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ABSTRACT

In this work, we explore the use of speaker conditioning sub-
networks for speaker adaptation in a deep neural network
(DNN) based speech emotion recognition (SER) system. We
use a ResNet architecture trained on log spectrogram features,
and augment this architecture with an auxiliary network pro-
viding speaker embeddings, which conditions multiple layers
of the primary classification network on a single neutral speech
sample of the target speaker. The whole system is trained end-
to-end using a standard cross-entropy loss for utterance-level
SER. Relative to the same architecture without the auxiliary
embedding sub-network, we are able to improve by 8.3% on
IEMOCAP, and by 5.0% and 30.9% on the 2-class and 5-class
SER tasks on FAU-AIBO, respectively.

Index Terms— speech emotion recognition, affective
computing

1. INTRODUCTION

Speech emotion recognition (SER) architectures are highly
dependent on speaker-specific characteristics [1, 2, 3]. That
is a natural byproduct of the emotional expression process,
which is highly individualised [4, 5]. Different people both ex-
perience and express emotions in different ways, which causes
differences in the bio-signals they emit during an emotional
episode. For the audio modality in particular, the acoustic
properties of the speaker’s voice (e. g., their fundamental fre-
quency) additionally influence the signal that is captured by an
SER system — an effect which further complicates the analysis
process. Therefore, when an automatic framework is utilised
to identify a person’s emotional state, it needs to take these
individual differences into account, even more so when it relies
on the audio modality.

This has led the SER community to adopt speaker-
independent test sets in order to measure model performance
in an unbiased way, as seen, for example, in the Interspeech
Computational Paralinguistics Challenge (ComParE) series [6].
On the other hand, different modelling approaches have been
proposed for taking speaker dependence into account; either

by incorporating it directly into the algorithm to improve per-
formance, or by trying to remove it to boost generalisation.

One approach is to try and remove speaker-dependent
characteristics from the input features. Recently, Tu et al.
[7] used the well-known deep adversarial domain adaptation
framework [8], jointly training a network to predict emotion
but mis-classify speaker. Li et al. [9] extend that framework
by disentangling the speaker classification from the emotion
recognition sub-networks into two separate steps, and then
training the latter to cause more mis-classifications in the for-
mer, thus removing speaker information.

More relevant to this work, a typical methodology is to
apply some form of speaker-specific normalisation. Vlasenko
et al. [2] utilise speaker normalisation in the feature space and
report a 4 % accuracy increase. They normalised using the
mean and standard deviation of all samples for each speaker.
Sethu et al. [10] apply feature warping (i. e., histogram nor-
malisation) to map all features of every speaker to the normal
distribution, taking into account both emotions and all samples
present in their data set of choice. Schuller et al. [11] perform
speaker normalisation in the feature space in the context of
cross-corpus SER, and compare it to other normalisation strate-
gies. They conclude that speaker normalisation yields the best
performance in that context. However, in order to successfully
normalise, they require the entire emotional spectrum to be
taken into account. Busso ef al. [12] overcome the need for
prerecorded samples of the target speaker by proposing an
iterative feature normalisation technique that starts by auto-
matically detecting neutral samples at test time, and adjusts
the normalisation parameters based on those. They show im-
proved results in a neutral vs emotional binary classification
problem.

Even though speaker normalisation approaches show im-
proved performance, a major limitation is that they usually
require access to the full spectrum of the target speaker’s emo-
tions. However, this data is hard to collect in practice, as
it would require access to the speaker’s true emotional state,
unknown at test time. A typical way to mitigate this is to
make use of a speaker enrolment phase, which seeks to collect
several samples during the system’s deployment phase.
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Fig. 1: Diagrams of the architectures used in this work. Figure 1a shows the TwoChannel architecture. The same architecture
was uscd for the bascline ResNet, but with a single channel input. Figure 1b shows the main architecture on the right, and the
embedding sub-network on the left. Finally, Figure 1c shows the inner workings of each single conditional residual block.

