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ABSTRACT

In this paper, we study a new problem arising from the emerg-
ing MPEG standardization effort Video Coding for Machine
(VCM)1, which aims to bridge the gap between visual fea-
ture compression and classical video coding. VCM is com-
mitted to address the requirement of compact signal repre-
sentation for both machine and human vision in a more or
less scalable way. To this end, we make endeavors in lever-
aging the strength of predictive and generative models to sup-
port advanced compression techniques for both machine and
human vision tasks simultaneously, in which visual features
serve as a bridge to connect signal-level and task-level com-
pact representations in a scalable manner. Specifically, we
employ a conditional deep generation network to reconstruct
video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive
model, the network elegantly leverages the feature represen-
tation to generate the appearance of to-be-coded frames via
a generative model, relying on the appearance of the coded
key frames. Meanwhile, the sparse motion pattern is com-
pact and highly effective for high-level vision tasks, e.g. ac-
tion recognition. Experimental results demonstrate that our
method yields much better reconstruction quality compared
with the traditional video codecs (0.0063 gain in SSIM), as
well as state-of-the-art action recognition performance over
highly compressed videos (9.4% gain in recognition accu-
racy), which showcases a promising paradigm of coding sig-
nal for both human and machine vision.

Index Terms— Video coding for machine, joint feature
and video compression, human vision, sparse motion pattern,
frame generation

1. INTRODUCTION

Video coding aims to compress the videos into a com-
pact form for efficient computing, transmission, and stor-
age. Many efforts are put into this domain, and over the
last three decades, a few coding standards are built to sig-
nificantly improve the coding efficiency. The latest video
codecs, i.e. MPEG-4 AVC/H.264 [1] and High Efficiency

1https://lists.aau.at/mailman/listinfo/mpeg-vcm

Fig. 1. The visual results of the reconstructed videos by
HEVC (left panel) and our method (right panel). Embedded
videos are best viewed in Acrobat Reader.

Video Coding (HEVC) [2] seek to improve the video cod-
ing performance by edging out spatial, temporal and coding
redundancies of video frames. In the past few years, data-
driven methods have been popular and bring in tremendous
progress in the compression task. The latest data-driven meth-
ods have largely overpassed performance of the state-of-the-
art codecs, e.g. HEVC by further improving various kinds of
modules like intra-prediction [3], inter-prediction [4, 5], loop
filter [6, 7], etc. These techniques significantly improve the
video quality from the perspective of the signal fidelity and
human vision.

Existing coding techniques run into problems when en-
countering big data and video analytics. The massive data
streaming generated everyday from the smart cities needs
to be compressed, transmitted and analyzed to provide high
valuable information, such as the results of action recognition,
event detection, etc. Given this scenario, it is expensive to per-
form the analysis on the compressed videos, as the video cod-
ing bit-stream is redundant and existing coding mechanism
is not flexible to discard the information that is unrelated to
analytical tasks [8]. Therefore, in the context of big data, it
is still an open problem to perform the scalable video coding,
where the requirement of machine vision is first met and addi-
tional bitrates can be utilized to further improve visual quality
of the reconstructed video progressively and incrementally. It
is an urgent need to obtain a scalable feature representation
that connects the information of low and high-level vision and
switches the forms between two purposes freely.
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The success of deep learning models has opened a new
door. The deep analytic models can extract compact and
high-valuable representations, which can convert the redun-
dant pixel domain information into the sparse feature domain.
In contrast, deep generative models are responsible to produce
the whole images and videos with only the guidance of highly
abstracted and compact features. Supported by these tools, we
can realize the scalable compression of videos and features
jointly, which is close to both practical application demands
in the big data context and accords with the mechanism of hu-
man brain circuits. The most compact and valuable abstracted
features are first extracted via deep analytic models [9, 10, 11]
to support the analytics applications. With these features, we
can locate the place and time where some key events happen,
namely rethinking rough situations. Then, guided by the fea-
tures, other information is partly generated by deep generative
models [12, 13, 14, 15], and partly compressed and decoded
to support the video reconstruction, namely rethinking scene
details. This solution is potential to address the difficulty in
combining video analytics and reconstruction in the big data
streaming, which is the main target of video coding for ma-
chine (VCM). The first step of the process can provide timely
analytical results with a small portion of bitrates to fulfill the
need of machine vision and the second stage can further pro-
vide the reconstructed videos with regards to the analytical
results using more bitrates to meet the need of human vision.

