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ABSTRACT

Deep representation learning is a crucial procedure in multi-

media analysis and attracts increasing attention. Most of the

popular techniques rely on convolutional neural network and

require a large amount of labeled data in the training proce-

dure. However, it is time consuming or even impossible to

obtain the label information in some tasks due to cost limita-

tion. Thus, it is necessary to develop unsupervised deep rep-

resentation learning techniques. This paper proposes a new

network structure for unsupervised deep representation learn-

ing based on spectral analysis, which is a popular technique

with solid theory foundations. Compared with the existing

spectral analysis methods, the proposed network structure has

at least three advantages. Firstly, it can identify the local sim-

ilarities among images in patch level and thus more robust

against occlusion. Secondly, through multiple consecutive

spectral analysis procedures, the proposed network can learn

more clustering-friendly representations and is capable to re-

veal the deep correlations among data samples. Thirdly, it can

elegantly integrate different spectral analysis procedures, so

that each spectral analysis procedure can have their individual

strengths in dealing with different data sample distributions.

Extensive experimental results show the effectiveness of the

proposed methods on various image clustering tasks.

Index Terms— Representation learning, spectral analy-

sis, image clustering, deep learning

1. INTRODUCTION

As one of the most fundamental techniques in multimedia

analysis, clustering has been extensively studied [1]. The

main goal of clustering is to categorize a set of data samples

into a number of clusters, so that the similar samples are in the

same cluster and dissimilar ones in different clusters. Cluster-

ing techniques have a wide range of applications and achieve

good performances[2].

Spectral clustering [3] is one of the most promising tech-

niques due to its elegance in theory and capability in explor-

ing the intrinsic data structure [4]. It has been successfully

applied in various applications of multimedia analysis [5].

However, spectral clustering still has a number of un-

solved problems. Firstly, it is quite difficult to construct a

proper affinity graph for a given dataset, though the affinity

graph can influence the clustering results significantly. The

main difficulties lie in the fact that it is not clear how to choose

a proper similarity measurement and how to determine a suit-

able parameter for the chosen measurement. Secondly, there

is no agreement in the choice of Laplacian matrix for eigen-

vector decomposition. Both of the two popular Laplacian ma-

trices, i.e. symmetric normalized Laplacian matrix [6] and

left normalized Laplacian matrix [7], have their own advan-

tages and disadvantages.

In addition to clustering techniques, the representations of

the data samples are of vital importance to achieve good clus-

tering results. Some research efforts target to learn proper

representations before performing the clustering procedure.

The main goal is to improve the clustering performance by

enhancing the intra-cluster similarity and reducing the inter-

cluster similarity. Along with the popularity of deep learn-

ing techniques, an increasing number of researchers turn to

convolutional neural network (CNN) to learn deep represen-

tations that are feasible for clustering [8, 9, 10, 11].

Motivated by the significant success of deep learning, we

extend the spectral analysis into multiple layers and propose

a new spectral analysis network (SANet). SANet learns deep

representations based on multiple consecutive spectral analy-

sis procedures and shows its strength in various image cluster-

ing tasks. Compared with the existing spectral analysis clus-

tering, our SANet achieves the following three advantages.

Firstly, SANet provides a new method for deep representa-

tion learning and the learned representations are more suit-

able for clustering. Secondly, the proposd SANet can identify

the local similarity between images by conducting multiple

spectral analysis on image patches. In contrast, the existing

spectral analysis methods only assess the similarity between

image pairs holistically. This explains why SANet is more

robust against occlusions. Thirdly, the proposed SANet ele-
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gantly integrates multiple spectral analysis procedures in or-

der to deal with data samples distributed differently. By em-

ploying different affinity graphs and Laplacian matrices, dif-

ferent spectral analysis procedures can have their individual

strengths in dealing with different data sample distributions.

2. RELATED WORK

The spectral analysis clustering procedure is shown in Algo-

rithm 1. In comparison with other approaches, the spectral

clustering method has at least three advantages. Firstly, the

representations or embeddings (i.e. Q in Alg. 1) in spec-

tral clustering can be found analytically. Secondly, spectral

clustering analysis is able to handle non-convex datasets [12].

