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ABSTRACT

Hashing has been widely used in approximate nearest neigh-
bor search for its storage and computational efficiency. Deep
supervised hashing methods are not widely used because of
the lack of labeled data, especially when the domain is trans-
ferred. Meanwhile, unsupervised deep hashing models can
hardly achieve satisfactory performance due to the lack of re-
liable similarity signals. To tackle this problem, we propose
a novel deep unsupervised hashing method, namely Distilled
Smooth Guidance (DSG), which can learn a distilled dataset
consisting of similarity signals as well as smooth confidence
signals. To be specific, we obtain the similarity confidence
weights based on the initial noisy similarity signals learned
from local structures and construct a priority loss function for
smooth similarity-preserving learning. Besides, global infor-
mation based on clustering is utilized to distill the image pairs
by removing contradictory similarity signals. Extensive ex-
periments on three widely used benchmark datasets show that
the proposed DSG consistently outperforms the state-of-the-
art search methods.

Index Terms— Learning to hash, Unsupervised learning,
Deep learning

1. INTRODUCTION

Deep learning-based hashing methods can be divided into su-
pervised hashing and unsupervised hashing [1]. At the early
stage, many researchers mainly focused on the supervised
hashing methods, which utilize semantic labels to greatly im-
prove the performance of image retrieval [2]. However, super-
vised hashing methods are difficult to be applied in practice
when there is not enough labeled data, especially when the
domain is transferred. To solve this problem, several deep
learning-based unsupervised methods were proposed, includ-
ing deep binary descriptors (DeepBit) [3], semantic structure-
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based unsupervised deep hashing (SSDH) [4] and unsuper-
vised deep hashing by distilling data pairs (DistillHash) [5].

Although deep learning-based unsupervised hashing
methods can be applied on unlabelled data, they still have ev-
ident limitations. [6] takes clustering information to generate
pairwise pseudo-labels. SSDH further studies the deep fea-
ture statistics empirically from a pre-trained model and cap-
tures the semantic relationships across different data points.
Specifically, it selects image pairs with confident pseudo-
labels to guide the training of the model. Nevertheless,
SSDH discards most image pairs which are hard to be decided
whether they are semantically similar or dissimilar, which
causes much information loss and thus limits the performance
of the model in further image retrieval. In general, these meth-
ods only consider either the local information of similarity
signals or the global information such as clustering labels but
do not consider this task comprehensively.

To tackle the above issues, we propose a novel method,
which comprehensively explores correlations among image
pairs. First of all, for the correlation among different sam-
ples, we adopt the pre-trained deep convolutional neural net-
work (CNN) to generate features for the input images. Then
we compute the pairwise cosine distance and construct the
similarity pseudo graph. We take all the image pairs into con-
sideration. To alleviate the effect of wrong pseudo labels, dif-
ferent weights are assigned to image pairs according to the
confidence of the pseudo labels. Furthermore, for the global
robustness, we adopt clustering on the deep image features
and then obtain another similarity graph. According to these
two similarity graphs, image pairs with different correlation
identification are considered contradictory and thus distilled.
Finally, we design a deep neural network based on the dis-
tilled data pair set and adopt a deep learning framework to
perform the deep representation and hash code learning si-
multaneously. Our main contributions can be summarized as
follows:

• We introduce two similarity graphs based on the local
(i.e., pairwise cosine similarity) and global information
(i.e., clustering) respectively and then obtain the en-
semble similarity graph by distilling the contradictory
pairs.
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• We construct a priority loss function for similarity-
preserving learning, which prioritizes confident image
pairs over fuzzy image pairs based on their pairwise
distance to learn deep representations smoothly.

• Experiments on three popular benchmark datasets show
that our method DSG outperforms current state-of-the-
art unsupervised hashing methods by a large margin.

