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Abstract

Significant progress has been achieved in Computer Vi-
sion by leveraging large-scale image datasets. However,
large-scale datasets for complex Computer Vision tasks
beyond classification are still limited. This paper pro-
posed a large-scale dataset named AIC (Al Challenger)
with three sub-datasets, human keypoint detection (HKD),
large-scale attribute dataset (LAD) and image Chinese cap-
tioning (ICC). In this dataset, we annotate class labels
(LAD), keypoint coordinate (HKD), bounding box (HKD
and LAD), attribute (LAD) and caption (ICC). These rich
annotations bridge the semantic gap between low-level im-
ages and high-level concepts. The proposed dataset is an
effective benchmark to evaluate and improve different com-
putational methods. In addition, for related tasks, others
can also use our dataset as a new resource to pre-train their
models.

1. Introduction

The recent progress achieved in Computer Vision tasks
largely rely on deep neural networks[17, 43]] and big data,
such as ImageNet[23], MSCOCOI29]], Scene Understand-
ing (SUN)[54] and Flickr30k[59]. Most existing datasets
focus on traditional (object or scene) classification and
recognition tasks. Many images are annotated with only
labels and bounding boxes. However predicting labels and
bounding boxes of objects are far away from deep under-
standing of images. Those datasets with rich annotations,
such as human keypoints, attributes and captions, are a
small fraction of existing datasets and have a small scale. In
human keypoint detection task, MSCOCOJ[29] and MPII[1]]
provided no more than 200k labelled images. The sum of
images in frequently used attribute datasets (CUB, SUN At-
tribute, aP/aY and AwA ) is only 72k. Currently, Flickr8k-
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Figure 1: Examples of the proposed datasets.

cn[27]] provides 8k Chinese captions of images, however,
because annotation does not specify any rules on wording,
some captions may not contain all salient objects and some
may not express the relationship between objects, which
will result in a lack of information for training or evaluating
methods.

The goal of this paper is to go deeper in image un-
derstanding by providing a dataset for three more com-
prehensive tasks, namely, human keypoint detection, at-
tribute based zero-shot recognition and image Chinese cap-
tions (see Fig[I). These three tasks focus on the concept of
daily life for ordinary people. In human keypoint detection
task, we try to annotate and predict the keypoints of people,
which is a fundamental task for capturing and understand-
ing human activities. In attribute based zero-shot recogni-
tion task, we are inspired by human being’s learning abil-
ity, that people can learn new concepts from descriptions,
and we annotate attributes of objects for implementing zero-
shot recognition. In image Chinese captioning task, we try
to understand the relation between objects in the image by
captioning and we annotate Chinese captions for scenes of
people’s daily life.

To build such dataset, we first design the scene and ob-
ject categories. Then the raw images are crawled from the
Internet by querying label names in search engine. Then,



these images are divided into three classes, namely “use-
less”, “’single-object”, and “multi-object”. We use only
single-object images to build the attribute dataset for zero-
shot recognition, while we use both single-object images
and multi-object images for keypoint detection and Chinese
captioning. The whole dataset contains 300,000 images (an-
notated with key points for main characters) for keypoint
detection, 81,658 images (annotated with labels, bounding
boxes, and attributes (partially)) for zero-shot recognition
and 300,000 images ,annotated with 5 Chinese captions per
image, for Chinese captioning. We should emphasize that
there are more than 95% overlap between keypoint images
and captioning images. Hence, this is a good resource to in-
vestigate how to jointly deal with two different visual tasks.

There are three main contributions in this paper. 1) Our
dataset provides a new benchmark to evaluate methods in
the three tasks. 2) The huge dataset is a new resource for
pre-training models. 3) To our best knowledge, this is the
first large-scale image Chinese captioning dataset.

2. Human Skeletal System Keypoint Detection
2.1. Overview

Human Skeletal System Keypoint Detection plays an im-
portant role in several computer vision tasks, such as pose
estimation, activity recognition and abnormal action detec-
tion. Unfortunately, due to the unknown number, position
and scale of human figure in the image, along with the in-
teractions and occlusions that may occur between people,
human keypoint detection can be a real challenging task.