Specifically, in this paper, we propose a scalable joint
compression method for both features and videos in surveil-
lance scenes, where a learnable motion pattern bridges the
gap between machine and human vision. The sparse mo-
tion pattern is first extracted automatically via a deep predic-
tive model. After that, the appearance of the currently coded
frame is transfered from the coded key frame with the guid-
ance of the motion pattern via a deep generative model. The
sparse motion pattern is highly efficient for high-level vision
tasks, e.g. action recognition, and it can also meet the re-
quirement of human vision. In this way, the total coding cost
of features and videos can be largely reduced.

In summary, the contributions of our paper are summa-
rized as follows:

• To the best of our knowledge, we make the first attempt
towards VCM to compress features and videos jointly,
serving for both machine and human vision. A novel
scalable compression framework is designed with the
aid of predictive and generative models to support both
machine and human vision.

• In our framework, the learned sparse motion pattern
is used as a bridge, which is flexible and largely re-
duces the total coding cost of two kinds of vision.
To promote the analysis performance of human action
recognition, we additionally apply the constraint of the
learned points with the guidance of human skeletons.

• Compared with traditional video codecs, our method

not only achieves much better video quality but also of-
fers significantly better action recognition performance
at very low bitrates, which showcases a promising
paradigm of coding signal for both human and machine
vision.

The rest of the article is organized as follows. Sec. 2
illustrates the pipeline of our proposed joint feature and video
compression. The detailed network architecture for key point
prediction and motion guided target video generation is also
elaborated. Experimental results are shown in Sec. 3 and
concluding remarks are given in Sec. 4.

2. JOINT COMPRESSION OF FEATURES AND
VIDEOS

Given a video sequence I = {I1, I2, ..., IN} where N in-
dicates the frame number, it is necessary to compress I for
transmission and storage. In this section, we will first analyze
limitations of traditional video coding methods. Then, we
develop our new framework to compress features and videos
jointly in a scalable way.

2.1. Sequential Compression and Analytics

The traditional video codec targets to optimize the visual
quality of the compressed video from the perspective of sig-
nal fidelity. In this process, all frames are coded. For each
frame, spatial and temporal predictions are utilized to predict
the target frame with existing coded signal to remove the spa-
tial and temporal redundancy. Then, the prediction residue
and much syntax information are coded for reconstruction at
the decoder side. Though the data can be efficiently com-
pressed via the latest codecs, the scale of data is still massive
as a huge amount of data is taken all days and weeks. There-
fore, it is intractable to compress and save data with a high
quality, and analyze it later.

It is a reasonable trade-off to compress the data into a
low-quality format. However, existing compression methods
which target at optimizing the human vision are not desir-
able for high-level analytics tasks. If we lower the quality of
the compressed videos, the performance of action recognition
will be largely degraded. As demonstrated in Sec. 3.2, our
method uses only about 1/3 bitrate cost of the traditional com-
pression method to achieve a better performance in the action
recognition task. Another path that leads to effective video
analytics is to extract and compress features. However, in
this case, we could not obtain the reconstructed videos. This
also sets barriers to real applications, where the results usu-
ally need to be confirmed by human examiners. Therefore, we
seek to develop a flexible and scalable framework which com-
presses the feature at first for machine vision and reconstructs
the video later for human vision with more bits consumption.
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Fig. 2. The coding pipeline of our proposed joint feature and video compression that serves for both human and machine
vision.