Unfortunately, such approaches are highly impractical. In
their simplest form, they rely on the user acting their full
range of emotion during a preliminary enrolment phase, thus
suffering from the discrepancy between acted and naturalistic
emotions [13, 14]. Alternatively, they collect and automatically
label samples using a universal SER model during the system’s
initial deployment, and later use that data to compute the
normalisation parameters [12]. However, there is no guarantee
that the user will maintain the interaction long enough, as
e.g. in interactive voice response (IVR) systems [15], nor that
the mis-classifications of the universal model will not cause a
mis-calibration of the normalisation parameters.

This means that although utilising speaker-specific infor-
mation can be highly beneficial for SER systems, most ap-
proaches that try to incorporate that information end up being
impractical for real-life use cases. On the other hand, although
methods that focus on removing speaker-specific information
are more conducive to practical applications, they fail to cap-
italise on that information, thus missing out on the potential
benefits that come with personalisation.

In contrast, we introduce a new deep neural network
(DNN) framework that allows us to adapt to each new speaker
using a single neutral utterance, which enables us to take advan-
tage of the benefits associated with speaker adaptation without
requiring a lot of data from the target speaker. This makes our
approach suitable even for relatively short interactions. Our
main contribution lies in introducing a secondary sub-network
that processes the neutral sample to generate an embedding,
which is then used to condition the intermediate layers of the
main classification network. This approach is motivated by
recent advances in the use of embeddings for audio tasks [16,
17], but also by the successful use of conditioning embeddings
in the image domain, most notably in the recent case of Style-
GAN[18]. Our goal is to investigate whether conditioning the
intermediate layers of a DNN on speaker information can help
it model the target task, in this case SER, more efficiently. In
order to judge whether this embedding sub-network is neces-
sary, we also compare it against a straightforward extension

of the baseline architecture, which accepts the neutral sample
as an additional input. Our results show that the use of the
embedding sub-network is necessary for the success of the
approach.

The remaining of this paper is organised as follows. In
Section 2, we introduce our proposed framework. The data
sets we used are described in Section 3. Experimental results
are presented in Section 4.

2. ARCHITECTURE

Our architecture, which we will be referring to as eResNet, con-
sists of a main residual network (ResNet) [19] that performs
the SER task, and an auxiliary sub-network which conditions
each residual layer of the main network on the neutral sam-
ple of the target speaker. This architecture has been initially
proposed for monaural speech denoising [16, 20], where the
auxiliary network was trained to condition on recordings of the
target noise environment. Liu et al. [17] used this architecture
for monaural speech separation by conditioning on a sample
from cither on or both of the target speakers. In both these
cases, the network was trained to output an additive denoising
(or separation) mask, and its input was fixed-length sequences.
In the present contribution, we adapt it for a classification
task, and extend it to work for variable length sequences by
introducing a temporal average pooling layer.

A detailed diagram is shown in Figure 1b. The main
architecture consists of 8 conditional residual blocks, each
block consisting of two convolutional layers, batch normali-
sation [21], and rectified linear unit (ReLU) activations. The
structure of a conditional residual block is shown in Figure 1c.
The residual blocks are followed by a convolution layer applied
only on the {requency axis, and a temporal average pooling
layer applied on the time axis. This temporal pooling layer
allows us to handle input sequences of variable length. Finally,
the network’s output consists of two linear layers, intertwined
with a ReLU activation.

The embedding sub-network is made up of 4 standard



residual blocks [19], followed by a convolution layer on the
frequency axis, a temporal average pooling layer on the time
axis, and a single linear layer that maps the output to the
appropriate dimensionality. This sub-network is fed a neutral
sample of the target speaker and outputs an embedding vector
of fixed dimensionality. This embedding vector is then fed
into each residual block of the main architecture, which then
maps it to the appropriate dimension and adds it to the output
of both convolutional layers.

We apply this architecture to the task of SER for two
widely used data sets described in Section 3, and show that
using an auxiliary embedding sub-network to condition on the
target speaker is beneficial to the downstream task. However,
it is not straightforward why that happens. A particular con-
cern is that the auxiliary network is superfluous, and that the
baseline network was capable of doing that adaptation on its
own, given the appropriate input. To test that hypothesis, we
train a variant of the baseline ResNet architecture with the
input layer modified to accept two channels. The first channel
is used for the sample to be classified, and the second for the
neutral sample of the target speaker. With this experiment,
we attempt to investigate whether the auxiliary sub-network
brings any benefits at all. This architecture, which, with the
exception of the number of input channels in the first layer, is
identical to the baseline network, is shown in Figure 1a. We
will henceforth refer to this architecture as TwoChannel.