Recent human keypoint detection approaches can be
roughly divided into two categories[3]: top-down[19, |15}
38, 142] and bottom-up(3} 2, [7,144]. The main idea of a top-
down scenario is to divide and conquer, which treats the
multi-person keypoint detection problem as a human detec-
tion followed by a single person keypoint detection. On
the other hand, a bottom-up method directly extracts hu-
man keypoints from the image and clusters the results into
different humans.

In the last few years, the deep neural networks espe-
cially the Convolutional Neural Networks(CNN), have been
widely used to detect and localize the human keypoints[33|
35, 145, 150]. To avoid over-fitting, such approaches re-
quire massive labelled data to train the deep neural net-
works. While existing datasets with human keypoint an-
notation like MSCOCO[29] and MPII[1] provide only no
more than two hundred thousand labelled images, here we
introduce the Human skeletal system Keypoint Detection
Dataset(HKD) which contains 300,000 high resolution im-
ages with multiple persons and various poses, and each per-
son is labeled with a bounding box and 14 human skeletal
keypoints. The comparison between datasets is shown in
Tab[ll

The rest of this section is organized as follows: we first
describe how we collected and annotated the images, some
dataset statistics are shown in the next subsection, then the
evaluation metrics we designed for the task is described,
finally we introduce the baseline model and conduct some
experiments.

2.2. Data Annotation

The annotation pipeline for HKD data set can be divided
into three major parts, which are image filtering, human
bounding box labeling and human skeletal keypoints label-
ing.

Similar to the SCH and the ICC dataset, images in the
HKD dataset are collected from Internet search engines. So
the first step is to remove inappropriate images out of the
HKD dataset. These may include but are not limited to
those images containing famous politicians, domestic po-
lice forces, sexual contents, violence or other inappropriate
actions. In addition, we eliminate images where all human
figures are too small(e.g. football players on the field taken
from the top of stadium stand), or the ones that contain too
many human figures (e.g. the crowd on the stadium stand)
from our dataset.

The next step is to label human figures with bounding
boxes. The bounding box should stay as close to the subject
as possible, and in the mean time, contain all visible parts
of this human figure. Note that not all humans in images are
labelled with a bounding box. We skip the small human fig-
ure whose body parts are hard to distinguish, and the vague
ones whose body contours are hard to recognize, because
we want the algorithm to focus on detecting the most sig-
nificant human body instead of all the humans in the image.

The final and the most important step is to label the loca-
tions and types of human skeletal keypoints for each human
with a bounding box from the previous annotation stage.
For each human, we labeled 14 human skeletal keypoints,
and the numeric order of these keypoints is : 1-right shoul-
der, 2-right elbow, 3-right wrist, 4-left shoulder, 5-left el-
bow, 6-left wrist, 7-right hip, 8-right knee, 9-right ankle,
10-left hip, 11-left knee, 12-left ankle, 13-top of the head,
and 14-neck. Each keypoint has one of three visibility flags:
labeled and visible, labeled but not visible, or not labeled.

2.3. Data Statistics

We split the HKD dataset into training, validation, test
A and test B with 70%, 10%, 10% and 10% ratio, which

Datasets Images Humans Keypoints
MSCOCO[29] 200k 250k 17
MPII[1] 25k 40k 13
HKD(Ours) 300k 700k 14

Table 1: The comparison of human keypoint datasets.
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Figure 2: The distribution of different type of keypoints.

contain 210 000, 30 000, 30 000 and 30 000 images respec-
tively. We only provide statistics on 210 000 training data.

For the 210000 images in training set, there are 378 374
human figures with almost 5 million keypoints. Among all
the human keypoints we have labeled, 78.4% of them are
labeled as visible(v = 1) and the rest of them are labeled
as not visible(v = 2). The distribution of different types of
keypoints are shown in Fig[J]

Inconsistency in human-annotated keypoint locations is
inevitable. We had 33 people labeled a same batch of 100
images to test the noise introduced by humans. In specific,
we calculate the second central moment, which is the maxi-
mum likelihood estimation on standard deviation of the Eu-
clidean distance between each type of keypoints and its cen-
ter. The human label deviation is shown in Fig[3(a), where
the radius of bright circle is the human label deviation of
corresponding keypoint type. We can see that the upper
body is labeled more accurately and the hips are generally
more difficult to annotate. These human label deviation of
different types of keypoints are used in evaluation metrics to
measure the prediction difficulty, which will be introduced
in the next subsection.