2.2. An Overview of Joint Feature and Video Compres-
sion

Fig. 2 has illustrated the overview pipeline of the proposed
joint feature and video compression method. The motiva-
tion lies in the fact that in surveillance scenes, the videos can
be represented as a background layer (static or slow moving)
and moving objects, such as human bodies. Then, the net-
work is capable of learning to represent a video sequence with
the learned sparse motion pattern, which can indicate the ob-
ject motion among frames. In our work, we focus on indoor
surveillance videos with a static background and moving hu-
mans.

At the encoder side, with the captured video frames
I = {I1, I2, ..., IN}, a set of key frames Ik will be first
selected and compressed with traditional video codecs and
form the bit-stream BI. The coded key frames convey the
appearance information which includes the background and
human appearances and will be transmitted to the decoder
side to synthesize the non-key frames. Moreover, the learned
Sparse Point Prediction Network (SPPN) extracts sparse key
points from video frames and form a point sequence M =
{m1,m2, ...,mN}. The sparse point sequence can mark the
motion areas in the frames and convey the motion trajectories
of objects along the temporal dimension, which is viewed as
a sparse motion pattern of the video. The point sequence will
also be coded to a bit stream BM for transmission.

At the decoder side, key frames will be first reconstructed
from BI and we indicate the reconstructed key frames as
Îk. For reconstructing remaining non-key frames, the key
points are decompressed as M̂ = {m̂1, m̂2, ..., m̂N} and a
learned Motion Guided Generation Network (MGGN) will
first estimate the motion flow among frames based on the
decompressed sparse motion pattern. Then, MGGN trans-
fers the appearance of the reconstructed key frames to re-
maining non-key frames with the guidance of the estimated
motion flow. Specifically, for the t-th frame to be recon-
structed, we denote its previous key frame as Îk. The target
frame is synthesized as Ît = ϕ(Îk, m̂k, m̂t), where ϕ rep-

resents MGGN. Finally, the reconstructed key points M̂ and
the video Î = {Î1, Î2, ..., ÎN} can be used respectively for
machine analysis and human vision.

2.3. Detailed Network Architecture Illustration

The critical feature of our joint feature and video compres-
sion framework is to be capable of capturing the motion be-
tween video frames for both machine analytics and video re-
construction. There are several kinds of ways to model video
motion, such as dense optical flow [16] or sparse motion
representations based on human poses [14] or unsupervisely
learned key points [15]. In our work, we hope the motion rep-
resentations to be sparse enough for efficient machine analyt-
ics. Therefore, we refer to [15] to predict key points of frames
as the sparse motion pattern, which is compact enough that
costs only a few bits for transmission and storage. For human
vision, motion flow among video frames will be later derived
from the sparse motion pattern to guide the generation of the
target frame.

The framework of the network is shown in Fig. 3. For a
key frame Ik and a target frame It which is to be generated
at the decoder side, their key points will be first predicted by
SPPN, and this sparse motion pattern is later combined with
Ik for estimating the flow map between frames. Then, the
generated flow map will guide the transfer of the appearance
of Ik to the target frame. Details of different parts of the net-
work are described as follows.
Sparse Point Prediction. For an input frame, a sub-network
of the U-Net architecture followed by softmax activations is
used to extract L heatmaps H = {H1, ...HL} for key point
prediction. Each heatmapHl ∈ [0, 1]

H×W corresponds to one
key point position pl, which is estimated as follows:

pl =
∑
p∈Ω

Hl [p] p, (1)

where Ω is the set of positions of all pixels. Besides the key
point position, the corresponding covariance matrix Σl is de-
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Fig. 3. Framework of our proposed joint feature and video
compression, including a sparse point prediction network and
motion guided generation network to extract the sparse mo-
tion pattern and generate the target frame.

fined as:

Σl =
∑
p∈Ω

Hl [p] (p− pl) (p− pl)T
. (2)

The covariance matrix is generated here because it can addi-
tionally capture the correlations between the key point and its
neighbor pixels. Consequently, for each key point, totally 6
float numbers including two numbers indicating the position
and 4 numbers in the covariance matrix are used for descrip-
tion.

