
SDAN: SQUARED DEFORMABLE ALIGNMENT NETWORK FOR LEARNING
MISALIGNED OPTICAL ZOOM

Kangfu Mei, Shenglong Ye, Rui Huang∗

{kangfumei, shenglongye}@link.cuhk.edu.cn, ruihuang@cuhk.edu.cn
Shenzhen Institute of Artificial Intelligence and Robotics for Society,

The Chinese University of Hong Kong, Shenzhen

ABSTRACT
Deep Neural Network (DNN) based super-resolution algo-
rithms have greatly improved the quality of the generated im-
ages. However, these algorithms often yield significant arti-
facts when dealing with real-world super-resolution problems
due to the difficulty in learning misaligned optical zoom. In
this paper, we introduce a Squared Deformable Alignment
Network (SDAN) to address this issue. Our network learns
squared per-point offsets for convolutional kernels, and then
aligns features in corrected convolutional windows based on
the offsets. So the misalignment will be minimized by the
extracted aligned features. Different from the per-point off-
sets used in the vanilla Deformable Convolutional Network
(DCN), our proposed squared offsets not only accelerate the
offset learning but also improve the generation quality with
fewer parameters. Besides, we further propose an efficient
cross packing attention layer to boost the accuracy of the
learned offsets. It leverages the packing and unpacking op-
erations to enlarge the receptive field of the offset learning
and to enhance the ability of extracting the spatial connec-
tion between the low-resolution images and the referenced
images. Comprehensive experiments show the superiority of
our method over other state-of-the-art methods in both com-
putational efficiency and realistic details. Code is available at
https://github.com/MKFMIKU/SDAN

Index Terms— Super-resolution, RAW Image, DCN

1. INTRODUCTION

DNN based image super-resolution methods [1, 2, 3, 4] have
achieved significant progress on simulated super-resolution
datasets, which consist of low and high resolution image pairs
simulated by interpolation. These methods learn to parame-
terize mappings between low resolution images and high res-
olution images, and they are optimized by using the measured
distance between generated images and corresponding ground
truth as the loss function. However, limited by the learning on
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the simulated images, which cannot fully model the sophisti-
cation of the real-world optical zoom, these methods tend to
add unrealistic details on the real-world images. Hence, more
recent works [5, 6] propose to learn the super-resolution map-
pings on low and high resolution image pairs collected under
nature environments. Specifically, such image pairs are col-
lected using a zoom lens. The lens is moved into different
places with different lens settings to capture images for the
same major objects. Due to the different distances between
the lens and the major objects, the captured major objects
in different images own different resolutions, which repre-
sent different levels of optical magnification under real-world
conditions. We call such datasets optical zoom datasets. Ex-
periments in the previous work [5] have proven that models
learned on optical zoom datasets can generate images with
higher visual quality, compared to the methods learned on
simulated datasets.

However, even though image pairs taken under different
focal lengths represent more accurate real-world mappings,
they may lead to another crucial issue, i.e., the misalignment
between the high-resolution and low-resolution images. The
misalignment comes from the viewpoint movements from
the major objects, as well as the optical distortion in the
lens. Such unavoidable factors cause pixel shift or perspective
change, hence the major objects in the low-resolution images
have different magnified coordinates from the same objects
in the corresponding high-resolution images. When directly
learning on the misaligned optical zoom datasets with pixel-
wise loss functions, the algorithm will calculate incorrect dis-
tances and hence error gradients for parameter optimization.
According to the definition of the widely used pixel-wise loss
function L1, the distance between the generated image X̃ and
its ground truth Y is formulated as:

L1(X̃, Y ) =
1

N

N∑
i

|X̃i − Yi|, (1)

where N is the number of pixels in the generated image
X̃ . When the pixels are misaligned, e.g., assuming the mis-
alignment is a coordinate mapping function FR(∗), the actual
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pixel-wise loss ′L1 should be:

′L1(X̃, Y ) =
1

N

N∑
i

|X̃FR(i) − Yi|, (2)

yet by using L1 instead of ′L1, incorrect distance measure-
ment will mislead the optimization of the DNN parameters.
The generated results from such networks will usually be
over-smoothed as Figure 3 shows.

