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ABSTRACT

Federated Learning (FL) is a paradigm that aims to support

loosely connected clients in learning a global model collabo-

ratively with the help of a centralized server. The most pop-

ular FL algorithm is Federated Averaging (FedAvg), which is

based on taking weighted average of the client models, with

the weights determined largely based on dataset sizes at the

clients. In this paper, we propose a new approach, termed

Federated Node Selection (FedNS), for the server’s global

model aggregation in the FL setting. FedNS filters and re-

weights the clients’ models at the node/kernel level, hence

leading to a potentially better global model by fusing the best

components of the clients. Using collaborative image classifi-

cation as an example, we show with experiments from multi-

ple datasets and networks that FedNS can consistently achieve

improved performance over FedAvg.

Index Terms— Federated learning, Model aggregation,

Image classification

1. INTRODUCTION

Mobile devices with cameras have become ubiquitous and

they potentially produce the amount of data necessary for

training deep learning models that have seen increasing adop-

tion in applications such as computer vision and robotics. In

most real applications, it is not realistic to expect that a cen-

tralized server may train a global model by collecting data

from all involved mobile clients, due to bandwidth constraint

(e.g., too much traffic between the server and millions of

clients) and/or privacy concerns (e.g., users may not be will-

ing to share images from their devices). The Federated Learn-

ing [1] was proposed and advocated as a good strategy to ad-

dress these issues, which allows loosely connected clients to

contribute to the learning of a global model collaboratively.

In a typical FL setup, training data are distributed over

clients, each of which learns to update a global model using

its local data. A server maintains and updates the server’s

global model by aggregating copies of the local model from

all the clients. A commonly used algorithm, named Feder-

ated Averaging (FedAvg) [1], updates the global model by

a weighted average of the client models, where the weights

are proportional to the amount of data used by each involved

client (in real implementations, not all clients are involved in

every update).

While FedAvg delivered state-of-the-art results in some

reports, it still has some limitations. First, its assumption

about the data distributions across clients is often violated

in real-world scenarios. Second, simple weighted average of

client models may not be optimal, as analyzed in some recent

work [2]. There are also other variants of FL, such as CMFL

[3] and FedMA [4], where typically additional constraints or

processing steps are introduced (e.g., more hyper-parameters

and more computations at the clients), making the method

less generally applicable compared with the simpler FedAvg.

In this paper, we propose a new approach, termed Feder-

ated Node Selection (FedNS), for the server’s global model

aggregation in the FL setting. The approach filters and re-

weights the clients’ models at the node/kernel level on the

server, hence leading to a potentially better global model by

fusing the best components of the clients. We focus on a bet-

ter way of module aggregation on the server while keeping

the simplicity of the FL paradigm. Using collaborative image

classification as a case study, we demonstrate the benefits of

the proposed method from the following perspectives. First,

the learning paradigm follows the FL framework without ex-

tra computation requirement for the clients or extra commu-

nication burden between the clients and the server. Second,

our method can handle iid or non-iid distributions without

pre-defined hyper-parameters. Third, our method allows the

clients to have varying amount of data, making it closer to

real-world scenarios (where mobile clients could see and pro-

cess dynamically changing data everyday). Experiments with

three different datasets and networks are used to assess the

performance of the proposed method.

The remainder of this paper is organized as follows. In

Section 2, we review related work and discuss the disadvan-

tages wherever applicable. In Section 3, we first introduce

common baselines and then present our method FedNS. We

design and perform experiments in Section 4 for evaluation.

And finally, we conclude with Section 5.

http://arxiv.org/abs/2101.07995v1


2. RELATED WORK

Since the initial paper by McMahan et al. [1], FL has re-

ceived considerable attention and there have been numerous

research papers on this regard, of which we can only briefly

review some that are most relevant to our work. A couple of

recent surveys [5, 6, 7] may provide an ample picture for an

interested reader. One line of research has been on saving the

communication between the clients and the server. In [8], a

compressed structure was designed to reduce the communica-

tion cost. Horvath et al. [9] introduced another compression

technique for lowering the training time. Alistarh et al. [10]

proposed a family of compression schemes (QSGD), allow-

ing a user to trade off between bandwidth and communica-

tion rounds (and hence modifying the basic FL framework).

Federated Dropout [11] was proposed to allow the clients to

train on only a subset of the global model, reducing parame-

ters that need to be communicated to the server. In general,

as the focus is on saving communication, such methods typi-

cally do not improve the learned global model, if they do not

cause degradation.

Another direction is on improving the effectiveness of FL.

Wang et al. [3] proposed CMFL that picks a fraction of all

communicated clients to update the global model. The main

limitation is the need for searching optimal hyper-parameters

(thresholds). Nishio et al. [12] tried to do client-level selec-

tive aggregation, based on the client’s computing capability.