The input to the networks were log-spectrograms. To
compute the short-time Fourier transform (STFT), we used
a window size of 0.025s, and a hop size of 0.010s. In ad-
dition, we peak-normalised the amplitude of the input audio
per segment. In our preliminary experiments, we tried out
Mel spectrograms but got no performance improvement and
therefore report no results for them.

As mentioned, our architecture is capable of handling se-
quences of variable length. However, during training time, it
is beneficial to train on mini-batches to decrease the training
time and obtain better convergence. A downside of this ap-
proach is that all the samples in the batch must have the same
dimensionality. We chose to crop all training samples to a
fixed length during training time, and use the entire sequences
at test time. This methodology is quite common in the speaker
identification literature [22, 23]. FAU Aibo Emotion Corpus
(FAU-AIBO) contains a lot of short segments, so we used
a 2s window which is the maximum segment length in the
data set. interactive emotional dyadic motion capture database
(IEMOCAP) contains longer segments, and so we used the
mean segment length which is 4.5s.

Finally, all networks were trained using stochastic gradient
descent (SGD) for a total of 30 epochs with a learning rate of
0.001 and a weight decay of 0.005. We tested three different
batch sizes: 8,16, 32, and report the best result achieved for
each architecture. We used early stopping based on the model’s
performance on a validation set for each data set as described
in Section 4.

Table 1: Data set specifications.

IEMOCAP FAU-AIBO
Speakers 10 (5f/5m) 51 (30f/21m)
Duration 06:22:43 08:50:49
Neutral 1,747 | A 1,492 IDL 5,823
Anger 658 E 3,601 NEG 12,393
Samples Sadness 1,782 | N 10,967
Happiness 1,074 | P 889
R 1,267

3. DATA SETS

As outlined, we test our approach in two widely used SER data
sets: IEMOCAP [24], and FAU-AIBO [25].

IEMOCAP consists of scripted and improvised dyadic con-
versations between a total of 10 actors (5 male - 5 female). The
data was recorded in 5 sessions, with each session consisting
of conversations between a single actor pair (1 male - 1 fe-
male). It consists of approximately 12 hours of total data'. The
corpus contains video, audio, and motion capture data, though
in the present work we only make use of the audio modality.
Similar to other previous work [26, 27, 28, 29], we only focus
on the four basic emotions of anger, happiness, neutral, and
sadness. We did not fuse excitement into happiness.

FAU-AIBO was used in the first ComParE challenge. It
contains German children emotional speech recorded in a
Wizard-of-Oz scenario. The children were giving instructions
to a robot which performed predetermined actions irrespective
of the instructions given.

The data set has been initially annotated for 11 classes, but
we use the formulations defined for the first InterSpeech Com-
ParE challenge, namely, first, a five class problem, by defining
the following categories: angry (A), emphatic (E), neutral (N),
positive (P), rest (R), and, second, a binary classification prob-
lem by adopting the following partitioning: negative (NEG),
idle (IDL).

As shown in Table 1, both data sets exhibit a class im-
balance, which is more pronounced for FAU-AIBO. Previous
work [30] has shown that simply balancing the training set by
random sub-sampling can lead to increased performance for a
number of different algorithms. We avoid sub-sampling our
data set since DNN typically need a lot of data to train, and
use a weighted non-negative likelihood loss, weighting each
sample by the inverse of the frequency of its class in the loss.
The loss function then becomes:

N K
1
L= ——1(yn == k)logpy, (1)

w
n—lk=1 K

!In Table 1 we report the duration of the data we used for our experiments.



Table 2: Unweighted average recall (UAR)% results for FAU-
AIBO using the official train/test splits and emotion classes of
the IS2009 ComParE challenge.