To eliminate the possible problems of the pixel-wise loss
functions, the recently proposed Contextual [7] loss function
and its extended Contextual Bilateral [5] loss function calcu-
late the distance on the feature level instead of the pixel level.
To be specific, the vanilla Contextual loss function is formu-
lated as:

LCX(X̃, Y ) =
1

N

N∑
i

min
j=1,...,M

(Ψ(X̃)i,Ψ(Y )j), (3)

where Ψ(∗) is the pre-trained network for feature extrac-
tion, usually VGG19, and N,M are the numbers of points in
the extracted feature maps respectively. Though the distance
measurement in such a form can avoid the pixel-wise mis-
alignment issue, we find that directly calculating distances be-
tween the extracted features leads to color offset, i.e., the gen-
erated images have incorrect colors in both the entire scenes
and the specific objects, as Figure 3 shows. The calculation in
the contextual space also costs more computational resources
during training. Therefore, compared with the pixel-wise loss
functions, the feature-level contextual loss functions are still
not as satisfactory as we would want them to be.

Inspired by Tian et al. [8] and Chan et al. [9], which ap-
plied Deformable Convolutional Networks (DCNs) [10, 11]
to neighboring frame alignment, in this paper, we propose
to utilize DCN for learning optical zoom on misaligned im-
ages. However, due to the differences between the two tasks,
we find that directly applying DCN to misaligned optical
zoom cannot achieve desired gains. To elaborate, neighbor-
ing frame alignment takes the misaligned neighboring frames
as well as the source frame as input, and it learns to align the
neighboring frames especially the local contents within the
frames, which requires subtle offset estimation during align-
ment. In contrast, the misalignment in the optical zoom learn-
ing problem is caused by the lens movement or optical aber-
rations, while the contents are usually fixed in the scenes.
Therefore we argue that our problem requires offset estima-
tion on a larger yet coarser scale.

In this paper, we propose a new Squared Deformable
Alignment Network (SDAN) to address these issues in the
misaligned optical zoom task. We introduce the squared off-
set that represents the offset of the whole convolutional win-
dow instead of the offset of each point in the window. It is
a more efficient strategy for feature alignment and greatly
reduces the difficulties in learning optical zoom. Further-
more, it also yields clearer results during inference because

the learned offsets have lower diversity, which reduces the
possibility of overfitting in the later convolutional layers. To
increase the limited receptive field of the vanilla DCN, which
is not suitable for estimating global offsets, we introduce
an efficient attention block, called Cross Packing Attention
(CPA). It first applies a space-to-depth operation to pack the
features into small pieces, and then uses channel attention
on the packed features to extract cross-channel and spatial
connections in an efficient way. Since the packing opera-
tion on images transfers the squared neighboring features into
the same channel, the channel attention after the operation is
able to extract feature relationships in the spatial neighbor-
ing area effectively. The proposed CPA is more suitable for
optical zoom learning than other attention mechanisms be-
cause the corresponding pixels in misaligned images usually
can be found in the neighboring areas instead of the entire im-
ages [7]. By combining the above two contributions, the pro-
posed SDAN is able to efficiently learn optical zoom on the
misaligned optical zoom datasets using pixel-wise loss func-
tions.

2. RELATED WORK

2.1. DNN based Image Super-Resolution

Based on the simulated low and high resolution images pairs,
Dong et al. [1] first proposed SRCNN that represented map-
pings between low and high resolution images as a deep con-
volutional neural network. The network is optimized by min-
imizing the average difference in corresponding pixels be-
tween the output and the target. Following such a man-
ner, SRCNN as well as its variants, e.g., SRResNet [3],
EDSR [4], MSRN [12], gained great improvement on the sim-
ulated super-resolution benchmarks. However, these meth-
ods tend to generate high-resolution images with unrealis-
tic details. To address this issue, Zhang et al. [5] and Cai
et al. [6] proposed to train deep models on real-world low
and high resolution image pairs collected with different focal
lengths. Networks trained on such datasets have better robust-
ness than those trained on simulated datasets for real-world
low-resolution images. Yet these datasets are collected under
human operations, which are not precise enough to avoid lens
movement. There are also unavoidable optical aberrations.
Both lead to misalignment between low and high resolution
images. Zhang et al. [5] utilized contextual loss [7] and mod-
ified contextual bilateral loss to search the minimal difference
between each point on the generated images and its label on
the fly, which is able to avoid the misalignment issue but is
also limited by the huge computation, so the images and la-
bels are compacted into small dimensions with a pre-trained
VGG network. However, we observed that the implicit differ-
ence measurement between features instead of pixels might
lead to color offset.