To demonstrate the diversity of human poses in the HKD
dataset, 100 human annotations are randomly chosen from
the training set. We apply the keypoint alignment by lin-
ear transformation, where the parameters of the transforma-
tion are set to make these 5 keypoints, right shoulder(1),
left shoulder(4), right hip(7), left hip(10) and neck(14),
have the same first moment(center) and second central mo-
ment(standard deviation). As shown in FigEkb), the most
common poses are standing and sitting, while there are also
quite a few other poses.

Figure 3: Human Label Deviation and Pose Diversity. (a)The ra-
dius of bright circle is the human label deviation of corresponding
keypoint type, which represents the difficulty of prediction. (b)To
demonstrate the diversity of human poses in the HKD dataset, 100
human are randomly chosen and Human limbs are drawn after
aligned.

2.4. Evaluation Metrics

The evaluation metric of the human skeleton keypoint
detection is similar to common object detection task, where
the submission is scored in mean Average Precision (mAP).
In common object detection tasks, Intersection over Union
(IoU) is used to evaluate the similarity between a predicted
bounding box and a ground truth bounding box. While in
the human skeletal system keypoints detection task, we use
Object Keypoint Similarity (OKS) proposed in [29]] instead
of IoU, to measure the similarity between the predicted key-
points and the ground truth keypoints.

The mAP score is the mean value of the Aver-
age Precision (AP) score under different OKS thresh-
0lds(0.50:0.05:0.95). The AP (Average Precision) score is
calculated in the same way as in common object detection,
but instead of IoU, OKS is used as similarity metric. Given
the OKS threshold s, the AP under s (AP@s) of the test
results is predicted by the participants over the entire test
set.

The OKS score is similar to the IoU score in common ob-
ject detection task, which measures the similarity between
the prediction and the ground truth. The main idea of OKS
is the weighted Euclidean distance of the predicted key-
points and the ground truth keypoints, and for each human
figure p, the OKS score is defined as follows:

Soexp{—d2;/2s207} 6 (v = 1)
2230 (vp =1)

OKS, =



Where p is the index of human annotations; ¢ is the id
number of the given human skeleton keypoint; d,; is the
Euclidean distance between the predicted keypoint position
and the ground truth; s, is the scale factor of human figure
p, which is defined as the square root of the human bound-
ing box area of human figure p; o; is the normalized factor
of the human skeletal keypoint, which is calculated by the
standard deviation of human annotation result; vy; is the the
visibility flag of the i keypoint of the human figure p; § ()
is the Kronecker function, which means only visible human
skeletal keypoints(v = 1)are considered during evaluation.

An evaluation script will be comming soon to facilitate
offline evaluation.

2.5. Baseline Model and Experiments

We provide a basic approach to detect human skeletal
keypoints in natural images as the baseline model of the
HKD dataset. The most straightforward way is to adopt a
top-down type method, that we first detect the humans in
the image and then apply a single person keypoint detection
method. The baseline model consists of three major parts:
a human detector, a keypoint detector and a post-processing
procedure to complete the task.

For detector we choose the Single Shot multibox
Detector(SSD)[30] pre-trained on Pascal VOC[10] and
Mask R-CNN[16] pre-trained on MSCOCO[29]. Since per-
son is one of the defined classes in both datasets, we are able
to apply the pre-trained model on our images without re-
training it. For the SSD we use the output human bounding
boxes and for the DeepLab we use the ouput human masks.

We treat single person keypoint detection as a semantic
segmentation problem by generating the ground truth masks
where pixels in a small region near the keypoints are set
as the corresponding keypoint classes and others are set as
background class. Then we trained a DeepLab v2[5]] model
to learn this semantic segmentation representation.

During inference, we crop the human bounding box gen-
erated by the detector and adopt the DeepLab model to
generate a pixel-wise saliency map of keypoints. If there
are more than one region of the same keypoint type in the
saliency map, we only take the one with the largest region
area and eliminate the rest. Finally we get the final detec-
tion result by letting the centroid of keypoint regions in the
saliency map be the final keypoints detection result.