Thirdly, spectral analysis has a solid theoretical foundation

for further research. It can be derived from the view point of

graph cut, random walks, and matrix perturbation. However,

there also exist a number of deficiencies in spectral analysis

clustering.

Algorithm 1 Spectral Clustering

Input: n data points x1, x2, · · · , xn ∈ Rd; clustering num-

ber k;

Output: k clusters

1: Construct a affinity matrix W ∈ Rn×n between data

points, with the degree matrix D ∈ Rn×n, where wij

measures the similarity between xi and xj ;

2: Compute the Laplacian matrix L = D−W , where Dii =∑n
j=1

wij ;

3: Compute the k eigenvectors Qi(1 ≤ i ≤ k) of L asso-

ciating with the k smallest eigenvalues, and denote them

by Q = [qi, q2, · · · , qk] ∈ Rn×k;

4: For 1 ≤ i ≤ n, let yi ∈ Rk be the ith row of the matrix

Q, and apply k-means to cluster the points yi(1 ≤ i ≤ n)
to obtain the k clusters Clusterj(1 ≤ j ≤ k).

Firstly, there is few theoretical analysis that leads us to

a proper affinity matrix W for a given dataset. While three

different similarity measurements are popularly used to con-

struct the affinity matrix [3], i.e. k-nearest-neighborhood, ǫ-
nearest-neighborhood, and the fully connected graph, each of

them can only deal with some but not all kinds of data sets.

While the k-nearest-neighborhood strategy might break a

connected component into several components, the ǫ-nearest-

neighborhood strategy can not handle datasets with varied

densities, and the fully connected affinity method suffers from

high computational complexity. In addition, it is quite diffi-

culty to determine a proper parameter for these three strate-

gies.

Secondly, the relevant research communities have not

reached consensus on how to choose between different

Laplacian matrices. The Laplacian matrix has two popu-

lar extensions, i.e. symmetric normalized matrix Lsym =

D−1/2LD1/2 = I −D−1/2WD1/2 and left normalized ma-

trix Lrw = D−1L = I − D−1W . While Ng [6] adopted

symmetric normalized Laplacian matrix and claimed supe-

rior performance, Shi [7] and Luxburg [12] recommended left

normalized matrix. Both normalizations have their individual

advantages and disadvantages.

3. SPECTRAL ANALYSIS NETWORK

3.1. Motivation

Motivated by the success of convolutional neural network

[13], researchers also attempt to extend other techniques to

a network structure for deep representation learning [14, 15,

16]. Following the similar spirit, we propose a new represen-

tation learning method via expansion of the concept in spec-

tral analysis, and to the best of our knowledge, we are the

first to explore the deep representation learning based on the

technique of spectral analysis.

It is widely recognized that the spectral features Y =
{yi}

n
i=1

in Alg. 1 are more suitable for clustering than the

original data points {xi}
n
i=1

. We consider to conduct spec-

tral analysis procedures on the spectral features Y , in order to

further improve the intra-cluster similarity and inter-cluster

separability.

As previously mentioned, there are three different meth-

ods to construct the affinity matrix, involving two different

types of Laplacian matrices. As each of them has its own ad-

vantage, and it remains difficult to determine which one to

use. To overcome this problem, we introduce a new deep net-

work structure that can integrate them together elegantly.

3.2. Network Structure

In this subsection, we propose a new network structure that

can extract deep features or representations for the task of

image clustering, as shown in Fig. 1. The proposed network

consists of four different types of layers, i.e. spectral analysis

layer, binarization layer, coding layer, and pooling layer.

In the following, we show the details of these layers. For

an image clustering task, we assume the image dataset I =
{Ii|1 ≤ i ≤ N} consists of N samples, and the image size is

m0 × n0 with D0 channels, i.e. Ii ∈ Rm0×n0×D0 .

(1) The first spectral analysis layer

The first spectral analysis layer extracts features from the

image patches using the technique of spectral analysis. We

call the output features of a spectral analysis layer as spectral

features. In Alg. 1, yi denotes the spectral feature of sample

xi. Based on the theory of spectral analysis, we know that

spectral features are more clustering-friendly than the origi-

nal image patches. In other words, the similarity is enhanced

between a pair of neighboring patches and reduced between a

pair of distant patches in the spectral feature space.