2. RELATED WORK

Deep Supervised Hashing. Deep supervised hashing meth-
ods usually map the data points into Hamming space where
the semantic similarities can be preserved by learning a deep
neural network [1]. Typically, as the first supervised deep
hashing method, CNNH [2] splits the hash learning into two
stages based on a convolutional neural network. Hash codes
are learned on the first stage, a specific deep network is
learned on the second stage to map the input samples to the
learned hash codes. Deep Supervised Hashing [7] uses a loss
function with product form based on the pairwise similarities
and Hamming distances, which can be trained by the end-to-
end back propagation algorithm.
Deep Unsupervised Hashing. Unsupervised deep hashing
methods aim to turn unsupervised problems into supervised
problems by constructing pseudo labels based on deep fea-
tures. Semantic Structure-based Unsupervised Deep Hash-
ing (SSDH) [4] uses a specific truncated function on the pair-
wise distances and constructs the similarity matrices. Distill-
Hash [5] improves the performance of SSDH by distilling the
data pairs for confident similarity signals. MLS3RDUH [8]
utilizes the intrinsic manifold structure in feature space to re-
construct the local semantic similarity structure, and achieves
the state-of-the-art performance.

3. METHOD

In the problem of deep unsupervised hashing, X = {xi}Ni=1

denotes the training set with N samples without label annota-
tions, it aims to learn a hash function

H : x→ b ∈ {−1, 1}L,

where x is the input sample and b is a compact L-bit hash
code. It is noticed that xi ∈ Rd is the normalized extracted
deep feature for the i-th image through the pre-trained neural
network by removing the last fully-connected layer. Here we
use VGG-F [9] to be consistent with other articles.

3.1. Pseduo-Similarity Graph

In our model, the pseudo-similarity graph is constructed
firstly. The pseudo-similarity graph is used to capture pair-
wise similarity information from a local perspective. Based

on the pre-trained deep feature xi, the cosine distance be-
tween the i-th and the j-th samples can be computed by
dij = 1− xi·xj

||xi||2||xj ||2 . We set a large threshold t, and consider
data points with the cosine distance smaller than t as potential
similar and data points with the cosine distance larger than t
as potential dissimilar. Based on the threshold t, we construct
the pseudo-graph S as:

Sij =

{
1 dij ≤ t,
−1 dij > t

(1)

Where Sij is set to 1 if points xi and xj are potential sim-
ilar, and -1 if points xi and xj are potential dissimilar.

3.2. Smooth Weight Matrix

Although pseudo-similarity graph is constructed, the seman-
tic confidence of pseudo-label for each pair is different. In this
section, we construct the weight matrix for the pseudo-graph
based on the semantic confidence.

By observing the distribution of cosine distance for deep
feature pairs, [4] finds that each distance histogram is simi-
lar to two half Gaussian distributions, where ml and σl de-
note the mean and the standard deviation of the first (left half)
distribution and mr and σr denote the mean and the stan-
dard deviation of the second (right half) distribution. Accord-
ingly, we obtain two distance thresholds dl = ml − ασl and
dr = mr + βσr, where the hyper-parameters α and β control
the values of the distance thresholds dl and dr respectively
and dictate the percentage of similar points and dissimilar
points from all data points respectively as well. According
to the theory of confidence interval, the pairs with distances
smaller than dl or larger than dr have confident semantic sim-
ilarity information. As a result, we set the weights for confi-
dent pairs to 1. Since the pairs with distance in the interval
[dl, dr] probably have no certain semantic information, we
obtain the weight as:

W1,ij =


(t−dij)2

(t−dl)2
dl < dij ≤ t,

(dij−t)2
(dr−t)2 t < dij < dr,

1 dij ≤ dl or dij ≥ dr

(2)

From the equation, the weight for each image pair with
the distance out of the interval is set to 1 and the weight for
each image pair with the distance in the interval is smaller if
their distance is closer to the threshold in a quadratic form.
In this way, all the image pairs are taken into consideration
with the guidance of the smooth weight matrix. Accordingly,
the confidence of their similarity relationship is guided by the
smooth weight W1.

3.3. Pair Distilling based on clustering

As we know, the obtained pseudo-label is very coarse. In
this section, we try to use the clustering method to distill the
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Fig. 1. The framework of our model. First, deep features of the dataset are extracted through the pre-trained VGG-F network.
Second, the pseudo-graph S and the smooth weight matrix W1 are constructed based on the local information of the cosine
distance distribution of deep features. Third, the relationship matrix C is constructed based on the global information of the
K-means clustering on deep features and the distilling matrix W2 is obtained by comparing the relationship matrix C with the
pseudo-graph S. Lastly, iterations are done aiming to minimize the weighted L2 loss for preserving similarity relationship of
image pairs (i.e., Equation 6) by using the mini-batch stochastic gradient descent method.

