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ABSTRACT

Video salient object detection (VSOD) aims to locate and seg-
ment the most attractive object by exploiting both spatial cues
and temporal cues hidden in video sequences. However, spa-
tial and temporal cues are often unreliable in real-world sce-
narios, such as low-contrast foreground, fast motion, and mul-
tiple moving objects. To address these problems, we propose
a new framework to adaptively capture available information
from spatial and temporal cues, which contains Confidence-
guided Adaptive Gate (CAG) modules and Dual Differen-
tial Enhancement (DDE) modules. For both RGB features
and optical flow features, CAG estimates confidence scores
supervised by the IoU between predictions and the ground
truths to re-calibrate the information with a gate mechanism.
DDE captures the differential feature representation to enrich
the spatial and temporal information and generate the fused
features. Experimental results on four widely used datasets
demonstrate the effectiveness of the proposed method against
thirteen state-of-the-art methods.

Index Terms— Confidence estimation, gate mechanism,
differential feature, video salient object detection

1. INTRODUCTION

Video salient object detection (VSOD) aims to locate and seg-
ment the most attractive object in video sequences, which is
widely used as an important pre-processing step to reduce
computational burdens for many high-level computer vision
tasks, such as video compression [1], video captioning [2]
and person re-identification [3].

Different from salient object detection (SOD) that focuses
on predicting saliency maps by exploiting spatial informa-
tion extracted from one single image, VSOD further exploits
temporal information hidden in video sequences. Although
VSOD exploits more information to predict saliency maps, it
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Fig. 1. The challenges for video salient object detection in
scenes of low-contrast foreground (the first row), fast motion
(the second row) and multiple moving objects (the third row).
OF denotes the optical flow image and GT denotes the ground
truth.

also brings extra challenges, as shown in Figure[l] First, spa-
tial cues hidden in every single frame are often hard to be ex-
ploited when foreground and background share a similar fea-
ture representation. The first row shows that the RGB images
of low contrast between the salient objects and backgrounds
would bring in misleading information to predict background
objects wrongly. Second, temporal cues hidden between dif-
ferent frames could be disturbed by fast motion, large dis-
placements and illumination changes. The second row shows
that the motocross is distinctive from the background in the
RGB image but noisy in the optical flow image, which leads
to the absence of the rider in the saliency map predicted by
MGA. The third row shows that even the temporal informa-
tion from the accurate optical flow images would confuse
the spatial information in scenes of several moving objects.
Driven by these two challenges, one would ask: how can we
establish a model to automatically capture available spatial
and temporal cues while suppress noisy ones?

The existing methods may offer a partial solution to this
problem, which can be roughly classified into four groups,
i.e., hand-crafted VSOD, long-term memory VSOD, attention
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Fig. 2. The overall architecture of the proposed model.

VSOD, and parallel VSOD. First, hand-crafted VSOD meth-
ods try to combine the spatial information with motion cues
based on the prior knowledge, such as the spatio-temporal
background prior [4] and low-rank coherency [5]], which yield
poor performance limited by the hand-crafted low-level fea-
tures. Second, long-term memory VSOD methods [6) [7, (8]
extract the spatial information from the single image sepa-
rately and model the temporal information through convolu-
tional memory units such as ConvLSTM. Third, attention
VSOD methods use a non-local mechanism to capture tem-
poral information across several images [9]. The second and
third groups are cascaded models that extract features for each
frame and then model the dependence relationship between
video sequences based on the extracted features. These “first
spatial and then temporal” cascaded models cannot adaptively
capture available cues from both spatial and temporal cues to
cooperatively predict saliency maps. Fourth, instead of us-
ing cascaded ways, parallel VSOD methods [10] often adopt
a two-stream framework where one stream is to extract fea-
tures from every single frame and another stream is to process
temporal information independently by using optical flow im-
ages. However, the existing parallel VSOD methods simply
fuse spatial and temporal information without considering the
confidence of the spatial and temporal information.

To address the above issues, we propose a new framework
that adaptively captures available spatial and temporal infor-
mation to predict completely saliency maps. Specifically, we
introduce a Confidence-guided Adaptive Gate (CAG) module
that can estimate the confidence score of the input features by

calculating IoU value. With the confidence score, CAG passes
available information and suppresses the noises from spatial
and temporal cues. We also propose a Dual Differential En-
hancement (DDE) module that focuses on capturing differen-
tial information between spatial and temporal cues and gen-
erates the fused features.

Overall, our main contributions are summarized as fol-
lows:

* We propose a new framework to accurately predict the
saliency maps for video salient object detection, which
adaptively captures available information from spatial
and temporal cues.