In the patch sampling procedure, we pad the image to in-

clude the border information. Around each of a subset (or all)



Fig. 1. The structure of the proposed SANet. Besides input and output layers, there are four types of layers in the proposed

network, spectral analysis layer, binarization layer, coding layer , and pooling layer (not shown in this figure).

pixels, we crop an image patch of size p0h × p0w ×D0, where

D0 represents the number of channels. The mean patch is sub-

tracted from each of the image patches to address the problem

caused by illumination variations. For an image Ii, we obtain

a set of normalized image patches X0

i = {x0

ij |1 ≤ j ≤ n0

p}.

With N images, the size of final image patch set is N × n0

p,

and the patch set is X0 = {X0

1
, X0

2
, · · · , X0

N}.

Given the image patch X0

ij , the spectral analysis

SA1t(1 ≤ t ≤ b1) extracts the first layer spectral feature

F 1

ij with dimensionality of d1t. The parameter b1 denotes the

number of different spectral analysis procedures in the first

layer. Note that, the spectral analysis procedures can be dif-

ferent from each other in one or more of the following three

aspects, including the affinity matrix, the Laplacian matrix,

and the optimization method. Let F 1

i and F 1 denote the first

layer spectral feature of X0

i and X0, respectively. The spec-

tral features of one image (produced by SA1t) can be stacked

into a m1×n1×d1t matrix instead of being clustered directly.

With b1 different kinds of spectral analysis procedures, we ob-

tain the spectral features of an image with the dimensionality

of m1 × n1 × D1, where D1 =
∑b1

t=1
d1t sums the dimen-

sionality of b1 different set of spectral features.

(2) The second spectral analysis layer

The second spectral analysis layer takes the concatena-

tion of various spectral features produced by different spectral

analysis procedures (in the first layer) as the input. This layer

further improves the discriminative ability of the features.

Similar to the first layer, the second layer has two steps.

Firstly, it samples feature patches on the output of the first

layer, i.e. F 1. Secondly, let the feature patch set be X1, this

layer conducts spectral analysis on X1 and produces the sec-

ond layer spectral features F 2.

Let the size of the feature patches be p1h × p1w × D1 as

shown in the Fig. 1. Each feature patch carries the infor-

mation learned from a larger patch with size of (p1h + p0h −
1)× (p1w + p0w − 1)×D0 in the original image. In addition,

a feature patch also integrates the discriminative information

learned by different spectral analysis procedures, which are

suitable for the clustering of data samples with various distri-

butions.

(3) The pooling layer

The pooling layer summarizes the neighboring spectral

features in the same spectral map. We take spectral features

of the second layer as an example. The spectral analysis SC2t

produces d2t different feature maps of size m2 × n2 for each

image, and each feature map is associated with an eigenvalue.

The pooling operation is conducted inside each feature map.

For a sp × sp grid centered at a point, the pooling operation

only keeps the strongest response in terms of absolute vale,

which can be mathematically expressed as

Pooling(G) = gkl where |gkl| = max
ij

|gij | (1)

where gij denotes the feature in the ith row and jth column

of the feature grid G. The pooling grids can be overlapped.

(4) The binarization layer

From the viewpoint of graph cut, the sign of spectral fea-

tures (i.e. positive or negative) carries the cluster information

[12]. For a two-cluster clustering task, we can simply take a

single eigenvector in step 3 of Alg. 1, and cluster the data xi

into the first cluster if yi > 0 and into the second cluster if

yi < 0. This observation explicitly shows the importance of

the sign of the spectral features in the clustering task. Follow-

ing the pooling layer, correspondingly, we use a binarization

layer to binarize the spectral features, in which Bij denotes

the binary feature map corresponding to feature map F 2

ij , and

Bi denotes the feature maps of the ith image.

(5) The coding layer

Following the binarization layer, a coding layer is added

to transform the binary code into decimal numbers and thus

make it feasible for the following clustering procedure. In

this layer, we first partition the binary features of each im-

age into different groups, and each group consists of L bi-

nary feature maps. We normally set L to be 8. Let Bk
ij be

the jth (1 ≤ j ≤ L) binary feature map in the kth group

for the ith image. At the position (u, v), we take the L bi-

nary features Bk
ij(u, v) and convert them into the decimal us-

ing Ck
i (u, v) =

L∑

j=1

2j−1Bk
ij(u, v). In this way, we obtain



the kth decimal feature map Ck
i for the ith image. Note, the

spectral features corresponding to smaller eigenvalues are as-

signed with larger weights, due to their stronger discriminant

ability. With nb binary feature maps, the coding layer pro-

duces ⌈nb/L⌉ decimal feature maps. By setting L to be 8,

we obtain gray maps in the coding layer, as shown in Fig. 1.