pairs by removing contradictory results. To be specific, we
first use the extracted features{xi}Ni=1 to construct a K-means
clustering model. Based on the K-means clustering result, we
construct a relationship matrix C:

Cij =

{
1 ci = cj ,
−1 ci 6= cj

(3)

where ci represents the label of the cluster that the data
point xi belongs to. ci ∈ {0, 1, ...,K} and K is the parame-
ter that represents the number of clusters. By comparing the
relationship matrix C with the pseudo-graph S, we obtain the
distilling matrix W2 as:

W2,ij =

{
1 Sij = Cij ,
0 Sij 6= Cij

(4)

in which Sij = Cij means that the result of pseudo-graph
and clustering for the pair xi and xj is consistent.

After setting the weight of contradictory pairs to zero, the
final distilled weight matrix is obtained as

W = W1 �W2,

in which � denotes the element-wise product of vectors.

3.4. Hash code learning

For the purpose of preserving the similarity relationship of
data points, similar data points are expected to be mapped into

similar hash codes and dissimilar data points are expected to
be mapped into dissimilar hash codes. The similarity output
HN×N of hash codes is formulated as

Hij =
1

L
bi>bj , bi ∈ {−1,+1}L (5)

To preserve the obtained semantic structures, we minimize
the weighted L2 loss between the hash code similarity and
the pseudo-graph. In formulation,

L =
1

N2

N∑
i=1

N∑
j=1

Wij(Hij − Sij)
2

in which bi = sign(F (xi; Θ)) and F (xi; Θ) denotes the out-
put of the neural network, and Θ is the parameters. In this
way, we can integrate the above loss function into the deep
architecture. However, it is infeasible to train the neural net-
work with binary outputs by the standard Back Propagation
algorithm because of the ill-posed gradient problem. As a re-
sult, tanh(·) is utilized to relieve the binary constraint. Thus
we adopt the following objective function:

minΘ L(Θ) = 1
m2

∑m
i=1

∑m
j=1Wij (Hij − Sij)

2

s.t. Hij = 1
Lvi>vj , vi = tanh (F (xi; Θ))

(6)

in which vi denotes the relaxed binary representation.
For the point qi not in the training set, its hash code bi

is obtained by directly forward propagating it through the



Algorithm 1 Training algorithm for our model
Input: Training images I = {I1, . . . , IN};

Number of clusters: K;
Cosine distance threshold: t

Output: Parameters Θ for the neural network;
Hash codes B for training images.

1: Get deep features of I through VGG-F: X =
{x1, . . . , xN}.

2: Construct the pseudo-graph S by Equation 1
3: Construct the weight matrix W1 by Equation 2
4: Cluster X into K different groups by K-means. and con-

struct the distilling matrix W2 by Equation 3
5: Calculate distilled weight matrix W by Equation 4
6: repeat
7: Sample N points from X and then construct a mini-

batch.
8: Calculate the outputs by forward-propagating through

the network.
9: Update parameters of the VGG-F network by Back

propagation by Equation 6
10: until convergence

learned neural network.

bi = sign (F (qi; Θ)) (7)

3.5. Optimization

To optimize the problem, we construct the pseudo-graph S
from the pre-trained neural network by using Equation 1.
Then the smooth weight matrix W1 and the distilling ma-
trix W2 are constructed to get the distilled weight matrix
W . Lastly, we minimize Equation 6 by using the standard
stochastic gradient descent (SGD) method. The whole learn-
ing procedure is summarized in Algorithm 1.

4. EXPERIMENTS

We implement extensive experiments on three datasets to
evaluate our DSG by comparing with several state-of-the-art
unsupervised hashing methods.

4.1. Datasets and Baselines

CIFAR-10 [10] is a dataset for image classification and re-
trieval, containing 60K images from 10 different categories.
For each class, we randomly select 1,000 images as queries
and 500 as training images, resulting in a query set contain-
ing 10,000 images and a training set made up of 5,000 images.
All images except for the query set are used as the retrieval
set. NUS-WIDE [11] contains 269,648 images, each of the
images is annotated with multiple labels referring to 81 con-
cepts. The subset containing the 10 most popular concepts is

used here. We randomly select 5,000 images as a test set; the
remaining images are used as a retrieval set, and 5000 images
are randomly selected from the retrieval set as the training
set. FLICKR25K [12] contains 25,000 images collected from
the Flickr website. Each image is manually annotated with
at least one of the 24 unique labels provided. We randomly
select 2,000 images as a test set; the remaining images are
used as a retrieval set, from which we randomly select 10,000
images as a training set.