* We propose a Confidence-guided Adaptive Gate (CAG)
module to suppress low-confidence information and a
Dual Differential Enhancement (DDE) module to ex-
ploit discriminative features enhanced by the differ-
ential information from the spatial and temporal dual
branch.

* Experiments on four widely used datasets demonstrate
the superiority of our proposed method against state-of-
the-art methods.

2. PROPOSED METHOD

In this section, we propose a Confidence-guided Adap-
tive Gate and Dual Differential Enhancement (CAG-DDE)
method for video salient object detection, which passes the



available information while suppresses the unreliable infor-
mation from spatial and temporal cues and enhances them
with differential information to completely segment salient
objects. As shown in Figure 2] the overall framework of the
proposed method is built on the encoder-decoder architec-
ture, which includes a shared encoder, an output decoder, a
number of Confidence-guided Adaptive Gate (CAG) modules
and Dual Differential Enhancement (DDE) modules. Given a
pair of RGB and optical flow images (visualization of optical
flow), the shared encoder outputs the RGB features and opti-
cal flow features at five different layers. Let EF¢Z and EOF
denote RGB features and optical flow features, respectively.
Here, i indicates the i-th layer, 1 < i < 5. Both EF¢E and
EPF are re-calibrated with their confidence scores estimated
by the CAG modules, and then merged by the DDE modules
to obtain the decoder features D;, which can be formulated as

Di = Fopr(Feac(EfP), Foac(BYT)), @

where Foac and Fppp denote a CAG operator and a DDE
operator. Next, five decoder features { D, }5_, at different lay-
ers are gradually combined by the output decoder. Following
[LO], we integrate an atrous spatial pyramid pooling (ASPP)
module after the DDE module at the fifth layer. The output
decoder is formulated as

Dl = { fconU(Di © ‘Fupsample(D;+1)) Z =1, 27 3,4
! -/—'.com)(D{i © -FASPP(D5)) 1 = 5

where © is a concatenation operator. Fipn, and Fypsample
are the operators of convolution and upsampling. Finally, we
upsample the final decoder features as the predicted saliency
map, which can be formulated as

@)

’

Pf - ]:upsample(Dl)~ (3)

2.1. Confidence-guided Adaptive Gate Module

In real-world scenarios, both the spatial and temporal images
contain unreliable information inevitably. How to measure
the reliability of the informative features and noisy features
is a key to the VSOD problem. To address the problem, we
propose a Confidence-guided Adaptive Gate (CAG) module,
which predicts the confidence score to represent the reliability
of the features and re-calibrate the features, as shown in the
bottom left of Figure 2]

Our CAG module is composed of two sub-networks, the
segmentation sub-network and confidence score prediction
sub-network. The segmentation sub-network consists of three
convolution layers, which is used to predict the saliency map
P; supervised by the ground truth GG;. The confidence score
prediction sub-network consists of three convolution layers
and one global average pooling layer, which aims to explic-
itly model the confidence score. We concatenate the predicted
saliency map and the input features as the input of the confi-
dence score prediction sub-network. Inspired by a segmenta-
tion quality metric Intersection over Union (IoU), we quantify

the confidence score as the IoU between the saliency map P;
and the ground truth GG;. Given the input feature E;, we can
obtain the confidence score by

S; = U(‘Fpred(]:seg<Ei> © E’L))7 (4)

where o is a sigmoid function that scales the confidence
score to (0,1). Fseqg and Fpoq refer to the segmentation
sub-network and confidence score prediction sub-network, re-
spectively.

Under the guidance of the predicted confidence scores,
our method adaptively re-calibrates the features based on a
gate mechanism, which is given by

]:CAG(Ei) =F;- Si(Ei), )

where - denotes the scalar multiplication. For each layer of
the encoder, we employ a segmentation sub-network and a
confidence score prediction sub-network to estimate the con-
fidence scores of features at different levels.

2.2. Dual Differential Enhancement Module

Color saliency obtained by the RGB feature and motion
saliency obtained by the optical flow feature are strongly com-
plementary with each other. However, most complementary
information is hidden in the difference between RGB and op-
tical flow features. To make full use of their complementarity,
we propose a Dual Differential Enhancement (DDE) module
to discover differential information between the RGB and op-
tical flow features, as shown at the bottom right of Figure [2]
For each branch, we extract the differential information by
subtracting the shared information and try to focus on learn-
ing branch-specific (spatial or motion) information. We then
enhance the original information by adding the differential
information. After the dual differential enhancement between
the RGB and optical flow features, the merged feature is com-
puted by

]:DDE - ]:con'u(]:e(RZRGB7RZOF) © fE(RiOF?RﬁGB))7 (6)
fe(Xay):Fconv(Y_X)+X (7)

where RESE and ROT denote the re-calibrated RGB and op-
tical flow features, respectively. Fppg refers to an operator
of dual differential enhancement module and F, refers to an
operator of differential enhancement for a single branch.