Finally, we can obtain the clustering results by conducting a

simple K-means procedure on the output of the coding layer.

4. EXPERIMENT

We conduct experiments on handwritten digit image cluster-

ing, face image clustering, and fashion image clustering. We

adopt two popular standard metrics to evaluate the perfor-

mance of different clustering methods, i.e. clustering accu-

racy (ACC) and nomarlized mutual information (NMI) [17].

We compare our method (i.e. SANet) with a number of

representative existing clustering algorithms, including large-

scale spectral clusteirng (SC-LS) [18], graph degree linkage-

based agglomerative clustering (AC-GDL) [19], sepctral em-

bedded clustering (SEC) [20], deep embedding clustering

(DEC) [21], joint supervised learning (JULE) [22], and Deep

embeded regularized clustering (DEPICT) [8].

4.1. Handwritten digit image

The USPS dataset1 is a handwritten digits dataset consisting

of 11, 000 images. The MNIST dataset [23] is one of the most

popular image datasets, consisting of 70, 000 images.

For these two datasets, we use similar implementation de-

tails and take MNIST as the example in the following. In the

first layer, we sample 11×11 image patches with a stride of 5
both vertically and horizontally. With padding in the border,

we sample 6× 6 = 36 image patches for an 28× 28 image.

For k-nearest-neighborhood affinity matrix construction,

we set the parameter k to be 9 and 11. In the ǫ-nearest-

neighborhood strategy, we have three different settings for the

value of ǫ, i.e. 0.5η, η, and 2η, and η denotes the longest

edge in the minimal spanning tree. We construct three dif-

ferent dense affinity matrices. One dense matrix is deter-

mined by the self-tunning method [3]. The other two are con-

structed based on the Gaussian function wij = exp(−||xi −
xj ||

2/(2σ2)) with the parameter σ equals to 0.1 and 0.01, re-

spectively. Thus, we have 5 different sparse affinity matrices

and 3 different dense affinity matrices.

A symmetric Laplacian matrix is computed from each of

the affinity matrices to yield spectral features. We apply Lanc-

zos to obtain spectral features from sparse affinity matrices,

and mini-batch anlaysis to derive spectral features from dense

affinity matrices. For each of the Laplacian matrix, we calcu-

late 64 dimension of spectral features. To summary, the spec-

tral features produced by the first layer is of size 6× 6× 512

1https://cs.nyu.edu/roweis/data.html

for each image, with 64 dimensional spectral features for each

8 different Laplacian matrices.

Fig. 2. The typical visual patterns in the MNIST dataset

The first layer can learn the typical visual patterns in the

image dataset. To show this, we conduct a K-means proce-

dure based on the first layer spectral features and visualize

the cluster centers in Fig. 2. As seen, while the first three

rows represent lines in different angles and positions, the last

two rows represent different curve shapes appear in the digit

images. A proper combination of these visual patterns can

produce a digit image.

In the second layer, we sample feature patches with the

size of 4×4×512. With a stride of 1 and no feature padding,

we obtain 3 × 3 = 9 feature patches for each of the 6 × 6 ×
512 first layer spectral features. In other words, each image

is associated with 9 feature patches with dimensionality of

4× 4× 512. This layer also uses both sparse affinity matrices

and dense affinity matrices in the spectral analysis procedures.

With a symmetric Laplacian matrix employed, therefore, this

layer has 4 different spectral analysis procedures altogether.

As each spectral analysis produces 16 dimensional features,

the second spectral analysis layer produces 64 feature maps

for each image and each feature map is of the size 3 × 3.

Following the binarization and coding layer (with L = 8), we

now have 64/8 = 8 coding feature maps, each of which has

the size of 3 × 3. In other words, the dimensionality of the

features for the final k-means procedure is 72.