We conducted the experiments by training the baseline
model and all the training images we use are in the HKD
training set. The quantitative results on the HKD validation
set are in Tab[2]

As we can see, OpenPose[3]], the winner of MSCOCO
2016 keypoint competition[29]], scores only 0.296 mAP-12
on the HKD dataset. In the mean time, we provided a basic
approach which adopts a top-down pipeline and scores a
0.228 mAP-12 value and a 0.234 mAP-14 value.

Algorithms mAP-12  mAP-14
Baseline(bbox) 0.228 0.234
Baseline(mask) 0.226 0.233

OpenPose[3] 0.296 -

Table 2: The mAP score on the HKD validation set. mAP-12
score is evaluated on the 12 keypoints identical to MSCOCO and
mAP-14 score is evaluated on all 14 keypoints in the HKD dataset

3. Attribute based Zero-shot Recognition
3.1. Overview

Human beings can learn a new concept from descriptions
without seeing it. Zero-shot recognition, which aims to rec-
ognize objects from novel unseen classes, is a promising
approach to realize large-scale object recognition. Signifi-
cant progress[53 [14] has been achieved in zero-shot recog-
nition. In most practices, ZSR is implemented by trans-
ferring knowledge from seen to unseen classes via auxil-
iary knowledge, e.g. attributes[26]], word vectors[32] and
gaze embeddings[20]. Compared to other types of auxiliary
knowledge, attributes have good discrimination and inter-
pretability. Many state-of-the-art ZSR results[22, |57, 162|
63, 152]] have been achieved based on attributes.

However, there exists only a small number of image
datasets annotated with attributes. The frequently used
ones include Caltech-UCSD Birds-200-2011 (CUB)[49],
SUN Attributes (SUN)[54], aPascal/aYahoo (aP/aY)[12],
Animals with Attributes (AwA)[12] and ImageNetAElM]
(see in Tab[3). Existing attribute datasets have three ma-
jor limitations: 1) Small image numbers. The sum of im-
ages in CUB, aP&aY, SUN and AwA datasets is only 72k.
This is a small number compared to many object recogni-
tion datasets, e.g. the ImageNet[23], MSCOCOJ29] and
LSUNJ[60]. 2) Lack of semantic attributes. Only low-level
visual attributes (e.g. color, size, shape, texture) are anno-
tated in CUB and ImageNet_A. 3) Close to ImageNet. The
categories in some datasets, e.g. AwWA and aP&aY, have a
large overlap with ImageNet. 4) Serious distribution bias.
For instance, 30% classes in AwA have more than 10% im-
ages in which the object is along with “person” . Such dis-
tribution bias may cause the inaccurate learning of some ob-
jects. These limitations block the evaluation and improve-
ment of ZSR methods.

We present a Large-scale Attribute Dataset (LAD) with
rich semantic attributes (shown in Figl) to promote the
development of zero-shot recognition and other attribute-
based tasks [46,|31,/56,151,|61]]. Our dataset contains 81,658
images, 240 classes and 359 attributes. Beyond low-level
visual attributes (e.g. colors, sizes, shapes), we also pro-
vide many semantic attributes. For example, we annotate at-

The authors provide attributes for 384 popular synsets in ImageNet.
In this section, we use "ImageNet_A” to refer this subset of ImageNet.



LAD CUB SUN aP/aY AwA ImageNet_A
Images 81,658 11,788 14,340 15,339 30,475 | 384,000%*
Classes 240 200 717 32 50 384
Bounding Box Yes Yes No Yes No Yes
Attributes 359 312 102 64 85 25
Annotation Level | 20 ins./class | instance | instance | instance | class 25 ins./class

Table 3: Statistics and comparison of different datasets. * means the estimated number.

