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ABSTRACT

Statistical divergence is widely applied in multimedia pro-
cessing, basically due to regularity and interpretable features
displayed in data. However, in a broader range of data realm,
these advantages may no longer be feasible, and therefore a
more general approach is required. In data detection, statisti-
cal divergence can be used as a similarity measurement based
on collective features. In this paper, we present a collective
detection technique based on statistical divergence. The tech-
nique extracts distribution similarities among data collections,
and then uses the statistical divergence to detect collective
anomalies. Evaluation shows that it is applicable in the real
world.

Index Terms— Statistical divergence, collective, fraud,
detection

1. INTRODUCTION

Statistical divergence is widely applied in multimedia pro-
cessing. Prevalent applications include multimedia event de-
tection [1], content classification [2, 3] and qualification [4,
5]. It has been attracting more attention since the dawn of
big data era, basically due to regularity and interpretable fea-
tures displayed in the data. However, in a broader range of
data realm, these advantages may no longer be feasible (e.g.
in online sales data records). It requires a more general ap-
proach.

General data frauds can be caused by manipulation from
outside hackers. Data Manipulation here, according to a NSA
definition, refers to behaviours which “change information
contained in those systems, rather than stealing data and hold-
ing it for ransom”. In 2013, hackers from Syria put up fake
reports via Associated Press’ Twitter account and caused a
150-point drop in the Dow [6].

It is hard to detect a single record that is altered but still
remains in correct value scopes, but if sufficient data records
are altered to change a final decision, we can still detect mali-
cious data manipulation behaviours. According to our obser-
vation, typical manipulations on numerical data will lead to a
drift or distortion of its original distribution. To address prob-
lems caused by data manipulation, we proposed a novel tech-

nique which sorts out manipulated data collections from nor-
mal ones by adopting statistical divergence. In this paper, we
focus on a concrete data manipulation problem: click farm-
ing in online shops, and try to apply our technique to pick out
dishonest behaviours. Our technique maps data collections to
points in distribution spaces and reduce the problem to classi-
cal point anomaly detection. Optimizations estimate ground
truth, mapping each data collection into a single real number
within a definite interval. Then a Gaussian classifier can be
applied to detect outliers derived from manipulated data. To
automatically calculate adaptive threshold for the classifier,
we keep two evidence sets for both normal points and anoma-
lies, taking advantage of the property provided by statistical
divergence. In the dynamic environments, these evidence sets
act intuitively as slide windows and keep up to the evolving
features in dynamic scenarios. Our contribution includes: 1)
A brief review on data fraud detection and a study on the prob-
lem of click farming; 2) Detailed description of both basic
and optimized framework of our technique, resolving several
technical difficulties such as automated adaptive threshold; 3)
Comprehensive experiments that test efficiency of our tech-
nique and a comparison with previous work on similar topic.

The rest of the paper is organised as follows: Section 2
states related work on data anomaly detection and briefly in-
troduces click farming. Details of proposed technique are in-
troduced in section 3. Then section 4 presents evaluation re-
sults and further findings of the algorithm. Finally, the paper
is concluded in section 5.

2. RELATED WORK
2.1. Data Anomaly Detection
Statistical divergence was applied mainly as classifiers on
multimedia content [3], especially as kernels in SVMs [2].
As a similarity measurement, it can also be used in qualita-
tive and quantitative analysis in image evaluation [4, 5]. [1]
adopted divergence to detect events in multimedia streams.

To detect collective anomalies, [7] adopts the ART (Adop-
tive Resonance Theory) neural networks to detect time-series
anomalies. Box Modeling is proposed in [8]. Longest Com-
mon Subsequence was leveraged in [9] as similarity metric for
symbolic sequence. Markovian modeling techniques are also
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popular in this domain[10, 11, 12]. [13] depicts groups in so-
cial media as combinations of different “roles” and compare
groups according to the proportion of each role within each
group.

