for neighbouring frames in
video crowd counting.

Video crowd counting. Most previous works focus on
single image crowd counting and there are only a few works
on video crowd counting. Recently, Xiong et al. [8] pro-
pose to leverage ConvLSTM to integrate history features and
features of current frame for video crowd counting, which
has shown its effectiveness for video crowd counting. Fur-
ther, Zhang et al. [7] also propose to use LSTM for vehicle
counting in videos. However, all these LSTM based methods
may be affected by those irrelevant history, and do not ex-
plicitly consider the spatial-temporal dependencies in videos,
whereas our solution models such dependencies in neighbour-
ing frames with LST explicitly. Thus our solution is more
straightforward.

Spatial transformer network (STN). Recently, Jader-
berg et al. [14]introduce a differentiable Spatial Transformer
(ST) module which is capable to model the spatial transfor-
mation between input and output. Such ST module can be
easily plugged into many existing networks and trained in
an end-to-end manner, and has shown its effectiveness for
face alignment [15][16] and face recognition [17]. Further, it
also has been applied for density map estimation in a coarse-
to-fine based single image crowd counting framework [18].
But different from [18], we propose to leverage ST to relate
density maps between neighbouring frames for video crowd
counting.
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Fig. 1: The structure of the LSTN module for video crowd
counting.

3. OUR APPROACH

Our network architecture is shown in Fig. 1. It consists of
two modules: density map regression module and Locality-



constrained Spatial Transformer (LST) module. The density
map regression module takes each frame as input and esti-
mates its corresponding density map, and then the LST mod-
ule takes the estimated density map as input to predict the
density map of next frame.

3.1. Density map regression module

Density map generation is very important for the performance
of density map based crowd counting. Given one frame with
N heads, if the ith head is centered at pi, we represent it as a
delta function δ(p− pi). Hence the ground-truth density map
of this frame can be calculated as follows:

M =

N∑
i=1

δ(p− pi) ∗Gσ(p). (1)

Here Gσ(p) is a 2D Gaussian kernel with variance σ:

Gσ(p) =
1

2πσ2
e−

(x2+y2)

2σ2 (2)

In other words, if a pixel is near the annotated point, it has
higher probability belonging to a head. Once the density
map is defined, the density map regression module maps
each frame to its corresponding density map. We denote
the ground-truth density map of tth (t = 1, . . . , T ) frame as
MGT
t , and denote the density map estimated by density map

regression module as Mreg
t . Then the objective of density

map regression module can be written as follows:

`reg =
1

2T

T∑
t=1

‖Mreg
t −MGT

t ‖2 (3)

In our implementation, we use VGG-16 network in our
density map regression module.

3.2. LST module

For the same population of crowd in videos, many previous
works have shown that the trajectories of these people can be
well predicted. Thus the density map of previous frame would
help the density map prediction of current frame. However,
in all video crowd counting datasets, the correspondence of
people in neighbouring frames are not provided, which pre-
vents directly learning a mapping from head coordinates in
previous frame to those in current frame. Further, because
of the change in perspective, distance, rotation, and lighting
condition in neighbouring frames as well as occlusion, the ap-
pearance of the same person may visually change a lot, which
makes directly re-identifying the person in two frames diffi-
cult. But density map ignores the appearances of the people
and is only related to the location of heads. Now that people’s
trajectories are predictable, we can leverage the density map
of previous frame to estimate the density map of current frame

for the same group of people. Specifically, the deformation of
the density map for the same group people in neighbouring
frames includes scaling and translation if people walk away
from or towards camera, or rotation if there exists some mo-
tion for camera, for example, caused by wind or vibration of
ground.

Recent work [18] has shown the effectiveness of spatial
transformer (ST) module for learning the transform between
input and output. Thus ST can be used to learn the map-
ping for the same group of people between the two neigh-
bouring frames. However, in practice, people walk in/out the
range of camera, and some people may be occluded, which
restricts the application of ST. Thus, in this paper, we propose
an LST, which is essentially a weighted ST for each image
block. Specifically, we divide each frame into many blocks.
Given two blocks with the same spatial coordinates but from
two neighbouring frames, we use their similarity to weight the
difference between the ground-truth density map of one block
and the density map transformed from the other block. If
these two blocks are similar, they probably correspond to the
same population, then the difference between ground-truth
density map and transformed density map should be smaller.
If someone walks in/out or is occluded, then we allow the es-
timated density map to be slightly different from the ground-
truth. By minimizing such difference over all blocks and all
frames, the dependencies between neighbouring frames can
be exploited for video crowd counting.