Bear Lychee

Color: is white: True Size: is big: False

Limb: has short legs: ~ True Shape: is globular: True

Behaviour: can swim:  True Edibility: has nutlets: True

Habit: lives in groups:  False Medicinal property: is mild: True

Fighter

Parts: has a jet engine: True Mobile Phone

Color: s green : False Parts: has a battery: True

Safety: is dangerous :  True Shape: is flat: True

Power .consumes: wind Fal Function: can photograph: ~ True

power: alse Aim: is for cleaning: False
; Animals

Bob Hair Fruits

Color: is brown: True Vehicles A

Color: is black: False Electronics

Fitness: fits people with earring:  False
Feeling: is cute: True

Hairstyles

Figure 4: Examples in our dataset. We annotate both visual at-
tributes (the upper two) and semantic attributes (the bottom two).

tributes of diets and habits for animals, edibility and medic-
inal property for fruits, safety and usage scenarios for vehi-
cles, functions and usage mode for electronics.

3.2. Data Annotation & Statistics

To construct attribute based zero-shot recognition
dataset, we first define the label list of all classes. Specif-
ically, our dataset includes 240 classes. These classes can
be divided into 5 subsets, namely animals, fruits, vehicles,
electronics and hairstyles. The first four coarse-grained
subsets contain 50 classes respectively, while the last fine-
grained hairstyle subset contains 40 classes.

We crawl images for each class based on the search of
the label and synonyms. Then, we filter these images and
keep those images with only one foreground object match-
ing the label. We also annotate the bounding box for every
foreground object.

As our dataset includes 240 classes, it is unsuitable to de-
sign a list of many attributes for all classes. Hence, we de-
sign the attribute list for each subset. Specifically, we design
123, 58, 81, 75 and 22 attributes (359 in total) for animals,
fruits, vehicles, electronics and hairstyles respectively. Be-
yond low-level visual attributes (e.g. colors, shapes, sizes),
we provide many semantic attributes (e.g. habits of an-
imals, functions of electronics, feelings about hairstyles).
These semantic attributes are human-concerned ones, how-
ever, not well investigated in previous vision tasks.

Tab[3] shows the statistics of image and annotation num-

bers of our dataset and others. Clearly, our dataset has the
largest number of attributes. Our dataset has 81,658 images
which is greater than the sum of CUB, SUN, aP/aY and
AwA. Fig[3illustrates the distribution of image numbers per
class. Most classes in our dataset have around 350 images,
which is greater than aP/aY dataset (around 250 images).

3.3. Data Split

We present a set of splits of seen/unseen classes for zero-
shot recognition. We follow the traditional 80%/20% split
ratio of seen/unseen classes. We shuffle these classes in
each subset. Then we divide all 240 classes into 5 folders.
Every 20% of these classes are chosen to be unseen classes
and the rest are seen classes. In this way, we can obtain 5
random splits. For each subset, the ratio of seen/unseen is
the same. We advocate to evaluate methods on the 5 splits
and provide the mean accuracy.

For supervised learning of attributes and labels, we pro-
vide the split of training/testing data. We randomly select
70% data from each class as training data and the rest 30%
are testing data. The validation data can be extracted from
training data in experiments.

3.4. Experiments

Baseline Methods. We implement zero-shot recogni-
tion experiments on our dataset using three basic meth-
ods, namely, SOC[36], ESZSL[40] and MDP[64], which
belongs to three popular frameworks. First, images and
labels are embedded into the image feature space (using
ResNet pre-trained on ImageNet) and the semantic embed-
ding spaces (using annotated attributes). SOC tries to learn
a linear mapping function from the image feature space to
the semantic embedding space using seen class data. Then
unseen instances are mapped to the semantic embedding
space using the learned mapping function. These unseen in-
stances are classified based on distances to the ground-truth
unseen semantic embeddings using nearest-neighbour clas-
sifier. ESZSL learns a mapping that measures the compat-
ibility between image features and semantic embeddings.
MDP aims to learn the local structure of semantic embed-
dings. Then the structure is transferred to image feature
space for synthesizing unseen image data. Labels of test-
ing unseen images are predicted according to the distance
to these synthesized data.
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Figure 5: Statistics of image, class and attribute numbers.

SOC | ESZSL | MDP
1 31.05 | 42.17 46.96
2 31.27 | 46.82 46.83
3 34.64 | 42.49 51.41
4 3421 | 41.96 48.61
5 36.57 | 43.72 49.08
Ave | 33.55 | 43.43 48.58

Table 4: Comparison of zero-shot recognition methods on our
dataset.