Wang et al. proposed a technique, Multinomial Goodness-
of-Fit (MGoF), to analyze likelihood ratio of distributions via
Kullback-Leibler divergence, and is fundamentally a hypoth-
esis test on distributions [14]. MGoF divides the observed
data sequence into several windows. It quantifies data in each
window into a histogram and check these estimated distri-
butions against several hypothesis. If the target distribution
rejects all provided hypothesis, it is considered an anomaly
and preserved as a new candidate of null hypothesis. If the
target distribution failed to reject some hypothesis, then it is
considered a supporting evidence of the one that yields most
similarity. Furthermore, if the number of supporting evidence
is larger than a threshold cth, it is classified as non-anomaly.
MGoF is the best competitor out of the similar techniques,
and we use it as our baseline against our approach.

2.2. Real World Problem: Click Farming Detection
Click farming is the behaviour that online sellers use a
large number of customer accounts to create fake transaction
records and give high remarks on products. There are two
types of click farming behaviours: centralized and equalized.
Equalized click farming refers to scenarios where behaviours
are well organised while centralized one does not. Current de-
tection techniques for click farming mainly focus on user be-
haviours. Those techniques require platforms to keep records
on user features. However, the detection can be easily by-
passed by trained workers and some well programmed appli-
cations.

Although it is hard to classify users as honest or mali-
cious, we can still find clues from the sellers’ aspect. No
matter how much alike between honest users and malicious
workers, the fake transaction records will always cause a bias
or distortion of the original transaction distribution. Thus, if
we can measure the similarity between different transaction
distributions, there is still a chance for us to detect dishonest
sellers.

3. STATISTICAL DETECTION
3.1. Statistical Divergence Detection with Reference
(SDD-R)
Distortion or drift of certain distribution can be quantified by
statistical divergence. It provides a distance between two or
more distributions. In a set of data collections, we can only
draw a complete graph where nodes denote data collections
and edges refer to the symmetric divergence between two
compared nodes. From the graph we can find some points that
have apparently larger distances with most of other points and
return them as anomalies. This may work if anomalous nodes
do not compose a large proportion. However the procedure
will be too complicated to work out with large amounts of
data. If it is assured that data collections form only one clus-
ter, some optimizations can be applied to reduce complexity.

Algorithm 1 SDD-R

Input: Data Collections D = {D1, . . . , Dn}
Input: Divergence metric div
Output: Anomalous Data Collections

1: for i← 1 to n do
2: Pi ← the distribution of Di

3: end for
4: PR ← 1

n

∑n
i=1 Pi

5: for i← 1 to n do
6: di ← div(Pi||PR)
7: end for
8: N (µ, σ)← Gaussian distribution estimated by di
9: return {Di|di−µσ > 3}

Alternatively we can provide a frame of reference that
generates absolute coordinates rather than the relative ones.
This optimization is feasible if data collections form one sin-
gle cluster in distribution space. This is true in most reality
scenarios given that distribution is adopted to depict a macro
property which comes out as one universal conclusion. In
other words , if multiple distributions are used to describe
subgroups of entire sample space, then a conclusive one can
be obtained by averaging all these sub-distributions. There-
fore, we can use an estimated cluster center as reference and
test distances between the reference and each other data col-
lections(Algorithm 1), yielding absolute distances.

Distribution of all divergences against the reference can
be approximated as a Gaussian distribution though the true
one may differ a little more from the standard Gaussian than
the expected estimation error. That is due to the unknown
randomness within real world data. Few assumptions can be
applied in real world data sets, no mention that data volume
is sometimes relatively low. This topic is out of the domain
discussed in this paper and we here only introduce the tech-
nique instead of the specific distribution model. Certainly, if
stronger assumptions can be included to provide a more pre-
cise model, this component in the framework can be replaced
to give better results. For the simplicity of our proposal, we
deem the distributions of divergences to be Gaussian.