Tab. 1 lists the clustering performances of the proposed

SANet, in comparison with the benchmarks. In terms of both

ACC and NMI, our proposed SANet achieves the best perfor-

mances, which indicates that the proposed network can learn

feasible deep features for the clustering task.

Table 1. The clustering performances of different methods on

handwritten digit image datasets
Methods SC-LS AC-GDL SEC DEC JULE DEPICT SANet

mnist
acc 0.311 0.113 0.804 0.844 0.959 0.965 0.970
nmi 0.416 0.017 0.779 0.816 0.906 0.917 0.923

usps
acc 0.308 0.867 0.544 0.619 0.922 0.964 0.976
nmi 0.726 0.824 0.511 0.586 0.858 0.927 0.936



4.2. Occluded Face Image Clustering

The AR dataset [24] consists of more than 4, 000 frontal face

images from 126 people. The face images were captured un-

der different conditions introduced by facial expression, illu-

mination variation, as well as disguise (sunglass and scarf).

The images were captured in two sessions (with an interval of

two weeks). For the convenience of implementation without

generality, we crop the image to be the dimension of 50× 40.

Fig. 3 shows five example images from the same person.

Fig. 3. The example images from the AR dataset

Following the same design as for the clustering of digit

images, we apply the proposed network structure shown in

Fig. 1 for face image clustering. However, some of the im-

plementation details need to be different. Firstly, for face

image clustering, we sample patches of size 15 × 15 with

stride of 7. The patches are larger than the ones used in the

handwritten image dataset, in order to allow the typical vi-

sual patterns to cover meaningful parts of the faces. Secondly,

we use the Nystrom approximation (a different method from

the digit image clustering experiment) to compute the spectral

features from the dense affinity matrices, in which 20% of all

the patches are randomly selected as the seen data.

Tab. 2 summarizes the experimental results, from which

it can be seen that our proposed SANet outperforms all the 6
benchmarks selected out of the existing clustering algorithms.

Further examinations of the experimental results also reveal

that, compared with all other spectral analysis-based cluster-

ing methods, the proposed method achieves the advantage in

dealing with the occluded face images, due to the fact that the

network allows us to identify the local similarity between the

face images in patch-level.

Table 2. The clustering performances of different methods on

AR face image dataset
Methods SC-LS AC-GDL SEC DEC JULE DEPICT SANet

ACC 0.276 0.356 0.356 0.459 0.561 0.504 0.637
NMI 0.338 0.421 0.319 0.437 0.501 0.473 0.586

4.3. Fashion Clustering

We carry out another phase of experiments to cluster the fash-

ion images into different styles on the HipsterWars [25]. This

dataset consists of 1, 893 fashion images, each associating

with one of five style categories, i.e. hipster, bohemian, pinup,

preppy, and goth. The numbers of images in these five cate-

gories are 376, 462, 191, 437, and 427 respectively.

The first spectral analysis layer samples image patches of

size 32× 32. We use 8 different spectral analysis procedures

as in the digit image clustering to learn the spectral features.

The main goal of the first layer is to discover the typical visual

patterns that appear in many fashion images. In the second

layer, we only use sparse affinity matrix constructed by the k-

nearest-neighborhood, with the parameter k equals to 5, 7, 9
and 11. We adopt both the symmetric normalized matrix and

the left normalized matrix, and apply the Lanczos method for

Laplacian matrix decomposition to produce spectral features.

Table 3. The clustering performances of different methods on

HipsterWars dataset
StyleNet ResNet PolyLDA SANet

ACC 0.39 0.30 0.50 0.54

NMI 0.20 0.16 0.21 0.20

Tab. 3 summarizes the clustering results of the proposed

method and three existing state of the art benchmarks, includ-

ing StyleNet [26], ResNet [27], and PolyLDA [28]. As seen,

our proposed method performs better than existing bench-

marks in terms of accuracy. For the convenience of further

examination and analysis, Fig. 4 illustrates some image sam-

ples, which are nearest to the cluster centers.

Fig. 4. The fashion images nearest to the cluster centers of

the five different styles

5. CONCLUSION

In this paper, we proposed a new network structure, i.e.

SANet, based on the technique of spectral analysis. This pro-

vide one more method for deep representation learning, in ad-

dition to the popular convolutional neural network. The newly

proposed network structure has four type of layers.
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