Experimental Methods. Experimental results are
shown in Tabd] We can find that the zero-shot recognition
accuracies on the five splits are balanced. MDP achieves
the best performance, averagely 48.58%. The runner-up
method is ESZSL, whose average recognition accuracy is
43.43%. The average recognition accuracy of SOC is
33.55% which is around 15% lower than MDP.

4. Image Captioning for Chinese
4.1. Overview

Image captioning has long been a challenging problem in
computer vision and natural language processing. A great
image model must capture not only primary objects con-
tained in an image, but also the relationship between ob-
jects, their attributes, or the activities they are involved in.
Moreover, the image captioning task requires that these se-
mantic knowledge to be organized and conveyed in textual
description, and therefore a language model is also needed.

Early approaches to tackle this issue could be roughly
divided into two types: template-based methods[[11} 24, 25|
55| and retrieval-based approaches[9, [13]]. The first ap-
proaches start from detecting object, action, scene and at-
tributes in images and then combined them by language
models. The second approaches retrieve the visually sim-
ilarity images from a large database, and then transfer the

captions of retrieved images to fit the query image.

Recently, the encoder-decoder framework[21} 148l 58] 4]
and the reinforcement learning framework[39] have been
introduced to image captioning. Researchers adopted
encoder-decoder framework because translating an image
to a sentence was analogous to the task in machine trans-
lation. Approaches following this framework generally en-
code an image as a single feature vector by convolutional
neural networks, and then feed such vector into recurrent
neural networks to generate captions. Reinforcement learn-
ing framework is based on decision-making which utilizes
a ”’policy network” and a ”value network” to collaboratively
generate captions.

Although much of the progress have been made pos-
sible by the availability of image caption datasets such
as Pascal VOC 2008][13]], Flickr8k[18], Flickr30k[59],
MSCOCOI29] and SBU[34] datasets, captions in existing
datasets were all labeled in English. These datasets contain
8,000, 31,000 and 300,000 images respectively and each is
annotated with 5 English sentences. To promote progress
in this area, we created the image Chinese captioning (ICC)
dataset (see in Fig[6). To our knowledge, the ICC dataset
is the largest image captioning dataset whose sentences are
labeled in Chinese.

The rest of this section is organized as follows. Firstly,
we describe the process of collecting Chinese captions for
the ICC dataset. Secondly, we analyze the properties of the
ICC dataset. Thirdly, we introduce a baseline for the ICC
dataset. Finally, we perform experiments to assess the ef-
fectiveness of the baseline model using several metrics.

4.2. Dataset Statistics

We analyze the properties of the ICC dataset in compar-
ison to several other popular datasets. The statistics of the
datasets are shown in Tab[3l
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Figure 6: Examples of ICC training dataset.

4.3. Data Annotation

The pipeline to gather data for the ICC dataset can be di-
vided into two major parts, which are image selection (sim-
ilar as HKD) and Chinese caption labeling.

Apart from the HKD image selection principles, we add
two more rules. Firstly, the image should be easy to be
described using only one sentence. Secondly, the image
should contain multiple objects in complex scenes. For ex-
ample, an image contains only one person standing with no
other significant poses is less likely to be selected than the
one with two people hugging.

The ICC dataset contains five reference captions for ev-
ery image, which were labelled by 5 different native speak-
ers in China using Chinese language. Each of our captions
is generated using human subjects which are similar to the
ones in[6].

There are three principles that guide image caption anno-
tation. Firstly, the annotations should include but not lim-
ited to key objects/attributes, locations and human actions.
Secondly, the sentences should be fluent. Thirdly, the use
of Chinese idioms or descriptive adjectives is encouraged.

dataset name train | valid | test-1 | test-2 | language
Pascal VOC|[13] - - 1K - English
Flickr8k([18] 6K 1K 1K - English
Flickr30k[59] 28K 1K 1K - English
MSCOCO[29] 82K | 40K | 40K - English
SBU[34] M - - - English
1cc 210K | 30K | 30K 30K | Chinese

Table 5: Statistics and comparison of different datasets.

The number of captions is 1,050,000 captions for
210,000 images in training, 150,000 captions for 30,000
images in validation, 150,000 captions for 30,000 images in
testing-1 and 150,000 captions for 30,000 images in testing-
2. ICC is the largest dataset whose captions are in Chinese
and it is the first to provide two different test datasets which

can better evaluate if the algorithm is overfitting.