By this approach, time complexity can be reduced from
quadratic to linear. Fig. 2 in Section 4.2 demonstrates the re-
sult of the above process. Solid line refer to the distances cal-
culated from normal data collections, dashed and dash-dotted
ones are from click-farmed data collections. Clearly, dis-
tances of normal data collections assembles together around
a small value while anomalous ones lay around a larger dis-
tance value.

3.2. Optimization: Statistical Divergence Detection with
Evidence(SDD-E)
It is possible to further optimize SDD-R if we can provide this
algorithm with evidence(Algorithm 2).

Evidences enables the algorithm to not only refine estima-
tion of real distribution but also build knowledge of anoma-
lous collections, which is similar to the parameter estimation



Algorithm 2 SDD-E

Input: Evidence set with normal data collections EN =
{N1, . . . , Nn}

Input: Evidence set with anomalous data collections EA =
{A1, . . . , Am}

Input: Divergence metric div
Input: Estimated anomalous probability α
Input: New data collection D = {D1, . . . , Dl}
Output: Anomalous data collections in D

1: for each Ni ∈ EN , Aj ∈ EA, Dk ∈ D do
2: PNi ← distribution of Ni
3: PAj ← distribution of Aj
4: Pk ← distribution of Dk

5: end for
6: PR ← 1

n

∑n
i=1 PNi

7: for each Ni ∈ EN , Aj ∈ EA do
8: dNi ← div(PNi ||PR)
9: dAj ← div(PAj ||PR)

10: end for
11: NN (µN , σN ) ← normal distribution estimated from
{dN1 , . . . , dNn}

12: NA(µA, σA) ← normal distribution estimated from
{dA1

, . . . , dAm}
13: T ← proper threshold derived from NN , NA and α
14: return {Di|div(Pi||PR) > T}

within a certain sample set.

According to the property of statistical divergence, we can
infer that the true distribution of divergences calculated from
normal data collections are close to but not exactly a Gaus-
sian distribution N (µ, σ) since for each point, there are both
definite upper and lower bounds instead of infinities. There-
fore, µ should be slightly larger than zero(µ = 0 ⇐⇒ Pi =
Pj ,∀Pi, Pj ∈ EN , for real world data sets, this is highly un-
likely). Time complexity for this algorithm is still linear but
with a larger coefficient.

For certain divergence, it is possible to compare similarity
from one distribution against multiple others, such as Jensen-
Shannon Divergence. Although it reduces time complex-
ity, it sacrifices unaffordable accuracy because divergence
among multiple distribution dilutes differences. Take JSD
as an example, suppose P (1) = P (2) = P (3) = 1

3 and
Q(1) = 1

6 , Q(2) = 1
3 , Q(3) = 1

2 , then JSD(P ||Q) ≈ 0.033
and JSD(P, P, P,Q) ≈ 0.024.

This algorithm can be slightly modified to deal with con-
cept drift(for example, trading trend changes over time for
online shops as they are often in the process of expanding or
dwindling) by turning the two evidence sets as sliding win-
dows and adopting certain update strategies such as Least Re-
cently Used(LRU). Time complexity for this optimization is
O(n ·(|EN |+ |EA|) ·TD), where TD denotes time complexity
of divergence calculation.

Fig. 1: Optimal threshold should minimize the size of shadow
under curve.

3.3. Threshold
One important factor in algorithm SDD-E is the value of
threshold. A naive but prevalent approach is to set a fixed
value as the threshold(As is shown in Algorithm 1). However,
a fixed threshold requires specific analysis in the certain sce-
nario, manual observations and tuning of parameters, which
involves lots of human labour.

An adaptive threshold is chosen in our technique to mini-
mize total errors(both false negative and false positive). How-
ever, this is not accurate enough, it implicates an assumption
that chances are the same for a new data collection to be ei-
ther anomalous or not. If we can determine the probability
for a new data collection to be anomalous in any segment
of data sequence, the equation should be modified as mini-
mizing expected errors, where we use α to denote anomaly
probability. Suppose: PDFnormal(x) ∼ N (µn, σn) and
PDFanomalous(x) ∼ N (µa, σa), then adaptive threshold
can be calculated by E.q.(1).