Method 2-class 5-class
SVM 66.8 26.3
SVM-NORM 71.2 37.5
ResNet 64.1 31.5
ResNet-NORM 67.7 35.1
TwoChannel 63.5 32.4
eResNet 67.3 41.3

where K is the number of classes, N the number of samples in
a mini-batch, y; the one-hot representation of the labels, and 1
being the indicator function p}, the network outputs for the i
element in the batch corresponding to the k" class, and wy, is

defined as:
N

W = N )
Zn:l ]l(yl == )

and computed once over the entire training set.

@)

4. EXPERIMENTS

For both data sets, we perform the following set of experi-
ments:

1. baseline ResNet architecture without the embedding
sub-network

2. ResNet-NORM which is the baseline architecture but
trained and evaluated on speaker-normalised features

3. TwoChannel. This is the variant of the model modified
to accept a two-channel input, with the second input
being the neutral sample for the target speaker.

4. our eResNet architecture

In addition, we report results with a standard base-
line, namely support vector machines (SVMs) [31] trained
on utterance-level acoustic features. As features, we
use the extended Geneva minimalistic acoustic predictors
(eGeMAPS) [32] computed with openSMILE [33]. The fea-
tures are normalised either on the entire training set (referred
to as SVM in the result tables), or independently for each
speaker (referred to as SVM-NORM).

For IEMOCAP, we report leave-one-speaker-out (LOSO)
cross-validation (CV) results for all our experiments. When
testing on one speaker, we use the other speaker of their session
as our validation set for early stopping. We report UAR results
in Table 3. Results have been averaged over the 10 folds.
We also report results by recent state-of-the-art methods that
focused on learning speaker invariant representations [7, 9].
However, we caution that the results reported in those works

are not directly comparable to ours. Specifically, Tu et al. [7]
used different test conditions (5-fold CV) than we did. Li et al.
[9] used the same folds, but merged the excitement class into
happy, and furthermore extended the training set through data
augmentation. Therefore, when comparing to these works we
primarily focus on relative improvements.

For our experiments on FAU-AIBO, we use official parti-
tions of the InterSpeech 2009 ComParE challenge [6]. Specifi-
cally, we use one school for training (Ohm), and one for testing
(Mont) following the protocol of the challenge. In all our ex-
periments, we used one female and one male subject from
our training set as validation. We picked subjects with the
following ids: 37, 32. We report UAR results for both the
binary and the multi-class classification problems in Table 2.
During training, we use random neutral samples from each
target speaker. During testing, we always use the first one
for that particular speaker in our dataset for our preliminary
experiments, and perform an ablation study on the choice of
neutral sample in Table 4.

4.1. Results

Overall, the eResNet architecture performs consistently better
than both the baseline and the TwoChannel network. Specifi-
cally, we obtain a 8.3% relative improvement for IEMOCAP,
which compares favourably to 7.4% and 4.3% reported by Tu
et al. [7] and Li et al. [9], respectively. For FAU-AIBO, our
gains are 5.0% and 30.9% for the 2-class and 5-class problems.

Results in Table 2 show that speaker normalisation is ben-
eficial for both the SVM baseline and our ResNet architecture,
a finding consistent with previous literature results. The eRes-
Net architecture yields marginally worse performance for the
2-class case over its baseline, and a big improvement for the
5-class casc compared to normalising the features of cach
speaker over the entire set. In comparison, the TwoChannel ar-
chitecture does poorly with respect to both other normalisation
approaches, and performs almost on-par with the baseline.

On the IEMOCAP data set, we observe a counter-intuitive
drop in performance when doing speaker normalisation over
the features of the entire set for the ResNet architecture, and
small gains for the SVM baseline. We were not able to find a
satisfactory explanation for this phenomenon, but an examina-
tion of the data shows that there is some overlap between two
speakers of the same session, which may be responsible for
a miscalibration of the normalisation process. The eResNet
architecture, on the other hand, yields a clear improvement
over the baseline, that compares favourably to previous work,
and does not suffer from this miscalibration issue.

4.2. Discussion

Relative to recent state-of-the-art systems in SER [34, 35, 36],
our method yields subpar performance. However, our focus
on this work was to investigate whether the introduction of



Table 3: Average UAR% results for [IEMOCAP on 4-class emotion classification using leave-one-speaker-out cross-validation.