For the succeeding usage, the key point description will be
used to generate new heatmaps by a Gaussian-like function.
This operation is done for that the new heatmaps are more
compatible with convolutional operations. Specifically, the
new heatmap H̃l will be generated as follows:

H̃l [p] = exp
(
−α(p− pl)T

Σ−1
l (p− pl)

)
, (3)

where α is a normalization constant and set to 0.5. After
this progress, two sets of newly generated heatmaps H̃k ={
H̃k

1 , ..., H̃
k
L

}
and H̃t =

{
H̃t

1, ..., H̃
t
L

}
are generated from

frames Ik and It, respectively.

Motion Flow Estimation. With the estimated key points and
newly generated heatmaps, a sub-network in MGGN will be
first used to estimate the motion flow between frames Ik and
It. The source frame Ik is adopted to form the input for it
conveys the appearance information. Meanwhile, the differ-
ence heatmaps ∆H̃ = H̃t−H̃k between two frames are used
to form the input to provide sparse motion information. The
flow estimator will finally output a flow map ξk→t.
Motion Guided Target Frame Generation. The target
frame is generated with a sub-network of the U-Net archi-
tecture. Feature maps of different sizes are extracted by the
appearance encoder and will be bypassed to the appearance

decoder for feature fusion. In order to align the features to the
target frame, features will be previously deformed with the
estimated flow map ξk→t before fusion. Besides, the differ-
ence heatmaps ∆H̃ = H̃t − H̃k is used as side information
that is inputted to the appearance decoder. Then, the target
frame Ît can be generated by the appearance decoder.
Skeleton Guided Point Prediction Loss Function. In [15],
the key points prediction is learned unsupervisely. In our
work, we additionally use human skeleton information to
guide the key point prediction. The skeleton information is
used for its high efficiency in modeling human actions as the
skeleton points cover many human joints, which are highly
correlated to human actions. Consequently, the PKU-MMD
dataset [17] is used in our work for training and testing,
which is a large-scale dataset and contains many human ac-
tion videos. More importantly, human skeletons are available
in this dataset for each human body in the videos.

We sample 16 skeleton points for each human body and
employ an L1 loss function for supervision. The key point
detection loss function is defined as follows:

Lpoint =
1

n

n∑
i=1

16∑
l=1

‖ pil − πi
l ‖1, (4)

where πi
l represents the l-th skeleton point of the human in

the i-th training sample.
Overall Loss Function. Besides the point prediction loss, a
combination of an adversarial and the feature matching loss
proposed in [18] are used for training. The discriminator D
will take H̃t concatenated with either the real image It or
the generated image Ît as its input. The discriminator and
generator losses are calculated as follows:

LD = EIt [(D(It, H̃
t)− 1)2] + E(It,Ît)

[(D(Ît, H̃
t))

2
], (5)

LG = E(It,Ît)
[(D(Ît, H̃

t)− 1)2]. (6)

For a better reconstruction quality, a reconstruction loss
function Lrec is built to keep It and Ît to have similar fea-
ture representations. Lrec is implemented by calculating the
L1 distance between features extracted from It and Ît by the
discriminator. Features outputted by all layers of the discrim-
inator are all used for calculation.

The final loss function is calculated by L =
λpointLpoint + λrecLrec + LG, where λpoint and λrec are re-
spectively set to 20 and 10.

3. EXPERIMENTS

3.1. Experimental Details

PKU-MMD dataset [17] is used to generate the training and
testing samples. In total 3317 clips with 32 frames are sam-
pled for training and 227 clips with 32 frames are sampled for
testing. All frames are cropped and resized to 512× 512 dur-
ing sampling. The skeleton information is also used during



the training process. 16 skeleton points are chosen for each
frame and mapped to the corresponding two-dimensional
space to generate the labels for key point prediction. The net-
work is implemented in PyTorch and the Adam optimizer [19]
is used for training. We randomly select two frames from a
clip to form a training sample.