Moreover, with an estimated anomaly probability, SDD-R
can be also optimized by ranking all data collections accord-
ing to their divergence value and select first n · α ones with
highest values as anomalies.

4. EVALUATION

Our algorithm was implemented and interpreted in Python
3.5.2. All experiments were tested on Ubuntu 16.04. In the
following experiments, we figured out properties of real world
data and performance of our technique against anomalous
data collections. We also made a comparison among varia-
tions of SDD algorithms and MGoF. 1

4.1. Methodology
We adopted Koubei sellers’ transaction records2 in experi-
ments. It was provided by Alibaba Tian Chi big data compe-
tition where all records were collected from real world busi-
ness scenarios. It contains transaction records of 2000 sellers
from 2015-07-01 to 2016-10-31. Two types of click-farmed

1All resources and more detailed experiment results can be viewed in
supplemental material.

2https://tianchi.aliyun.com/competition/information.htm?raceId=231591



T = argmin
T

α

∫ T

0
PDFa(x)dx+ (1− α)

∫ sup(D)

T
PDFn(x)dx

≈ argmin
T

α

∫ T

−∞

e
− (x−µa)2

2σ2a

√
2πσa

dx+ (1− α)
∫ +∞

T

e
− (x−µn)2

2σ2n

√
2πσn

dx

=


1

σ2
a − σ2

n

(σ2
aµn − σ2

nµa)± σaσn

√
(µa − µn)2 + 2(σ2

a − σ2
n)ln

(1− α)σa
ασn

 , σa 6= σn

µn + µa

2
+
k2ln 1−α

α

µa − µn
, σa = σn = k

(1)

Note: when σa 6= σn, keep the root s.t.
α(T − µa)

σ3
a

e
− (T−µa)2

2σ2a <
(1− α)(T − µn)

σ3
n

e
− (T−µn)2

2σ2n

data was generated according to patterns described in sec-
tion 2.2. In our experiments, we use ν to denote the mag-
nitude coefficient of click farming. Hence |Danomalous| =
(1+ν)|Dnormal|. In the following experiments without extra
illustration, we adopted ν = 1.

One defect of this data set is that the detailed time stamp
is aligned at each hour of the day due to desensitization. We
constructed an enhanced data set by assigning every time
stamp a random value for minutes and seconds. Therefore,
the enhanced data set should be closer to the reality.

Divergence metric adopted in each SDD algorithms was
Jensen-Shannon divergence if no specific notation is made.
However, MGoF used only Kullback-Leibler divergence due
to its special mechanism. We use a “+” to denote algorithms
optimized by a given α.

4.2. Experiments on Koubei Data Set
We first tested our algorithms to see whether and why the al-
gorithm works. Anomalies were random selected days re-
placed by corresponding click farmed version. To play the
role of purchasing platform, we investigated two levels of
transaction distribution. The first level is to simply draw a
histogram aligned to time spans. The second level is to draw
a histogram on the sub-volumes in each time span(i.e. a his-
togram on frequencies in the first level histogram). To test
SDD-E, we randomly selected 30 correct days and 10 click
farmed days as normal and anomalous evidence respectively.
Here α = 0.2. The results are shown in Table 1 and 2.

When classifying toward 1st level histograms, centralized
click farming behaviours can be easily discovered. It is be-
cause normal collections share a similar distribution while
centralized click-farmed ones abruptly violated the original
shape. When it came to 2nd level histograms, equalized click
farming were also effectively discovered. It can be clearly
seen in Fig. 2 that distribution of divergence of both click
farming types shows an obvious deviation from the normal
one.

