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ABSTRACT

Patients infected with COVID-19 can lead to their Chest X-
rays (CXRs) with opacifications rendered regions, which may
produce incomplete lung segmentation in automated image
analysis models. To tackle this issue, we propose a Group
structured Conditional Variational data Imputation model to
capture the missing data accurately with conditional distri-
bution, where the high-dimensional probability distribution is
narrow down to a small latent space to account for unobserved
features. This work particularly arises in the fight against
COVID-19 that effectively modeling a segmentation of plau-
sible can be presented to a subsequent automated risk scoring
and treatment. We train this model with limited CXRs data
to demonstrate the abilities on the task of data imputation and
proved to be effective though with relatively small datasets.

Index Terms— COVID-19, Chest X-rays, Lung Segmen-
tation, Data Imputation, Group-CNNs, cVAEs

1. INTRODUCTION

The coronavirus COVID-19 continues to spread around the
world and poses a huge challenge to the strained medical fa-
cilities [1], due to high contagiousness and severe respiratory
complications. So far, nucleic acid test is the most impor-
tant tool for the diagnosis of patients at present, but there are
many problems, such as too few medical institutions in the
epidemic area meeting the requirements of nucleic acid test,
an insufficient supply of nucleic acid test boxes, too long nu-
cleic acid test approval process, too low detection rate, lead-
ing to a large number of false negatives. Under these condi-
tions, Chest X-rays (CXRs) and computed tomography (CT)
provide a non-invasive tool to monitor the evolution of the
disease, and play an essential role in triage of COVID-19 pa-
tients and allocation of hospital resources [2]. In particular,
the CXRs are relatively easier, cheaper and faster obtained
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than CT, even in emergency settings. As such, CXRs sys-
tems have become a part of standard procedure for COVID-
19 early findings [2]. Recently, many researchers attempted
to exploit automatically CXRs-based AI diagnosis models,
for example, Tartaglione et al. [3] provide a methodologi-
cal guide on what is reasonable to expect by applying deep
learning to COVID-19 classification. Further, Cohen et al. [4]
build a model that predicts the severity of COVID-19 pneu-
monia, especially important in escalation or de-escalation of
care as well as monitoring treatment efficacy. Signoroni et
al. [5] design an end-to-end semi-quantitative scoring system
based on multi-network deep learning architecture, and show
significant value in one of the hospitals that experienced one
of the highest pandemic peaks in Italy.

Building these models usually involves four stages: data
pre-processing, lung segmentation, feature extraction, and fi-
nal prediction. Among these stages, lung segmentation is
one of the most important steps to obtain accurate AI diag-
nosis models. Several approaches have been proposed for
lung segmentation tasks, such as encoder-decoder architec-
tures U-Net [6] and fully convolutional FCNs [7]. These ap-
proaches are well suited to capture fine-grained details of lung
tissue. However, most segmentation methods only provide
pixel-wise probabilities that ignore all co-variance between
pixels, which makes extreme levels of opacification obfuscate
lung segmentation much more difficult or even impossible.

A body of work with different approaches towards seg-
menting lungs from high opacity CXRs. Souza et al. [8]
built two stages cascaded CNNs models to tackle opacity: ini-
tial lung segmentation model and reconstruction model. The
training of these two models, however, requires a very com-
plex and heterogeneous dataset that contains exams with a
large variety of lung abnormalities, which can be challenging
to collect abnormal in realistic scenarios. To address the lack
of abnormal cases, Tang et al. [9] propose a data augmenta-
tion strategy using an image-to-image translation to construct
a large number of abnormal cases. This method does offer
a useful synthetic scan over the pixel-space, however the di-
versity of opacifications are limited by the training samples.
Selvan et al. [10] address the above shortcomings by using
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deep latent variable generative models to learn a distribution,
which is then jointly decoder to obtain the segmentation, how-
ever this method also relies on specialized data augmentation
similar to [9].

In this work, we tackle these challenges by introducing a
group-structured generative U-Net for lung segmentation that
utilizes the group convolutional network to facilitate the ef-
fective representation learning of the data distribution, and al-
lows the extraction of reliable unobserved information. Our
key contributions are as follows:

• We propose an expressive generative model that can
be conditioned on observed features to restore missing
data in segmentation maps.

• We build the generative models via group convolution
neural networks to improve the data efficiency when
only limited training data is available.

• The proposed model can combine with downstream
tasks such as disease classification and detection, to
provide a comprehensive and accurate computer-aided
model on CXRs images.