Zhao te al. [13] designed a strategy for improving accuracy

when every client has only a single class of data. In [14], a

method was proposed to filter the local data at client. But

the filtering is based on pre-trained models. Yao et al. [15]

proposed FedFusion, an approach that could improve the per-

formance by fusing the two model features, although extra

computation is needed for choosing the best fusion approach.

FedMA [4] constructs the global model in a layer-wise man-

ner, which appears to cause significant burden on the clients.

There are also some efforts on improving the FL for spe-

cific tasks/applications. For example, Huang et al. [16] de-

signed a community-based FL algorithm that clusters dis-

tributed patient data into meaningful communities. Jennny

et al. [17] designed an approach for reducing the cost of com-

munication, focusing on enabling a large model to be learned

on relatively small memory of the clients.

While some of the aforementioned methods improve upon

the more foundational FedAvg approach under peculiar set-

tings, they often do not readily apply to more general FL

settings, owing to the assumptions they introduced to con-

strain the problem. Our objective of this research is to design

a method that focus on better model aggregation with mini-

mal modification to the basic FL framework. For example,

we relax the assumption about the knowledge of the data dis-

tribution. Hence our method has a better potential for wider

applicability, especially for real-world applications.

3. PROPOSED METHOD

In this section, we begin by introducing the baseline method

of FL: Federated Averaging (FedAvg) in Section 3.1. Then

we present a straightforward extension in Section 3.2, termed

FedAvg+lastFC, which attempts to do a better weighted av-

eraging for the last FC layer under the non-iid condition. We

propose our FedNS method in Section 3.3, which is an im-

provement over FedAvg+lastFC in that better weighted aver-

aging is done for all layers.

3.1. The FedAvg Baseline

FedAvg was first proposed in [1], where the problem was for-

mulated as one of optimizing the following non-convex neural

network objective function:

f(w) = 1

K

∑K

k=1
ℓ(xk, yk;wk) (1)

where k is the client index ranging from 1 to K .

The loss function ℓ(xk, yk;wk) is the k-th client’s loss,

i.e., the loss of model wk under data xk with corresponding

label yk. In the first step of FedAvg, the server initializes a

global model w0 and sends it to a fraction of communicated

clients. Each communicated client k will train the model with

its local data, i.e., calculating the local gradient gik and updat-

ing the local model after training certain E epochs (assuming

with the learning rate η):

wi+1

k,t = wi
k,t − ηgik (2)

where t indexes the communication rounds, ranging from 1 to

N , and i is the client’s local epoch range from 1 to E.

The initial model of the client is the weights received from

the server. The clients will upload their updated local models

back to the server. The server will then aggregate models

from all clients using a weighted averaging scheme:

ws,t+1 =
K∑

k=1

nk

n
wk,t (3)

where ws is the weights of the global model on the server, nk

is the total number of training samples on client k and n is

the sum of all samples from all communicated clients. It is

worth noting that Eqn. 3 will become simple averaging when

all clients have the same amount of data. In the next commu-

nication round, the server will start from sending aggregated

server model ws,t to all the clients and repeat the previous

steps until reach the target communication rounds. The com-

plete pseudo-code for this baseline is given in Algorithm1.

3.2. FedAvg+lastFC: A Simple Extension to FedAvg

One may build a naive and straightforward extension to Fe-

dAvg for potential improvement, by using weights based on

the number of samples for each class (instead of the number



Algorithm 1 Federated Averaging (FedAvg)

Server executes:

initialize w0 as ws,1

for each communication round t from 1 to N do

St ← (the fraction of communicated clients)

for each client k ∈ St in parallel do

wk,t ← ClientUpdate(k, ws,t)

end for

Model Aggregation:

ws,t+1 ←
∑K

k=1

nk

n
wk,t

end for

ClientUpdate(k, wk,t):

B ← (split local data into batches of local batch size B)

for each local epoch i from 1 to E do

for batch b ∈ B do

gik = ▽(wi
k,t; b)

wi+1

k,t ← wi
k,t − ηgik

end for

end for

return wk,t to server

of samples) at each client when doing the weighted averaging

for the last fully connected (FC) layer. That is, we define

w
l=L,c
s,t+1

=
K∑

k=1

nc
k

nc
w

l=L,c
k,t (4)

where l is the index of layers in a model that has L layers, c is

the index for the last FC layer’s hidden nodes, ranging from

1 to C. And C is also equals to the total number of classes

in image classification models. So nc
k is client k’s number of

samples in the class that corresponding to node c and nc is

the total number of data in class c within all communicated

clients. This leads to Algorithm 2, where only the model ag-

gregation pseudo-code is given to save space.