The result showed that our technique outperformed MGoF
in every real world case. SDD-E provided best performance,
yet it consumed the most computing power. Comparison be-
tween SDD-R and MGoF revealed improvement of reference
as well as the importance of threshold under this technique. It

Fig. 2: This figure shows distribution of JSD values(on 2nd
level histograms) of normal and two types of click farming
data. Divergences were calculated according to a reference
averaged among all correct distributions.

is also clear that dynamic SDD-E is capable of tracing the
gradual shift of environment. MGoF turned out to be the
worst since it always mark several false positive when cth had
not been met and much more false negatives when similar er-
rors occurred too many.

Parameter α improved total accuracy of dynamic SDD-E
algorithm by 10-20% as was supposed. It also increased its
F1 by more than 20%. αmade a great difference in SDD-R as
well, which illustrated that divergence sorted almost all col-
lections in correct order according to the averaged reference.
However, static SDD-E did not show the same improvement.
Since environment drift took greater influence in the result.
In comparison with α, adaptive threshold given by evidence
sets did not bring the most improvement. But this threshold
can be applied together with other optimizations such as slide
windows.

4.3. Test against Anomaly Proportion and Magnitude
In this experiment, we tested algorithm performance under
various anomaly proportion and magnitude. α ranged from
0.1 to 0.9 when ν = 1 and ν ∈ [0.1, 0.9] when α = 0.1, other
settings remains the same.

Fig. 3 shows that our technique outperformed MGoF and
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Fig. 3: Accuracy and F1 on Different Anomaly Probabilities

Fig. 4: Accuracy and F1 on Different Anomaly Magnitudes

was relatively stable when dealing with all proportions of 1st
level centralized anomalies. SDD-E performed even better
since it maintains knowledge of both normal and anomalous
distributions and calculates the threshold according to the best
expectation. However, it relies on the accuracy of distribu-
tion estimation. When it came to 2nd level distributions, his-
tograms became much coarser since data available was highly
limited and thus its performance suffered dramatically. For
the classifiers of MGoF, they compromised to a high error
rate. Because more anomalies gathered together and the algo-
rithm recognized them as clusters of normal data.

From Fig. 4 we can conclude that our algorithms are still
the best, given that they are most sensitive toward tiny anoma-
lous variations. However, static SDD-E did not rise until
ν > 1, this is because it suffered from fluctuation on the trade
environment at the mean time. MGoF is not sensitive toward
minor anomalies either. For a relatively small magnitude of
click farming, the classifiers of MGoF quickly degrade to be



trivial. The rigid threshold could not automatically rise up
and was thus far from optimal.

4.4. Discussion
MGoF’s learning procedure of anomalous probability hypoth-
esis is inefficient. To maintain a comprehensive knowledge of
anomalies, MGoF has to reserve a single hypothesis entry for
every type of them. But in reality, it is always the case that
we face the heterogeneity of outliers. In the Koubei data set,
there can be tens of anomalous distributions caused solely by
centralized click farming. It takes a long time to discover ev-
ery possible type of anomaly. Besides, if there happens to be
more than cth anomalous distributions of the same type, later
discovered collections will no longer declared to be anoma-
lous any more.

However, in SDD-R and SDD-E, that is not a problem
since it can map and gather all anomalies together and draw a
universal boundary between them and all normal collections.
These techniques are suitable to all typical divergence metrics
and consume little computation power(except dynamic SDD-
E). The only drawback is that they require comprehensive es-
timation of target distributions. Although other parameters
need estimation as well, they are naturally addressable under
big data circumstances.

5. CONCLUSION

This paper proposes a series of collective anomaly detection
techniques, which helps detect data manipulations in modern
data pipelines and data centres. Different from existing algo-
rithms designed for collective anomalies, our approach em-
ploys statistical distance as the similarity measurement. We
explored several technical points involved in the design of
the algorithm and performed a thorough experiment to test
its efficiency. The comparison experiment also illustrated the
advantages of our technique. It can be concluded that our
technique can efficiently discover anomalies within the data
collections and the classifier is sensitive enough toward real
world data manipulations.
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