Our method is compared with both traditional hash-
ing methods and state-of-the-art unsupervised deep learning
methods. Traditional methods includes SpH [13], DSH [14]
and SGH [15]. Deep unsupervised hashing methods includes
DeepBits [3], SSDH [4], DistillHash [5], CUDH [16], and
MLS3RUDH [8].

4.2. Implementation Details

The framework is implemented by Pytorch V1.4. The mini-
batch size is set to 24 and the momentum to 0.9. The learning
rate is fixed at 0.001. The initial weights of the first seven
layers of the neural network are from the model pre-trained
with ImageNet, and the last fully-connected layer is learnt
from scratch. The parameter α and β are all set following [4]
and the threshold t to 0.1. The number of clusters is 70.

4.3. Evaluation

The ground-truth similarity information for evaluation is
constructed from the ground-truth image labels: two data
points are considered similar if they share the same label
(for CIFAR-10) or share at least one common label (for
FLICKR25K and NUSWIDE).

The retrieval quality are evaluated by the following
three evaluation metrics: Mean Average Precision (MAP),
Precision-Recall curve and Top N precision curve.

MAP is a widely-used criteria to evaluate retrieval accu-
racy. Given a query and a list ofR ranked retrieval results, the
average precision (AP) for the given query can be computed.
MAP is defined as the average of APs for all queries. For
datasets FLICKR25K and NUSWIDE, we set R as 5000 for
the experiments. For CIFAR-10,R is set as 50000. Precision-
recall curve reveals the precision at different recall levels and
is a good indicator of overall performance. In addition, Top N
precision curve, which is the precision curve with respect to
the topK retrieved instances, also visualizes the performance
from a different perspective .

4.4. Overall Performance and Ablation Study

Table 1 shows the MAPs for different methods on three
datasets with hash code lengths varying from 16 to 128. It
can be seen that the performances of deep learning-based al-
gorithms are overall better than traditional methods. For our



Table 1. MAP for different methods on FLICKR25K, CIFAR-10 and NUS-WIDE datasets.
FLICKR25K CIFAR-10 NUS-WIDE

Method 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
SH 0.6091 0.6105 0.6033 0.6014 0.1605 0.1583 0.1509 0.1538 0.4350 0.4129 0.4062 0.4100
SpH 0.6119 0.6315 0.6381 0.6451 0.1439 0.1665 0.1783 0.1840 0.4458 0.4537 0.4926 0.5000
SGH 0.6362 0.6283 0.6253 0.6206 0.1795 0.1827 0.1889 0.1904 0.4994 0.4869 0.4851 0.4945
DeepBit 0.5934 0.5933 0.6199 0.6349 0.2204 0.2410 0.2521 0.2530 0.3844 0.4341 0.4461 0.4917
SSDH 0.7240 0.7276 0.7377 0.7343 0.2568 0.2560 0.2587 0.2601 0.6374 0.6768 0.6829 0.6831
DistillHash 0.6964 0.7056 0.7075 0.6995 0.2844 0.2853 0.2867 0.2895 0.6667 0.6752 0.6769 0.6747
CUDH 0.7332 0.7426 0.7549 0.7561 0.2856 0.2903 0.3025 0.3000 0.6996 0.7222 0.7451 0.7418
MLS3RDUH 0.7587 0.7754 0.7870 0.7927 0.2876 0.2962 0.3139 0.3117 0.7056 0.7384 0.7629 0.7818
DSG 0.7994 0.8172 0.8197 0.8245 0.3225 0.3241 0.3453 0.3450 0.7795 0.7981 0.8098 0.8187

Table 2. Ablation analysis on datasets FLICKR25K, CIFAR-10 and NUS-WIDE.
FLICKR25K CIFAR-10 NUS-WIDE