We denote the mapping function of LST module as fLST
which takes the estimated density map of the tth frame as
input to estimate the density map of the (t + 1)th frame. We
use MLST

t+1 to denote the density map of the (t + 1)th frame
estimated by LST. Then

MLST
t+1 = fLST (Mreg

t ;Aθ) (4)

[
xsi
ysi

]
= Γθ(Gi) = Aθ

 xti
yti
1


=

[
θ11 θ12 θ13
θ21 θ22 θ23

] xti
yti
1

 (5)

where (xti ,yti ) are the target coordinates of the sampling grid
Γθ in the output density maps, (xsi ,ysi ) are the source coordi-
nates in the input density maps that define the sample points,
and Aθ denotes the transformation matrix [14].

We evenly divide each frame It, MGT
t+1 and MLST

t+1 into
H ×W blocks, and use It(i, j), MGT

t+1(i, j) and MLST
t+1 (i, j)

to denote the block in the jth column and the ith row for
the tth frame, its ground-truth density map and density map
estimated by LST. Then the objective of LST can be written



Table 1: Details of some datasets: Num is the total number of frames; FPS is the number of frames per second; Max is the
maximal crowd count in one frame; Min is the minimal crowd count in one frame; Ave is the average crowd count in one frame;
Total is total number of labeled people.

Dataset Resolution Num FPS Max Min Ave Total
UCSD 238× 158 2000 10 46 11 24.9 49,885
Mall 640× 480 2000 <2 53 13 31.2 62,316

WorldExpo 576× 720 3980 50 253 1 50.2 199,923

Ours 1920× 1080
1280× 720

15000 30 57 9 26.7 394,081

as follows.

`LST =
1

2T

T−1∑
t=1

∑
1≤i≤H
1≤j≤W

S(It(i, j), It+1(i, j))

× ‖MLST
t+1 (i, j)−MGT

t+1(i, j)‖22
(6)

where S(It(i, j), It+1(i, j)) denotes the similarity between
the corresponding temporal neighbouring blocks, which can
be measured as follows

S(It(i, j), It+1(i, j)) = exp(−‖It(i, j)− It+1(i, j)‖22
2β2

).

(7)

3.3. Loss function

We combine the losses of the density map regression mod-
ule and that of the LST module, and arrive at the following
objective function

` = `reg + λ`LST, (8)

where λ is a weight used to balance `reg and `LST.
In the training process, an Adam optimizer is used with a

learning rate at 1e-8 on our dataset. To reduce over-fitting, we
adopt the batch-normalization, and the batch-size is 5.

Once our network is trained, in the testing phase, we can
directly estimate the density map of each frame and integrate
the density map to get the estimated head counts.

3.4. Implementation details

The variance in gaussian based density map generation γ =
3, and the β used in similarity measurement is 30 on FDST
dataset. We resize all frames to 640 × 360 pixels. We first
pretrain density map regression module, then we fine-tune the
whole network by fix the first 10 layers in VGG-16. For the
number of blocks, we fix W = 2 on all datasets. On the Mall
dataset and our dataset, we fix H = 1, and H = 2 on the
UCSD dataset. We set λ = 0.001 on FDST dataset†.
†Because the ground-truth are annotated 2fps on Expo’10 and ROI’s are

also marked, therefore the population of two neighbouring frames change
a lot. Thus this dataset is not suitable for performance evaluation of our
method.

4. EXPERIMENTS

4.1. Evaluation metric

Following work [19], we adopt both the mean absolute error
(MAE) and the mean squared error (MSE) as metrics to eval-
uate the performance of different methods, which are defined
as follows:

MAE =
1

T

T∑
i=1

|zi − ẑi|,MSE =

√√√√ 1

T

T∑
i=1

(zi − ẑi)2 (9)

where T is the total number of frames of all testing video
sequences, zi and ẑi are the actual number of people and es-
timated number of people in the ith frame respectively.

4.2. Fudan-ShanghaiTech Video Crowd counting dataset

Existing video crowd counting datasets are too small in terms
of number of both frames as well as scenes. Hence, we intro-
duce a new large-scale video crowd counting dataset. Specif-
ically, we collected 100 videos captured from 13 different
scenes, and FDST dataset contains 150,000 frames, with a to-
tal of 394,081 annotated heads. It takes more than 400 hours
to annotate FDST dataset. As far as we know, this dataset is
the largest video crowd counting dataset. Table.1 shows the
statistics of our dataset and other relevant datasets.