In ICC training data there are more than 200 scenes
and places such as “football field” and “grassland” (see in
Fig[7), 150 actions such as “sing” and “run”. ICC dataset
contains most of common daily scenes in which a person
usually appear.

4.4. Baseline Model

We adapt “show and tell”, a popular encoder-decoder
model for image captioning[48]], as our base model. One
difference is that we use the “Jieba” Chinese word segmen-
tation module during preprocessing, instead of the English
tokenization module used in ’show and tell”.

This model directly maximize the probability of the cor-
rect description given the image by using the following for-
mulation:

0" = arg max (2) log p(S|I;0)

where 6 are the parameters of our model, [ is an image, and
S is a correct transcription.

4.5. Experimental Results

To quantitatively evaluate how well the base model
learns to generate Chinese captions, experiments were con-
ducted on the ICC testing-1 dataset which contains 30,000
images. All the reported results are computed on the met-
rics BLEU[37]], METEOR]8], ROUGE]28|| and CIDEr[47]]
respectively, which are commonly used together for fair and
thorough performance measurement.

In Tabl6l we provide a result summary of our baseline
model. We achieve reasonable performance on ICC in most
evaluation metrics.

In Figl8] captions of MSCOCO and ICC datasets are
shown respectively. Both of the first 5 captions are written
by human. The sixth caption is generated by the baseline
model trained on MSCOCO dataset and the seventh caption
is generated by the same model trained on ICC dataset. The
same model trained on ICC dataset produces better perfor-
mance than the one trained on MSCOCO dataset in most
cases. For example, the seventh caption in the first image,
which translates as "Beside two people next to a car on the
road, there is a man wearing a white shirt getting off the
car”, and the seventh caption in the second image, which ”In
the room there are a man holding a guitar with two hands
and a woman holding a microphone with her right hand”,
both provide much more descriptive details than the cap-
tions generated by model trained on MSCOCO. The results
show that the captions in ICC dataset could provide more
context information.



Football Field

Playground Road

Figure 7: Examples of different scenes.

Algorithm | BLEU-1 | BLEU-2

BLEU-3

BLEU-4 | CIDEr | METEOR | ROUGE

Baseline 0.765 0.648 0.547

0.461 1.425 0.370 0.633

Table 6: Scores of caption baseline for ICC testing-1.

i ”‘l']‘/ 1.People standing outside of a blue and white bus.
I

il —|

2.an image of a tour bus that is picking people up
. 3.Several people standing around buses and most wearing
S orange vests.
4.A public transit bus pulling up to pick up passengers.
8 5.A city bus at a stop waiting to pick up passengers
6.A group of people standing outside of a bus.
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6.a group of people sitting around a table.
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Figure 8: Results of baseline model for ICC and MSCOCO.

5. Conclusion

In this paper, we propose a new dataset with rich an-
notations, for training and evaluating methods. Ultilizing
over 185,000 worker hours, a vast collection of images was
collected, annotated and organized to provide three new,

large volume datasets for human keypoint detection, at-
tribute based zero-shot recognition and image Chinese cap-
tioning. Among these three datasets, intersection is signif-
icant, and people can cross reference low level image an-
notations such as class labels to high level segment annota-
tions such as captioning. This provides a good benchmark
for evaluating and improving methods for these three tasks
and other possible tasks to cross correlate different levels of
information. On our dataset, we also provide basic statisti-
cal tests and base line models to prove the basic validity and
first insight.

There are several promising directions for future annota-
tions on our dataset. For example, currently the human key-
point dataset only includes skeletal keypoints of human fig-
ures, but annotating “expression” or “action” may provide
more information that can be useful for even higher-level
visual tasks, such as pose estimation. Moreover, we cur-
rently only collect images containing human beings for im-
age Chinese captioning dataset, but collecting other classes
may provide better relationship between objects.

To download and learn more about AIC dataset, please
refer to the project websiteﬂ Some code is released onlineﬂ

Zhttps://challenger.ai/
3https://github.com/AIChallenger/AI_Challenger
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