3.3. FedNS: the Proposed Method

While FedAvg+lastFC employs an intuitive way of weighted

averaging for the last FC layer, the method cannot be easily

extended to previous layers since they lack explicit correspon-

dence to the number of classes. In the meantime, using only

the number of samples at each client for weighted averaging

is not necessarily optimal. Hence we propose to use the vari-

ance of the weight update to evaluate the contribution of a

node/kernel to the client’s local model (for layers other than

the last FC layer). During the aggregation stage, the server

could easily calculate the differential weights for each node

and calculate its variance (and derive from this weights for the

clients) since it has the global model from the previous com-

munication round. We term this approach Federated Node

Algorithm 2 Federated Averaging with weighted averaging

last FC layer (FedAvg+lastFC)

Server executes:

......

Model Aggregation:

for each layer l from 1 to L do

if l < N then

ws,t+1 ←
∑K

k=1

nk

n
wk,t

else

for each node c in the layer L from 1 to C do

w
l=L,c
s,t+1 =

∑K

k=1

nc
k

nc w
l=L,c

k,t

end for

end if

end for

......

Selection (FedNS). It first calculates the following:

v
l 6=L,c

k,t+1
= variance(wl 6=L,c

k,t+1
− w

l 6=L,c

k,t ) (5)

where c is the node index ranges from 1 to C. C is the to-

tal node/kernel number for the layer l in a model that has L

layers. We calculate their mean (µ
l 6=L,c
t+1 ) and sigma (σ

l 6=L,c
t+1 )

after getting all the variances. If the node’s variance is out

of range [µl 6=L,c
t+1 − 2σl 6=L,c

t+1 , µ
l 6=L,c
t+1 + 2σl 6=L,c

t+1 ] (95% of con-

fidence interval if the underlying distribution is normal), we

will remove that node in the global model aggregation step.

Then we re-normalize the remaining nodes’ variances and get

the new weights. The server do a new weighted averaging for

all layers other than the last FC layer at node/kernel level by

the new weights in the following equation:

w
l 6=L,c
s,t+1 =

K∑

k=1

v
l 6=L,c

k,t

v
l 6=L,c
t

w
l 6=L,c

k,t (6)

where c is the remaining node’s index, v
l 6=L,c

k,t is node c’s

variance of differential weights. And v
l 6=L,c
t is the sum of

variances from all remaining nodes. This new weighted av-

eraging method leads to Algorithm 3, where only the model

aggregation pseudo-code is given to save space.

4. EXPERIMENTS

In this section, we present the empirical study of FedNS

and comprehensively evaluate it. We compare FedNS with

FedAvg and FedAvg+lastFC in two aspects: one is the fi-

nal global model’s performance and the other is every com-

munication round’s performance. The first one shows the

model’s performance after FL reaches the target communi-

cation rounds. And the second one shows which method is

in a leading position during the FL process, which is also an

important factor for real applications (e.g., whether a mobile

client can still have good performance in a long process of

incremental learning).



Algorithm 3 Federated Node Selection (FedNS)

Server executes:

......

Model Aggregation:

for each layer l from 1 to L do

if l < L then

for each node c in the layer l from 1 to C do

v
l 6=L,c

k,t = variance(wl 6=L,c

k,t − w
l 6=L,c

k,t−1
)

filter nodes and re-normalize remaining variances

end for

w
l 6=L,c
s,t+1

=
∑K

k=1

v
l 6=L,c

k,t

vc w
l 6=L,c

k,t

else

for each node c in the layer L from 1 to C do

w
l=L,c
s,t+1 =

∑K

k=1

nc
k

nc w
l=L,c

k,t

end for

end if

end for

......

4.1. Datasets

To do the case study of collaborative image classification on

mobile clients, we select three image classification datasets.

Different from aforementioned methods that used simple

MNIST [18] dataset, we replace it with a more challenging

dataset: FashionMNIST [19]. The other two datasets we se-

lect are CIFAR10 [20] and tinyImageNet [21]. Both Fashion-

MNIST and CIFAR10 have 10 classes. FashionMNIST has

6, 000 training and 1, 000 testing images for each class. CI-

FAR10 has 5, 000 training and 1, 000 testing images for each

class. TinyImageNet is a selective subset of ImageNet [22]

and consist of 200 classes’ images. It has 500 training and 50
testing images for each class.

4.2. Networks

We use CNN models of different complex levels for the

datasets. For the FashionMNIST dataset, we use a simple

CNN model that has 2 convolutional layers and 3 fully con-

nected layers. The first 5×5 convolutional layer has 32 chan-

nels. The second 5 × 5 convolutional layer has 64 channels.

Both of them are followed with 2 × 2 ReLU activation and

2 × 2 max pooling. The 3 FC layers have 1024, 256 and 10

nodes respectively. All of them are followed by ReLU activa-

tion. For the CIFAR10 dataset, we use the AlexNet [23]. For

the tinyImageNet dataset, we use the ResNet18 [24].