2



Feature 
Extractor

𝑭𝑭𝑿𝑿

𝑭𝑭𝒀𝒀′

SDA 
Module

Super-Resolution 
Module 

𝑴𝑴 𝑭𝑭𝑿𝑿′
RGB
Convolution

𝑿𝑿′

�𝑿𝑿

𝒀𝒀′

𝑿𝑿

Flip
Augment

𝒀𝒀′

𝒀𝒀

𝑴𝑴′

𝑴𝑴

𝚯𝚯

Fig. 1. Overview of our proposed SDAN. Two graphs that contain a circle in different places are used to denote a misaligned
low-high resolution image pair. SDAN takes low-resolution image X and reference image Y ′ as input then generates the
temporally aligned result X ′, final zoomed result X̃ , and mask map M . The learned offset Θ is illustrated to denote offsets.

2.2. Image/Feature Alignment

Another solution to the misalignment issue is to align the im-
ages or features before calculating differences. Some recent
works [6, 13] are trained on images that captured static scenes
or printed scenes on papers to avoid large movement, and
they used a handcrafted iterative registration algorithm or a
sliding window based strategy to align the images. However,
these registration/alignment algorithms can only ensure the
center patch of the images to be aligned yet other parts are
ignored, which leads to high cost in data collection. Learn-
ing to align features is a type of more feasible methods, es-
pecially the multi-frame based methods that learn to align
neighboring frames to establish inter-frame correspondence.
[14, 15, 16, 17, 18] apply the learned optical flow to warp the
neighboring frames, then pass the warped frames to deep net-
works for feature combining. More recent works [19, 8, 9]
found that learning the offsets of convolution kernels instead
of pixels led to better performance and more natural details, in
which the learned offsets control the convolutional windows
of the regular convolutional networks in DCN [10]. However,
the above methods are proposed for combining neighboring
frames, which are not robust enough to be applied to optical
zoom learning directly and often generate unpredictable arti-
facts.

3. OUR METHOD

3.1. Overview

For the misaligned optical zoom datasets, we denote the low-
resolution image as X ∈ RH×W×3, the high-resolution im-
age as Y ∈ RsH×sW×3, and the zoom scale as s. Dur-
ing training, our Squared Deformable Alignment Network
(SDAN, modified based on SRResNet), denoted as fsdan(∗),
takes {X,Y ′} as input, where Y ′ ∈ RH×W×3 is the reference
image down-sampled from Y , and generates zoomed image
X̃ ∈ RsH×sW×3 as output. During inference, due to the lack
of Y and hence Y ′, {X,X} is input into fsdan(∗) to generate
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Fig. 2. The architecture of squared deformable alignment
module for feature alignment. The details of the model can
be referred in the Offset Learning Module part.

zoomed results. The whole pipeline is visualized in Figure 1.

3.2. Squared Deformable Alignment Module

Squared deformable alignment module is one of the most
crucial parts of our SDAN, which learns to align the extracted
feature FX with the extracted reference feature FY ′

in
an end-to-end manner. It consists of an offset learning
module foffset(∗) and a vanilla deformable convolutional
network fdcn(∗). Different from the learned offsets in the
vanilla DCN [10] that aim at boosting high-level feature
extraction, and the learned offsets in EDVR [20] that aim
at aligning neighboring video frames, the expected offsets
in the misaligned optical zoom datasets are usually larger
and more difficult to learned. Another challenge is related
to the diversity of the learned offsets, which is claimed to be
one of DCN’s most important traits that yield better-aligned
features, according to Chan et al. [9]. However, when DCN is
used for inference and the reference image Y ′ is not present,
this trait may lead to overfitting and hence unexpected
artifacts in the generated images. To address the above two
issues, we argue that the offset learning module foffset(∗)
should have as large a receptive field as possible so that it
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can yield more accurate offsets for feature alignment, and the
learned offsets should be smoother with lower diversity.