2. BACKGROUND

For most image segmentation tasks, convolutional neural net-
works (CNNs) have become default backbones, however,
CNNs typically require a large of labeled data to train on,
which often difficult to obtain in the medical domain. So,
how to train our model on a limited dataset is the first prob-
lem, especially the COVID-19 datasets [11], up to date, are
still limited. Recent work by Bekkers [12] propose a Group
Convolutional Neural Networks (G-CNNs) that can be used to
improve data efficiency of vanilla CNNs by equipping them
with the geometric structure of groups. These networks have
shown considerable gains in terms of performance and speed
of convergence compared to regular CNNs, but have not been
extended to the segmentation domain. In this paper, we lever-
age group convolutions to replace the default backbones of
segmentation architecture with G-CNNs, so that it can learn
more representative features under the limited data condition.

The second question is how to segment lungs from high
opacity CXRs, since CXRs exams in some COVID-19 pa-
tients present regions of high opacification. CXRs with such
rendered regions, making it difficult to perform automated
segmentation tasks on them. In this work, we try to infer the
missing data in high opacity regions by building a conditional
generative model to learn a distribution over a latent space,
and then sampling from this distribution and joint a decoder
we can obtain a more complete lung segmentation.

3. PRELIMINARIES

3.1. Group Theory

Definition 3.1 (Group). A groupG is a set, equipped with an
associative binary operator · : g×g → g, having the following
properties: · is associative, has an identity element e, for each
g ∈ G there exists an inverse element g−1 ∈ G.

Definition 3.2 (Group action). Let G be a group, X be a
set, we say a map ρ : G → Aut(X ) is a group action, which
maps each g ∈ G to a corresponding transformation on X ,
where ρ is a homomorphism, satisfying ρ(gv) = ρ(g)ρ(v)
for all g, v ∈ G and Aut(X ) is a bijective endomorphism.
We use gx := ρ(g)x for any x ∈ X .

Definition 3.3 (Group representation). LetG is a group,
there exists a set of invertible linear maps L2(V ) on some
vector spacce V such that for each g ∈ G we has LG→L2(V )

g :
L2(V )→ L2(V ), this map is a group action on vector space,
here we call LG→L2(V )

g a regular group representation.
Definition 3.4 (Group equivariance). Let us consider G

be a group and V1, V2 be a vector spaces, there exist some
mapping Ψ : L2(V1) → L2(V2) to commute with the group
actions on the domain L2(V1) and codomain L2(V2). It is
group equivariant under the actions of g if and only if there
exists a LG→GL(·)g such that

∀g∈G : LG→L2(V2)
g ◦Ψ = Ψ ◦ LG→L2(V1)

g (2)

Similar to CNNs, which keep translation equivariant in
each layer, we also want to preserve equivariance in each
layer but not just translation equivariant. To achieve this, one
can define a group convolution between two functions over
the group, which is described in the following theorem.

Theorem 3.1. Let K be a bounded equivariant opera-
tor, κ : G × G → Hom(X,Y ) be a two-argument linear
operator-valued kernel, and a Radon measure dµ on X, then

1. An equivariant operator can always be written as a
convolution-like integral Kf(y) =

∫
x
κ(y, x)f(x)dµx;

2. One can define a one-argument kernel using the above
equivariance constraints of Equ. (2)

κ(y, x) =
dµg−1

y x

dµx
k(g−1y x) (3)

Corollary 3.1. If X = G and dµx is a Haar measure on

G then
dµ
g
−1
y x

dµx
= 1.

Proofs can be found in [12].

3.2. Group Convolutional Network Layers

Under the Thm 1 on groups, we define three types of convo-
lution operators.
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Fig. 1. Our framework consists of group structured prior encoder, GU-Net and two group structured posterior encoders.

• The lifting layer (Rd → G): In this layer, we lift X =
Rd image data to G = Rc oH space. Thus, we define
the lifting convolution K as follows:

(Kf)(g) =(k?̃f)(g) :=
1

|deth|
(LG→L2(Rc)

y k, f)L2(Rc,dx)

=

∫
G

k(g−1(x′ − x))f(x′)dx′

(4)

• Group convolution layer (G → G): At this layer, the
in- and out- feature fields all in G space, we arrive at
the following form of our group convolution:

(KF )(g) = (K?̃F )(g) :=(LG→L2(Rc)
g [K] , F )L2(Rc,dµ)

=

∫
G

K(g−1g̃)F (g̃)dµg̃

(5)

• Projection layer (G → Rd): In this layer, we project
the data on G = Rc oH back to X = Rd via

(KF )(g) = (kh?̃F )(x) =

∫
H

F (x, h̃)dµh̃ (6)

These layers can be embedded in any excellent architec-
ture by simply replacing standard convolutions with group
convolutions. In this paper, we leverage p4-group (SE(2,N)
with N=4) group to build our p4-group convolutional net-
works.