4.3. Simulation Settings

Unlike some existing works that employed a simplistic set-

tings of each client having a fixed set of images throughout

the entire training process, we allow each client to randomly

choose a subset of images as local data in every communi-

cation round according to the iid or non-iid conditions. So

the experiment setting is closer to real-world scenarios where

mobile clients receive dynamically changing data. Specifi-

cally, for FashionMNIST, each client randomly chooses 5 im-

ages per class in the iid condition and 1-10 images per class

in the non-iid condition; for CIFAR10, each client randomly

chooses 50 images per class in the iid condition and 1-100

images per class in the non-iid condition; for tinyImageNet,

each client randomly chooses 5 images per class in the iid

condition and 1-10 images per class in the non-iid condition.

For other algorithmic parameters, we follow the same set-

tings in [1]. We fix the learning rate η as 1e − 2. And we

set communication round (day) N = 50, local epoch E = 5,

local batch size B = 10 and the communicated client number

K = 10, which means server could randomly communicate

with 10 clients in every communication round.

4.4. Evaluation

For FashionMNIST and CIFAR10, we use accuracy, macro

precision, macro recall and macro F-Score to evaluate the

models. For tinyImageNet, we use top-1 accuracy and top-5

accuracy to evaluate the models. To visualize the performance

difference in every communication round, we plot the differ-

ential performance numbers (against the FedAvg baseline).

Because of the similar trend of accuracy and macro recall, we

omit the macro recall numbers due to space limitation.

4.5. Results

For each dataset and approach, we repeat the experiment ten

times and report the averaged results. It is worth noting that

FedAvg+lastFC and FedAvg are the same in the iid condition,

and thus we only compare FedNS with FedAvg in this case.

Figure 1 and Table 1 show the results of FashionMNIST with

5-layer CNN. Figure 2 and Table 2 show the results of CI-

FAR10 with AlexNet. Figure 3 and Table 3 show the results

of tinyImageNet with ResNet18. The tables show the final

global model’s performance and figures show the progressive

performance differences for the methods in each communi-

cation round. From the figures and tables, we observe that

overall FedNS outperforms the other two methods, especially

in the non-iid conditions. Please refer to the supplemental

materials for higher-resolution versions of the plots.

5. CONCLUSION AND FUTURE WORK

We proposed FedNS as a new model aggregation method for

FL. Without much modification to the FL framework, our

method can be easily applied to applications like mobile im-

age classification. Different from the traditional FL setting

where each client has a fixed fraction of the data, our ap-

proach allows flexible and varying data availability, making

it closer to the real-world scenario. Even under such chal-

lenging settings, experiments showed that FedNS improves



Table 1. The final performance comparison in FashionM-

NIST dataset with 5-layer CNN in iid and no-idd conditions

Fashion

MNIST

iid non-iid

FedAvg FedNS FedAvg
FedAvg

+lastFC
FedNS

accuracy 83.53 83.79 82.96 83.50 83.56

macro

precision
0.834 0.838 0.830 0.837 0.838

macro

F-Score
0.931 0.936 0.926 0.933 0.929

Table 2. The final performance comparison in CIFAR10

dataset with AlexNet in iid and non-iid condition

CIFAR10
iid non-iid

FedAvg FedNS FedAvg
FedAvg

+lastFC
FedNS

accuracy 66.09 67.07 65.86 65.57 67.55

macro

precision
0.658 0.668 0.660 0.658 0.671

macro

F-Score
0.740 0.745 0.737 0.737 0.745

upon the baselines, both during the process of learning and at

the end of learning. One future direction may be to explore

how to extend FedNS to handle extreme data distributions,

such as when each client has distinct classes. In such cases, a

more subtle question of comparing models learned from dis-

tinct classes needs to be addressed.
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Fig. 2. CIFAR10 iid and non-iid daily comparison

5 10 15 20 25 30 35 40 45 50

communication round

-0.1

0

0.1

0.2

0.3

0.4

0.5

hi
gh

er
 p

er
ce

nt
ag

e

difference of top-1 accuracy against FedAvg

FedNS

iid top-1 accuracy

5 10 15 20 25 30 35 40 45 50

communication round

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
gh

er
 p

er
ce

nt
ag

e

difference of top-1 accuracy against FedAvg

FedNS
FedAvg+lastFC

non-iid top-1 accuracy

5 10 15 20 25 30 35 40 45 50

communication round

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

hi
gh

er
 p

er
ce

nt
ag

e

difference of top-5 accuracy against FedAvg

FedNS

iid top-5 accuracy

5 10 15 20 25 30 35 40 45 50

communication round

-0.5

0

0.5

1

1.5

2

2.5

hi
gh

er
 p

er
ce

nt
ag

e

difference of top-5 accuracy against FedAvg

FedNS
FedAvg+lastFC

non-iid top-5 accuracy

Fig. 3. tinyImageNet iid and non-iid daily comparison
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