Target classes where angry, happy, neutral, sad.

Method SVM SVM-NORM ResNet

ResNet-NORM  TwoChannel

eResNet Lietal [9]" Tuetal [7]"

UAR 48.9 50.3 523 47.1

52.0 56.5 59.9 57.3

* Performance reported by original authors. Settings not directly comparable to ours. See text for more details.

auxiliary embedding sub-networks can act as a new paradigm
for speaker adaptation in contemporary deep learning (DL)
systems. This is demonstrated by the relative improvements
obtained by our methodology, which compare favourably to
our feature normalization baselines, and recent DL methods
for obtaining speaker-invariant representations [7, 9].

Our results further indicate that simply passing the neutral
sample as a second input to an architecture is not enough for it
to learn a mapping between a speaker’s neutral voice and their
current emotional state. Rather, conditioning each individual
residual block on learnt embeddings seems to yield substantial
performance improvements, which highlights the importance
of the auxiliary sub-network.

We have not yet established a sufficient cause for that boost
in performance. As previously stated, there is a connection
between our work and style transfer approaches such as Style-
GAN [18, 37]. There, the embeddings (referred to as latent
codes by Karras et al. [18]) serve the purpose of locally con-
ditioning each convolution block to learn a particular affine
transformation that corresponds to a particular “style” (e. g.,
a person in an image wearing glasses or not). The goal of
the embedding sub-network (referred to as mapping network)
is then to generate latent codes that are able to disentangle
the different styles, which then help the main generator ap-
ply those styles locally. Likewise, we expect our embedding
sub-network to learn some particular speaker-specific charac-
teristics, which are then used by the residual blocks of the main
network in a similar manner to process specific parts of the
input space (in our case log-spectrograms) while taking into
account the speaker ‘style’. This connection will be further
explored in follow-up work.

Another important observation is that all networks were
given the same computational budget (30 epochs). However,
the eResNet architecture was bigger than the other two net-
works used in this work, which could have led to decreased
performance compared to the smaller baseline architectures.
This acts as further justification that this particular training
formulation could allow architectures to learn the SER task in
a more data-efficient manner.

4.3. Impact of neutral sample selection

To study the effects that the neutral sample selection has at test
time, we evaluated the eResNet and TwoChannel architectures
10 times, each with a different neutral sample of the target sub-

Table 4: Mean (standard deviation) of UAR% for FAU-AIBO
when varying the neutral sample at test time

Classifier ‘ 2-class 5-class
TwoChannel | 60.7 (0.6) 32.4(0.7)
eResNet 67.3 (0.0) 40.5(0.6)

ject. For our ablation experiments, we focus on the FAU-AIBO
data set which has a well-defined test set that includes multiple
speakers, since that allows us to get a better understanding of
how different enrollment samples impact performance across
different speakers for one particular model. We used the first
10 samples for each subject in the order they appear in the data
set, and report mean and standard deviation of performance
over those 10 runs in Table 4.

This experiment shows that both architectures are fairly ro-
bust to the selection of the neutral sample for each speaker, as
we observe very small differences in performance when vary-
ing our choice. In addition, we measure the statistical signifi-
cance of the difference in the performance of the architectures
using a two-sided t-test. For both the 2-class (p < 0.0001)
and the 5-class (p < 0.0001) tasks, we observe statistically
important differences at the 0.05 level.

5. CONCLUSION

In this work, we introduce a novel DNN framework for speaker
adaptation, utilizing an additional sub-network that conditions
the primary classification network on a single reference sample.
We were able to show that our approach gives better perfor-
mance than a baseline network without any adaptation, and
that using an auxiliary embedding sub-network is beneficial to
simply providing the network with the reference at its input.

From a practical perspective, results demonstrate that we
can get performance improvements even compared to speaker
normalisation approaches that have access to the full range
of a speaker’s emotions, while adapting to the target speaker
in a data-cfficient manner suitable for practical applications.
Although our approach still lacks behind the current state-
of-the-art for SER, the performance gains achieved for this
particular setting show great promise. In the future, we intend
to combine our method with recent approaches in SER [34, 35,
36] in order to bridge that performance gap.
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