Method 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
DSG-v2 0.6896 0.6570 0.6228 0.6178 0.2356 0.2099 0.1704 0.1567 0.6967 0.6736 0.6257 0.6062
DSG-v1 0.7584 0.7432 0.7355 0.7240 0.2612 0.2496 0.2441 0.1988 0.7632 0.7718 0.7719 0.7703
DSG 0.7994 0.8172 0.8197 0.8245 0.3225 0.3241 0.3453 0.3450 0.7795 0.7981 0.8098 0.8187

proposed method, we find that DSG has a significant improve-
ment over the state-of-the-art deep learning-based methods in
all cases, which implies the superiority of our model. By com-
paring with MLS3RUDH, which has the best performance
of MAP among the deep hashing methods, DSG improves
the MAP by 3.18%, 3.33% and 3.69% for 128 bit length on
datasets FLICKER25K, CIFAR-10 and NUS-WIDE respec-
tively. We also find that the larger the bit length, the greater
the improvement of DSG over other methods, which implies
that DSG can generate more independent hash bits.

We also compare the performance of the DSG full model,
the DSG model without the weight matrix W1 , which is
denoted as DSG-v1 and the DSG model without the weight
matrix W1 and the distilling matrix W2, which is denoted as
DSG-v2. The results are shown in Table 2. It is easy to find
that DSG always achieves the highest MAPs, which implies
that both the confidence information provided by the weight
matrix W1 and the global consistency that is ensured by the
distilling matrix W2 are necessary in our model. We can also
find that DSG-v1 always outperforms DSG-v2, which proves
that the clustering alone can help improve performance by
removing contradictory similarity relationships between the
pseudo-graph S and the relationship matrix C.

For a more comprehensive comparison, we draw
precision-recall curves and Top N precision curves for our
method DSG and three state-of-art methods CUDH, SSDH
and MLS3RUDH with the hash code length of 128. Figure 2
(a), (b) and (c) show the Top N precision curves of CUDH,
DSG, SSDH and MLS3RUDH on datasets FLICKR25K,
CIFAR-10 and NUS-WIDE. It can be seen that DSG al-
ways has the highest precision among these four models and
MLS3RUDH always has the second-highest precision. Since
the precision curves are based on the ranks of Hamming dis-

(a) FLICKR25K (b) CIFAR-10

(c) NUS-WIDE (d) FLICKR25K

(e) CIFAR-10 (f) NUS-WIDE

Fig. 2. (a), (b) and (c) are the Top N precision curves
with code length 128 on FLICKR25K, CIFAR-10 and NUS-
WIDE. (d) and (e) and (f) are the precision-recall curves
with code length 128 on FLICKR25K, CIFAR-10 and NUS-
WIDE.



tance, DSG is able to achieve the highest recall if we di-
rectly use Hamming distance for retrieval. It’s known that
hash codes can also be used for coarse filtering in the form of
hash table lookup; we also plot the precision-recall curves for
these four models on the same datasets, which are shown in
Figure 2 (d), (e) and (f). It can be clearly seen that the curves
of DSG are always on top of the other three models’ curves,
which implies that the hash codes obtained by DSG are also
more suitable for the hash table lookup search strategy, which
further demonstrates the superiority of our method.

Fig. 3. MAP w.r.t different numbers of clusters and threshold
t values with code length 128 on CIFAR-10.

4.5. Parameter Sensitivity

We further study the number of clusters K and threshold
t. Figure 3 shows the MAPs of different K values ranging
[50, 150] on the dataset CIFAR-10 with code length 128 and
the MAPs of different threshold t values ranging [0.05, 0.20]
on the dataset CIFAR-10 with code length 128 as well. We
find the MAP with the K value of 100 is slightly lower than
other K values’. In general, DSG’s performance with differ-
ent K values ranging [50, 150] is relatively stable, indicating
that the model performance is not sensitive to differentK val-
ues ranging [50, 150]. Furthermore, we show that the MAP
decreases as the threshold t is over 0.1 with K fixed to 70.
In addition, the performance of DSG with different t ranging
[0.05, 0.1] is relatively stable, which indicates that the suit-
able interval for t value is [0.05, 0.1]. Accordingly, we set K
as 70 and t as 0.1 in our other experiments as default.

5. CONCLUSION

In this paper, we proposed Distilled Smooth Guidance (DSG)
for deep unsupervised hashing. DSG not only considers local
similarity signals but also considers the confidence of sim-
ilarity signals from local structure for smoothness. What’s
more, global information is also explored and the image pairs
are distilled by removing contradictory image pairs from two
views for the purpose of accuracy. Numeric experiments
demonstrates that DSG outperforms the existing state-of-the-
art methods.
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