In the testing process, we consistently use the first frame
in each clip as the key frame. At the encoder side, the key
frame is coded with the HEVC codec in the constant rate fac-
tor mode. The constant rate factor is set to 32. Besides the
key frame, key points of all frames in the clip are predicted
by SPPN and compressed for transmission. As mentioned in
Sec. 2.3, each key point contains 6 float numbers. For the
two position numbers, a quantization with the step 2 is per-
formed for compression. For the other 4 float numbers be-
longing to the covariance matrix, we calculate the inverse of
the matrix in advance, and then quantize the 4 values with a
step 64. Then, the quantized key point values are further loss-
lessly compressed by the Lempel Ziv Markov chain algorithm
(LZMA) algorithm [20]. At the decoder side, the compressed
key frame and points are decompressed and used to generate
remaining frames.

To verify the efficiency of our coding paradigm, we use
HEVC as the anchor for comparison by additionally com-
pressing all frames with the HEVC codec. The constant rate
factor is firstly consistently set to 51, the highest compression
ratio. Then, the recognition accuracies of using the learned
sparse motion pattern and the compressed videos are com-
pared. To verify the reconstruction quality, we set the con-
stant rate factor to 44 and compare the reconstruction results
between HEVC and our method with similar coding cost. The
reconstruction quality is compared both quantitatively and
qualitatively.

3.2. Action Recognition Accuracy

We identify the efficiency of the learned key points for high-
level analytics tasks in the action recognition task. Although
there are 6 numbers for each key point, we only use two quan-
tized position numbers for action recognition. Consequently,
only bits of the compressed position numbers are considered
for calculating the bitrate cost of feature-based action recog-
nition. To align to the bitrate cost of the features, we firstly
resize all clips to the size of 256 ∗ 256 and then use the con-
stant rate factor 51 to compress the testing clips with HEVC.

Table 1. Action recognition accuracy of different methods
and corresponding bitrate costs.

Input Bitrate (Kbps) Accuracy(%)

Compressed Video 16.2 65.2

Compressed Key Point 5.2 74.6

Table 1 has shown the action recognition accuracy and

Table 2. SSIM comparison between different methods and
corresponding bitrate costs.

Codec Bitrate (Kbps) SSIM

HEVC 33.0 0.9008

Ours 32.1 0.9071

corresponding bitrate costs of different kinds of data. Our
method can obtain considerable action recognition accuracy
with only 5.2 Kbps bitrate cost. Although we have chosen
the worst coding quality, it still needs 16.2 Kbps to transform
and store the compressed videos. More bitrates cannot bring
too much performance improvement in action recognition on
compressed videos. Unfortunately, the recognition accuracy
even drops by 9.4%.

3.3. Video Reconstruction Quality

The video reconstruction quality of the proposed method is
also compared with that of HEVC. During the testing phase,
we compress the key frames with the constant rate factor 32
to maintain a high appearance quality. The bitrate is calcu-
lated by jointly considering the compressed key frames and
key points. As for HEVC, we compress all frames with the
constant rate factor 44 to achieve an approaching bitrate cost.

Table 2 has shown the quantitative reconstruction quality
of different methods. SSIM values are adopted for quanti-
tative comparison. It can be observed that, our method can
achieve better reconstruction quality than HEVC with a fewer
bitrate cost. Subjective results of different methods are shown
in Fig. 4. There are obvious compression artifacts on the re-
construction results of HEVC, which heavily degrade the vi-
sual quality. Compared with HEVC, our method can provide
far more visually pleasing results.

4. CONCLUSION
In our work, we propose a novel framework to bridge the
gap between compression for features and videos. A con-
ditional deep generation network is designed to reconstruct
video frames with the guidance of a learned sparse motion
pattern. This representation is highly compact and also ef-
fective for high-level vision tasks, e.g. action recognition.
Therefore, it is scalable to meet the requirements of both ma-
chine and human vision, which reduces the total coding cost.
Experimental results demonstrate that our method can obtain
superior reconstruction quality and action recognition accu-
racy with fewer bitrate costs compared with traditional video
codecs.
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