2.3. Loss Function

Following [11]], an effective loss function is adopted, which is
given by

Ly = Lpce(Pr,G)+ Lssivm(Pr,G) + Liou(Pr, G), (8)

where Lpcog, Lssinv, Loy are binary cross entropy loss,
structural similarity index measure loss and intersection over
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Fig. 3. Qualitative comparison of our method and the state-of-the-art methods.

union loss, respectively. Py and G denote the predicted
saliency map and ground truth, respectively. These three
losses are given by

Lpcr = —(GlogP + (1 — G)log(1 — P)), 9)
(2pppc + C1)(20pg + Cs)

L —1— . (10

ss = e Ot at+ Ca) )
TP

[ P — 11
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where P denotes the predicted saliency map. pp and op (g
and o) are the mean and standard deviations of the predicted
saliency map (ground truth), respectively. op¢ is the covari-
ance of P and G. TP, TN and FP represent true-positive, true-
negative and false-positive, respectively.

For the CAG module at the i-th layer, we adopt the binary
cross entropy loss to train the segmentation sub-network and
11 loss to regress the confidence score prediction sub-network.
Therefore, the loss function of CAG can be formulated as

L; = Lpce(P},Gy) + Li, (s}, Frou (P}, Gy)), (12)
where Fr,p is a function to calculate the IoU. ¢ indicates the
type of features, including RGB for RGB features and OF
for optical flow features. G; is downsampled from the ground

truth, which has the consistent size as the predicted saliency
map P;. Finally, the total loss function can be written as

N
Liotar = Ly + Y > LI, (13)
t =1

where N is 5.

3. EXPERIMENTS

3.1. Experimental Setup

Datasets: To evaluate the effectiveness of our method, we
conduct experiments on four widely used public datasets, in-
cluding SegV2 [17]], FBMS [18], DAVIS [19]] and DAVSOD
[8]] datasets.

Evaluation Metrics: To quantitatively evaluate the per-
formance of VSOD, we adopt three metrics in our experi-
ments, i.e., F-measure [20], S-measure [21] and Mean Ab-
solute Error (MAE) [22]. F-measure is defined as

(1+ B%) x Precision x Recall
B2 x Precision + Recall

Fg = , (14)

where 32 is set to 0.3 and we report the maximum F-measure
for evaluation. S-measure takes both region-aware and object-
aware structural similarity into consideration. MAE measures
the pixel-level average absolute difference between the pre-
dicted map and ground truth.

Implementation Details: We implement our method on
Pytorch. We use the pre-trained ResNet-101 [23]] as our initial
backbone. We employ RAFT [24] to render optical flow im-
ages. Following the previous methods [10, (9], we remove the
CAG modules and the DDE modules, and pre-train our model
with the training set of DUTS [25]]. After pre-training, we use
the training set of DAVIS and DAVSOD to train the whole
network. We resize the input images to 448 x 448. We apply
random horizontal flipping and scaling the input images with
scales {0.75, 1, 1.25}. We use the Adam optimizer to train
our model with an initial learning rate of 1e-5 with batch size
of 4.



Table 1. Quantitative comparison with the state-of-the-art static and video salient object detection methods by three evaluation
metrics. The best three results are highlighted in red, green, and blue respectively.

Method | Year DAVSOD DAVIS SegV2 FBMS
max Fg 1+ ST MAE | max Fg1T ST MAE | max Fg1 ST MAE||max F3 1t ST MAE|]
Static Salient Object Detection
EGNet[12] [2019] 0.604 0.719 0.101 | 0.768 0.829 0.056 | 0.774 0.845 0.024 | 0.848 0.878 0.044
CPD[13] |2019| 0.613 0.723 0.092 | 0.810 0.863 0.031 | 0.778 0.841 0.023 | 0.841 0.867 0.048
BASNet[11]{2019| 0.597 0.708 0.109 | 0.812 0.858 0.031 | 0.774 0.838 0.023 | 0.822 0.858 0.047
ITSD[14] |2020{ 0.651 0.747 0.094 | 0.835 0.876 0.033 | 0.807 0.787 0.027 | 0.843 0.869 0.040
Video Salient Object Detection
STBP[4] |2016] 0.410 0.568 0.160 | 0.544 0.677 0.096 | 0.640 0.735 0.061 | 0.595 0.627 0.152
SFLR[S] |2017| 0.478 0.624 0.132 | 0.727 0.790 0.056 | 0.745 0.804 0.037 | 0.660 0.699 0.117
SCOM[13] [2018] 0.464 0.599 0.220 | 0.783 0.832 0.048 | 0.764 0.815 0.030 | 0.797 0.794 0.079
SCNN[16] (2018 0.532 0.674 0.128 | 0.714 0.783 0.064 - - - 0.762  0.794 0.095
FGRNEJ6] (2018] 0.573 0.693 0.098 | 0.783 0.838 0.043 - - - 0.767 0.809 0.088
PDBM[7] |2018| 0.573 0.698 0.116 | 0.855 0.882 0.028 | 0.800 0.864 0.024 | 0.821 0.851 0.064
SSAV[8] [2019| 0.603 0.724 0.092 | 0.861 0.893 0.028 | 0.801 0.851 0.023 | 0.865 0.879 0.040
MGA[10] |2019| 0.655 0.751 0.081 | 0.892 0.912 0.022 - - - 0.906 0.910 0.026
PCSA[9] |2020] 0.656 0.741 0.086 | 0.878 0.901 0.022 | 0.811 0.866 0.024 | 0.831 0.864 0.040
Ours - 0.670  0.762 0.072 | 0.898 0.906 0.018 | 0.826 0.865 0.027 | 0.858 0.870 0.039