The training set of FDST dataset consists of 60 videos,
9000 frames and the testing set contains the remaining 40
videos, 6000 frames. We compare our method with MCNN
[3] which achieves state-of-the-art performance for single im-
age crowd counting, ConvLSTM [8] which is state-of-the-art
video crowd counting method. We also report the perfor-
mance of our method without LST. All results are shown in
Table. 2. We can see that our method achieves the best per-
formance. Further the improvement of our method compared
with the one without LST shows the effectiveness of LST.
It is worth noting that because there are many scenes in our
dataset, and it is not easy to train the ConvLSTM, therefore
the performance of ConvLSTM is even worse than single im-
age based method. We also show the density map estimated
by our LSTN in Fig. 2.



Table 2: Results of different methods on our dataset.

Method MAE MSE
MCNN [3] 3.77 4.88

ConvLSTM [8] 4.48 5.82
Ours without LST 3.87 5.16

Our Method 3.35 4.45

Input 

Ground truth

Estimation

tX 2tX  3tX 1tX 

Fig. 2: The density maps estimated by our method on our
dataset.

4.3. The UCSD dataset

We also evaluate our method with the UCSD dataset [20],
which contains 2000 frames captured by surveillance cameras
in the UCSD campus. The resolution of frames is 238 × 158
pixels and the rate of frame is 10 fps. The number of person
in each frame varies from 11 to 46. By following the same
setting with [20], we use frames from 601 to 1400 as training
data, and the remaining 1200 frames as testing data.

Following [10], we use bilinear interpolation to resize
each frame into 952 × 632. Table. 3 shows the accuracy of
different methods on this dataset. We can see that our method
also outperforms ConvLSTM based method on this dataset.

Table 3: Results of different methods on the UCSD dataset.

Method MAE MSE
Kernel Ridge Regression [21] 2.16 7.45

Ridge Regression [22] 2.25 7.82
Gaussian Process Regression [20] 2.24 7.97

Cumulative Attribute Regression [23] 2.07 6.86
Zhang et al [2] 1.60 3.31

MCNN [3] 1.07 1.35
Switch-CNN [9] 1.62 2.10

CSRNet [10] 1.16 1.47
FCN-rLSTM [7] 1.54 3.02
ConvLSTM [8] 1.30 1.79

Bidirectional ConvLSTM [8] 1.13 1.43
Our Method 1.07 1.39

4.4. The Mall dataset

The Mall dataset is captured in a shopping mall with a surveil-
lance camera [22]. This video-based dataset consists of 2000
frames in the dimension of 640×480 pixels, with over 60,000
labeled pedestrians. Region of Interest (ROI) and perspective
map are also provided. According to the train-test setting in
[22], we use the first 800 frames for training and the remain-
ing 1200 frames for testing. The performance of different
methods are shown in Table. 4, our model also achieves state-
of-the-art performance in terms of both MAE and MSE.

Table 4: Results of different methods on the Mall dataset.

Method MAE MSE
Kernel Ridge Regression [21] 3.51 18.10

Ridge Regression [22] 3.59 19.00
Gaussian Process Regression [20] 3.72 20.10

Cumulative Attribute Regression [23] 3.43 17.70
COUNT Forest [24] 2.50 10.00

ConvLSTM [8] 2.24 8.50
Bidirectional ConvLSTM [8] 2.10 7.60

Our Method 2.00 2.50

4.5. The importance of similarity term in LST

In our LSTN, we use the similarity between temporal neigh-
bouring blocks to weight the difference between the warped
density map and its ground-truth. The underlying assumption
is that if two blocks are similar, then the population within
these two blocks probably correspond to the same group of
people and then spatial transformer works well. But if the
similarity is lower, which means people walk in/out or are
occluded, then it is less possible to infer the density map of
block in the temporal neighbouring frame.We compare the
results with/without similarity term on UCSD, Mall, FDST
dataset, and the results are shown in Table.5. We can see that
similarity term always boots the performance of video crowd
counting, which validates our assumption.

Table 5: Comparing the performance of LSTN with/without
similarity term on UCSD, Mall and our dataset.

With Without
Method MAE MSE MAE MSE
UCSD 1.07 1.39 1.11 1.41
Mall 2.00 2.50 2.18 2.70
Ours 3.35 4.45 3.81 5.10

5. CONCLUSION

In this paper, a Locality-constrained Spatial Transformer Net-
work (LSTN) is proposed to explicitly relate the density maps



of neighbouring frames for video crowd counting. Specifi-
cally, we first leverage a density map regression module to es-
timate the density map of each frame. Considering that people
may walk in/out or are occluded, we divide each frame into
blocks, and use the similarity between two temporal neigh-
bouring blocks to weight the difference between the ground-
truth density map and the estimated one from the other block.
We further build a large-scale video crowd counting dataset
for performance evaluation, and as far as we know, FDST
dataset is the larget video crowd counting dataset in terms
of the number of both scenes and frames. Extensive experi-
ments validate the effectiveness of our LSTN for video crowd
counting.
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