3.3. VAEs

Recent efforts (e.g., [13], [10]) have shown that generative
model, variational auto-encoders(VAEs) [14] in particular,
can achieve superior performance on performing data impu-
tation. In general, VAEs learn a generative distribution by

maximizing a variational lower bound on the log-likelihood
log p(x):

LVAE(x; θ, φ) := Ez∼qφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)||p(z))
≤ log p(x)

(7)
where the approximate posterior qφ(z|x) is modeled by a
CNN encoder, pθ(x|z) is modeled by a decoder CNNs, the
Kullback-Leibler divergence (also called Relative Entropy)
term DKL essentially measures how different the distribu-
tion of the true and the approximate posterior [14]. Looking
closely at this model, we could see that the encoder models
the latent variable z based on x, which doesn’t take any ac-
count of some additional conditioning input information. This
may fail to model complex structured representation that ef-
fectively infers high opacity regions of CXRs, especially in
the extremely low data regimes.

To address this issue, we introduce a Group structured
Conditional Variational Data Imputation (G-CVDI) model,
which deals with incomplete data by modeling a group struc-
tured generative model.

4. GROUP STRUCTURED CONDITIONAL
VARIATIONAL DATA IMPUTATION

To learn a complete segmentation automatically, we aim
to model a distribution of possible segmentation given the
ground-truth segmentation masks. This observed features en-
sures that the encoder generates an unobserved segmenta-
tion map according to the true underlying data distribution.
The generative process of our model is similar to the genera-
tive process of cVAE [15] by conditioning on an observation.
However, the naive cVAE failed to learn structured latent vari-
ables without constraining the learned representation, which
may limit the performance of the encoder and decoder.

In this work, we leverage group convolution operations
as a new way to give cVAEs the structures of p4-group as
mentioned above and propose a new architecture to learn
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an equivariant conditional density model over segmentations
given on the opacity image. Specifically, the central com-
ponent of our architecture is illustrated in Figure 1. There
are three types of networks in our deep conditional gener-
ative model: a group structured prior net, group structured
U-Net (GU-Net) and group structured posterior net. The
group structured prior net generates low-dimensional embed-
ding sample z ∼ qφ(z|x) for given a input images x, and
then sample is concatenated to last activation map of a group
structured U-Net by a combination function fcomb, this is, the
output (eg. segmentation map) corresponding to the given
sample is ŷ = fcomb(fGU-Net(x;w), z). To find a useful em-
bedding space for data imputation in the training stage, we
first introduce a posterior net that learns a posterior distribu-
tion qφ(z|x, y) by conditioning the input x and the ground-
truth segmentation masks y as a reference axis to calibrate the
prior distribution. In order to reflect the difference between
sampling z from prior and posterior distribution, a Kullback-
Leibler divergenceDKL(qφ(z|x, y)||pθ(z|x)) is adopted to es-
timate the similarity between the two distributions. From an
information-theoretic perspective, this DKL term encourages
the latent bottleneck z to efficiently transmit information from
x and y, this is,

EpD(x,y)[DKL(qφ(z|x, y)||pθ(z|x))]

, EpD(x,y)Eqφ(z|x,y)[log qφ(z|x, y)− log pθ(z|x)]

=
∑
x,y

q(x, y, z)log
q(x, y, z)

p(x, y, z)

= Ex,y,zlog
q(x, y|z)q(z)
p(x, y)p(z)

= Eqφ(z)Eqφ(x,y|z)log
q(x, y|z)q(z)
p(x, y)p(z)

+ Eqφ(x,y,z)
q(z)

p(z)

= H(x, y)−H(x, y|z)︸ ︷︷ ︸
,Iqφ(z;x,y)

+ Eqφ(z)
qφ(z)

p(z)︸ ︷︷ ︸
,DKL(qφ(z)||p(z))

As the , Iqφ(z;x,y) is non-negative in the last line,
we could see that minimizing all the relative entropy
DKL(qφ(z|x, y)||pθ(z|x)) is equivalent to match the aggre-
gated posterior distribution of the latent variable qφ(z) to the
aggregated prior distribution p(z). By doing so, it is more
likely to contain the unobserved features of the segmentation
maps when sampling a z from the given posterior qφ(z|x, y).
And then, combining the sample z with the last activation map
of the group structured U-Net by fcomb function can predict a
high-quality segmentation ŷ. We use negative expected log-
likelihood,