Table 2. Ablation studies of the proposed network architec-
ture on DAVIS and DAVSOD datasets.

Methods DAVIS DAVSOD
max s 1 | MAE] | max Fs 1 | MAE |
Baseline (Concat) 0.869 0.023 0.645 0.080
Baseline + CAG 0.887 0.022 0.662 0.072
Baseline + DDE 0.892 0.020 0.656 0.074
Ours 0.898 0.018 0.670 0.072

3.2. Comparison with State-of-the-art Methods

We compare our method against four state-of-the-art static
salient object detection methods including EGNet [12], CPD
[13], BASNet [[L1]], ITSD [14]. We also compare our method
against nine state-of-the-art video salient object detection
methods including STBP [4], SFLR [5], SCOM [15], SCNN
[L6], FGRNE [6], PDBM [7], SSAV [8], MGA [10], PCSA
[9]. In our experiments, we employ the evaluation code [8]] to
evaluate all the saliency maps for a fair comparison.
Quantitative Evaluation. We first conduct a quantitative
evaluation, as shown in Table[T} It is observed that our method
achieves state-of-the-art results on three datasets. Specifi-
cally, our method outperforms other state-of-the-art methods
under the metric max Fjg on DAVIS, SegV2 and DAVSOD
datasets, and achieves the third-best performance on FBMS
dataset. Note that the leading performance of MGA on FBMS

dataset is mainly induced by using the FBMS training set.
Notably, our method achieves significant performance im-
provement on the most challenging dataset DAVSOD com-
pared with the second-best method MGA (0.670 V.S. 0.655,
0.762 V.S. 0.751, 0.072 V.S. 0.081 in terms of max Fjg, S and
MAE respectively), which demonstrates the superior perfor-
mance of our method in complex scenes.

Qualitative Evaluation. We conduct a qualitative eval-
uation in different scenes, as shown in Figure E} The results
show that our method can accurately locate and segment the
salient objects in several complex scenes, such as multiple
moving objects (the first row), cluttered foreground and back-
ground (the second and third rows), complex boundary (the
fourth row) and saliency shifts (the last row).

3.3. Ablation Studies

The proposed network is composed of two main modules,
the Confidence-guided Adaptive Gate (CAG) module and the
Dual Differential Enhancement (DDE) module. To verify
the effectiveness of each component, we conduct an abla-
tion experiment on two large-scale datasets, i.e., DAVIS and
DAVSOD. The experimental results are shown in Table [2]
The first row is the baseline model that merges two features
with the concatenation operation. The second and third rows
show that both CAG and DDE can boost performance com-
pared with the baseline. Moreover, the combination of the
CAG and DDE modules can further improve the performance.



Table 3. Comparison with different fusion mechanisms on
the DAVIS and DAVSOD datasets.

Methods DAVIS DAVSOD
max F3 1 | MAE| | max Fg T | MAE |
Cat 0.869 0.023 0.645 0.080
Add 0.865 0.024 0.656 0.082
Mul 0.870 0.023 0.625 0.087
Ours 0.898 0.018 0.670 0.072

4. CONCLUSIONS

In this paper, we propose a new video salient object detec-
tion method to exploit available spatial and temporal infor-
mation to predict robust saliency maps. We first propose
a Confidence-guided Adaptive Gate (CAG) module to fil-
ters unreliable cues from spatial and temporal information.
We then propose a Dual Differential Enhancement (DDE)
module, which merges spatial and temporal information en-
hanced by differential features to capture complementary in-
formation. Experimental results on four widely used datasets
demonstrate the effectiveness of our proposed method.
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