Offset Learning Module. This module learns to generate
offsets from the feature FX ∈ RC×H×W and reference fea-
ture FY ′ ∈ RC×H×W , and its architecture is visualized at the
top area of Figure 2. In this module, FX is extracted from
the low-resolution image X via a convolutional layer fol-
lowed by the ReLUs activation function, and FY ′

is extracted
from the reference image Y ′ via three different flip augmen-
tation operations and the same convolutional layer. Then
FX , FY ′

are concatenated together in the channel dimen-
sion as FX+Y ′ ∈ R2C×H×W for convolution, which aims
at extracting spatial connection related features. To achieve a
larger receptive field during convolution, we utilize the pack-
ing operation to downsample FX+Y ′

, which folds the spatial
feature of FX+Y ′

into channels. To be specific, the packing
operation yield features of (2C ×K ×K)× H

K ×
W
K , where

K is the kernel size of packing. After the packing operation,
we perform channel attention [21] to extract channel-related
features on the folded features. Since the packing operation
combines the spatial information into channels, the low-cost
channel attention can extract both channel-related informa-
tion and spatial information, and the resulted fused features
can better represent the spatial connections. Later we use the
inverse unpacking operation to recover the fused feature back
to its original dimension of 2C ×H ×W .

We name the whole process Cross Packing Attention
(CPA), and its motivation comes from our observation that
visualized learned offsets from the vanilla DCN tend to be
disordered when the misalignment level on images pairs
increases. On the other hand, they become more accurate
when the number or the kernel size of the offset-learning
layers increases. However, the number or the kernel size
of the offset-learning layers cannot be increased infinitely,
hence we introduce CPA to increase the receptive field of the
offset-learning layers instead, at lower computational costs.
To validate its effectiveness, we have conducted several
ablation studies on different settings of the attention layer,
and the results shown in Table 2 prove that CPA with flip
augmentation achieves the best performance.

Feature Alignment Module. This module aims at aligning
the feature FX by using learned offsets Θ to generate aligned
image features FX′

.

FX′
= fdcn(FX ,Θ|R), (4)

where fdcn(∗) is the deformable convolutional netowrk, and
R = {(1, 1), (1, 2), . . . (H,W )} is the regular grid sampled
from Θ. After that, the super-resolution module can generate
the aligned image X̃ from FX′

, in which the error gradients
caused by misaligned pixels in the pixel-wise loss are greatly
reduced. Specifically, for each point pi, i ∈ {1, 2, . . . ,H ×

W} in FX′
and FX , we have:

FX′
(pi) =

∑
k∈{1,...9}

w(pi+k)FX(pi + pi+k + ∆pi+k), (5)

in which bilinear interpolation is applied to avoid fractional
coordinates according to vanilla DCN [10]. Note that differ-
ent from the learned offsets of (2 × 3 × 3) × H × W for
each point in the convolutional window of the vanilla DCN,
our learned offsets of 2 × H ×W are for the whole convo-
lutional window, hence are simpler and more efficient, which
we call squared offsets. What’s more, the squared offsets lead
to greater quality improvement when FY ′

is not available dur-
ing inference. The ablation study in Table 2 demonstrates the
performance gain over the vanilla DCN.

3.3. Loss Functions for Misaligned Datasets

Our ultimate goal is to learn to generate zoomed images X̃
that are similar to the label images Y . However, during our
initial experiments, we found that directly optimizing the net-
work fsdan(∗) with loss functions |X̃ − Y | led to distorted
results. The reason is that SDCN lacks effective gradients to
supervise the offset learning directly. Therefore we use an
additional convolutional layer after SDCN to directly gener-
ate temporally aligned results X ′ ∈ R3×H×W . Note that we
also take the missing areas due to misalignment into consid-
eration, which is denoted as M and is calculated from the
learned offsets on the areas out of the image range. And M ′

is the downsampled version of M for aligned X ′. The final
loss is calculated between X,X ′, Y ′, Y,M,M ′ as:

L = |X ′ − Y ′| ∗M ′ + |X̃ − Y | ∗M. (6)

Using the above loss function, our network is optimized to
generate the final zoomed images.