Lrec(y, ŷ; θ, φ) := Ez∼qφ(z|x,y) [log pθ(y|fcomb(x, z))] (9)

as a reconstruction loss to penalize difference between the
prediction ŷ and y. To combine the DKL(qφ(z|x, y)||p(z|x))

with Lrec(y, ŷ), we get the following objective function:

L(x, y; θ, φ) := Ez∼qφ(z|x,y) [log pθ(y|fcomb(x, z))]

−DKL(qφ(z|x, y)||pθ(z|x))
(10)

In order to encourage embedding space of the pre-
dicted segmentation ŷ on a set of representational axes
(e.g, close in data space of qφ(z|x, y) ), we introduce an-
other posterior net that model variational posterior pψ(z|ŷ)
to get close to a shared coding space (a set of representa-
tional axes). Following the above, we use relative entropy
DKL(qφ(z|x, y)||pψ(z|ŷ)) to characterize the degree of over-
lap between the posterior distribution across the shared cod-
ing space, which will tend to result in the prediction towards
ground-truth. Adding this term to the above objective func-
tion we get a weighted mixture loss function,

LG-CVDI(x, y; θ, ψ, φ) := Ez∼qφ(z|x,y) [log pθ(y|fcomb(x, z))]

− α ·DKL(qφ(z|x, y)||pψ(z|ŷ)

− β ·DKL(qφ(z|x, y)||pθ(z|x)))
(11)

where α and β balance the objections, note that when β = 1
and α = 0 , we recover the cVAEs objective, when α = 0,
the objective is similar to the conditional β-TCVAE [16].

For all the network as mentioned above, the equivariant
are guaranteed by repace the 2D-convolution operations with
p4-group convolutions (e.g., the lifting layer as the first layer
of networks to produce p4-feature maps, the group convolu-
tions layer act on the group structured feature map, the last
layer of the networks is usually a projection layer to output
a 2D image). But we haven’t discussed how to ensure the
equivariance of sampling a sample from a distribution. In
other words, we want the posterior to keep invariant under
the deterministic action of the group.

Specifically, let G be a finite group which acts on the
image R2 via a left-regular representation LG→L2(R2)

g :
L2(R2) → L2(R2), we consider the densities ρ of a distri-
bution, which is assumed to be invariant w.r.t. to some sym-
metry transformation e.g., C4, SE(2, N). This allows us to
construct equivariance very naturally:

Theorem 4.1. Let ρ be a G-invariant density on R2, if
∀x∈R2,g∈G : f(LG→L2(R2)

g x) = LG→L2(R2)
g f(x), then f is

equivariant to transformations sampled from ρ:
Proof. Supposing that G acts linearly on the image

x = R2, and let LG→L2(R2)
g : L2(R2) → L2(R2) be a repre-

sentation of G over x, f be a function that is equivariant to
some symmetry transformation g, then the model f is equiv-
ariant to transformations sampled from ρ:

f(hx) = Eg∼ρg−1f(ghx) = Eg∼ρh(gh)−1f(ghx)

= hEu∼µu−1f(ux)

= hf(x)
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where u = gh and for any measurable set S, ∀g∈G : µ(S) =
µ(gS) according to the corollary 3.1, this is, ρ is an G-

invaraint under some transformation LG→L2(R2)
g , e.g., we can

assume that the transformation is uniform then the ρ is in-
variant the actions of group. So the desired posterior is being
invariant under a left-regular representation LG→L2(R2)

g :

qφ(z|LG→L2(R2)
g [x],LG→L2(R2)

g [y]) = qφ(z|x, y); ∀g∈G

qφ(z|LG→L2(R2)
g [x]) = qφ(z|x);∀g∈G

therefore the objective of our model stays in its original form.

5. EXPERIMENTS

In this section, we conduct experiments to verify the effective-
ness of our proposed method. Specifically, we want to answer
the above two questions: (i) how good is the data efficiency
or the rate of convergence of our model ? and (ii) how good
is the segmentation in lung with opacity regions.

5.1. Dataset and Evaluation Metrics

To train and compare the models investigated in this study,
we use publicly available COVID-19 datasets, currently to-
taling 679 frontal chest X-ray images from 412 people from
26 countries. But only 517 images contain lung masks, we
filtered 425 CXRs as our training/validation set, and follow-
ing the same experimental setup in [10], each input images
is rescaled to 640x512px and mitigate the grayscale variabil-
ity in the images by applying a histogram equalization, and
another publicly available CXRs datasets from Shenzhen and
Montgomery hospitals [10], this dataset contains 704 CXRs
images, we use 493 for training, 211 for testing. We use dice
similarity coefficient and binary accuracy as the evaluation
metric, and make all experiments in triplicate and report the
results as mean and standard deviation.