4. EXPERIMENTS

4.1. Dataset

Our experiments are conducted on the SR-RAW dataset pro-
posed by Zhang et al. [5], which contains 500 image se-
quences, and each sequence consists of 7 images that captured
the same major objects in {240mm, 150mm, 70mm, 70mm,
50mm, 35mm, 24mm} focal length settings. Since the code
for 8X scale image loading is not available in the authors’
released code, we only trained super-resolution networks on
4X optical zoom, in which each sequence contains 3 low and
high resolution pairs for training. The low-resolution images
in RAW format are collected from the camera sensor directly
without ISP, while the corresponding high-resolution images
in RGB format are processed by the camera ISP. The mis-
alignment level is varied from 0 pixels to 80 pixels. During
training, we randomly cropped image pairs in 64× 64 pixels
from the low-resolution RAW images (128×128 in RGB) and
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SRResNet + L1ESRGAN* (RGB) SRResNet + CX Ours + L1 Ground TruthBicubic (RGB)

Fig. 3. The 4X zoomed results by SOTA methods and ours. (Zoom in for best view)

corresponding magnified patches in 512×512 pixels from the
high-resolution images. The training takes an average time of
5 hours on 8x2080ti GPU cards with 300 epochs.

4.2. Results

Quantitative Evaluation. The performance comparison is
showed in Table 1. Note that the ‘*’ mark after the compared
method indicates that it uses a pre-trained model. For com-
parison, we utilized the PSNR, SSIM, LPIPS [22] metrics
to measure the differences between the generated zoomed
images and the corresponding ground truths. Because the
misalignment commonly exists in the validation set, the eval-
uation metrics are fair enough to represent the performance
of different methods. Compared with the state-of-the-art
method, i.e., SRResNet+CX [5], our method learned on the
RAW format achieves the improvement of 3.65 dB higher
in PSNR, 0.089 higher in SSIM, and 0.057 lower in LPIPS.
The results also show that learning on the RAW format is
superior to learning on the RGB format, and our method
learned on the RAW format achieves 1.48 dB higher in PSNR
compared with our method learned on the RGB format. It
is worth noting that our method learned on the RGB format
also achieves higher performance than [5] on both RAW and
RGB formats.

Qualitative Evaluation. Some qualitative results are shown
in Figure 3. We use red rectangles to highlight the more
obvious areas in the full images and then show the zoomed
versions. From the visualized results, one can easily notice
that our method achieves the best visual quality with the most
accurate colors, especially in the area contains green plants.

Table 1. Average PSNR/SSIM/LPIPS on 4X optical zoom.

4X Optical Zoom

Format PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic RGB 20.15 0.615 0.344
SRResNet [3]* RGB 23.13 0.683 0.364
SRGAN [3]* RGB 20.31 0.384 0.260
Perceptual [2] RAW 18.83 0.354 0.270
ESRGAN [19]* RGB 22.12 0.603 0.311
SRResNet+CX [5] RGB 22.34 0.589 0.305
SRResNet+CX [5] RAW 26.88 0.781 0.190

Ours RGB 29.05 0.858 0.149
Ours RAW 30.53 0.870 0.133

Besides, our method also achieves competitive texture and
edge recovering performance compared with the GAN based
method and the contextual loss based method.

4.3. Ablation Study

In this section, we compared each component of our proposed
method with the vanilla DCN to demonstrate our superiority.
The quantitative comparison is shown in Tab 2. In the first
row, we compared the squared offsets with the per-point off-
sets, and the result shows our proposed squared offsets signif-
icantly increased the quality of the zoomed images. Then we
compare our proposed CPA with the vanilla channel attention
in the second row, in which both are based on SDCN. The
result proves the superiority of CPA compared with the chan-
nel attention, especially in the LPIPS metric, which achieves
0.086 lower LPIPS. Finally, we added the flip augmentation
to the method based on CPA and SDCN, which is the final
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version of our proposed SDAN, and we found the result was
greatly improved compared to the method without it.

Table 2. Average PSNR/SSIM/LPIPS on ablation studies.

4X Optical Zoom

PSNR↑ SSIM ↑ LPIPS ↓
DCN 20.91 0.752 0.281
SDCN 26.41 0.765 0.282

+ CL-Attention 25.73 0.764 0.277
+ CP-Attention 27.25 0.791 0.191

++ Flip Augment 30.53 0.870 0.133

5. CONCLUSIONS

In this paper, we propose an effective and efficient squared
deformable alignment network for misaligned optical zoom
learning. Our proposed squared offsets and cross packing at-
tention enable the network to learn the alignment and optical
zoom at the same time to solve the misalignment problem in
using pixel-wise loss functions. Compared with the state-of-
the-art methods that utilized the per-point deformable con-
volution and the contextual loss functions, our method can
generate better super-resolution images with fewer visual ar-
tifacts.
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