5.2. Results

5.2.1. Data efficiency and Rate of convergence

To verify the data efficiency and rate of convergence, we com-
pared our model (G-CVID) with a conventional Z2-CVID
(replacing the group convolution with a standard 2D convolu-
tion). Table 1 shows the Dice Overlap for standard translation
Z2-CVID baseline and our G-CVID with different training
set sizes N . Overall, we observe that our method is capable
of obtaining a better dice accuracy over multiple training set
sizes when compared to the standard CNNs baseline. Fur-
thermore, we plot the training loss per epoch. For training
runs with dataset 50,100,150 and 200 in Figure 2, we can find
that our proposed model show a faster decline than regular
Z2-CVID. These characteristics of data efficiency and faster
convergence can be attributed to the fact that each gradient
signal comes from multiple p4 feature maps.

Table 1. Overall score for all training set sizes N .

N Z2-CVDI G-CVDI

50 0.8659±0.07 0.8995±0.09
100 0.8971±0.10 0.9307±0.13
150 0.9137±0.12 0.9358±0.08
200 0.9259±0.09 0.9470±0.11

0 10 20 30 40 50
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

2-loss 50
2-loss 100
2-loss 150
2-loss 200

G-loss 50
G-loss 100
G-loss 150
G-loss 200

Fig. 2. Learning curves for the all networks trained on differ-
ent training set sizes N .

5.2.2. Segmentation in lung with opacity regions

We demonstrate the effectiveness of our approach in lung seg-
mentation with opacity regions. First, we train all models on
the CXRs dataset to verify the segmentation ability when the
data is low opacification. Second, we chose the COVID-19
dataset as the second dataset to verify the performance when
data with extreme levels of opacification obfuscate regions in
the lungs. Table 2 shows the result on CXRs and COVID-
19 datasets. The proposed model outperforms all the baseline
models, this is due to the fact that the information contained in
the observed data is aligned with the label in the conditional
latent space, which provides sufficient information to predict
more complete segmentation.

Figure 3 shows a qualitative example, it can be seen that
our model captures well the ground truth compared with other
models. Intuitively, this further demonstrates the effective-
ness of our model.

6. CONCLUSIONS

In this study, we propose a group structured generative model
that conditions on a set of observed features, allowing for
latent representations that contain more mutual information
across group structural latent variables. The learned latent
representations are used to generate the missing data. We
show that our model unambiguously outperformed the base-
line CNN on the lung segmentation, especially on small
datasets, without any further tuning, which is particularly im-
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Table 2. Performances on two datasets(*Aug(+D,+D+B) denote diffusion and diffusion+block augementation respectively).

CXRs COVID-19
Models Dice Overlap Accuracy Models Dice Overlap Accuracy

U-Net [6] 0.9578±0.04 0.9733±0.08 U-Net [6] 0.9481±0.07 0.9564±0.02
XLSorR [9] 0.9551±0.07 0.9724±0.09 XLSorR [9] 0.9302±0.06 0.9405±0.05

XLSorRA [9] 0.9579±0.04 0.9740±0.03 XLSorRA [9] 0.9472±0.07 0.9515±0.06
VID [10] 0.9573±0.11 0.9730±0.04 VID [10] 0.9432±0.05 0.9531±0.04

VID (Aug+D) [10] 0.9555±0.10 0.9722±0.08 VID (Aug+D) [10] 0.9488±0.04 0.9571±0.07
VID (Aug+D +B) [10] 0.9434±0.03 0.9663±0.08 VID (Aug+D +B) [10] 0.9343±0.04 0.9473±0.09

Z2-CVDI(ours) 0.9585±0.05 0.9734±0.09 Z2-CVDI(ours) 0.9399±0.03 0.9519±0.03
G-CVDI(ours) 0.9611±0.07 0.9747±0.02 G-CVDI(ours) 0.9496±0.05 0.9578±0.06

Fig. 3. (a) Two test samples with low and high opacity. (b)
U-Net prediction. (c) XLSorRA prediction. (d) VID predic-
tion. (e) our model prediction. (f) ground truth; Green:True
postive, Blue: False Negative.

portant in reducing the collection of medical data. We hope
that our model can be used as a basic segmentation com-
ponent to accelerate the development of a highly accurate
yet high quality solution for detecting COVID-19 cases from
CXRs images.
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