
STUDY ON CODING TOOLS BEYOND AV1

Xin Zhao*, Liang Zhao*, Madhu Krishnan*, Yixin Du*, Shan Liu*

Debargha Mukherjee†, Yaowu Xu†, Adrian Grange†

*2747 Park Blvd, Palo Alto, CA 94306, United States, xinzzhao@tencent.com

†1600 Amphitheatre Parkway, Mountain View, CA 94043

ABSTRACT

The Alliance for Open Media has recently initiated coding

tool exploration activities towards the next-generation video

coding beyond AV1. With this regard, this paper presents a

package of coding tools that have been investigated,

implemented and tested on top of the codebase, known as

libaom, which is used for the exploration of next-generation

video compression tools. The proposed tools cover several

technical areas based on a traditional hybrid video coding

structure, including block partitioning, prediction, transform

and loop filtering. The proposed coding tools are integrated

as a package, and a combined coding gain over AV1 is

demonstrated in this paper. Furthermore, to better understand

the behavior of each tool, besides the combined coding gain,

the tool-on and tool-off tests are also simulated and reported

for each individual coding tool. Experimental results show

that, compared to libaom, the proposed methods achieve an

average 8.0% (up to 22.0%) overall BD-rate reduction for All

Intra coding configuration a wide range of image and video

content.

Index Terms— AOMedia, AV1, video coding

1. INTRODUCTION

In recent years, new generation of video coding standards

have been developed by multiple international multimedia

standardization organizations, including AOMedia Video 1

(AV1) [1] released in 2018 by Alliance for Open Media

(AOMedia), AVS3 [2] released in 2020 by the Audio Video

coding Standard (AVS) Workgroup of China and Versatile

Video Coding (VVC) [3] standard released in 2020 by the

Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and

ISO/IEC JTC1/SC29/WG11. These new-generation video

coding standards have reportedly achieved substantial coding

gain beyond the capability of their predecessors, including

VP9, AVS2, and HEVC, and comparisons among the

reference software developed for these standards have been

conducted in the literature [4]. Looking forward, new

requirement for next-generation video coding is driven by the

emerging popularity of new video related applications (such

as 8K, short music videos, cloud gaming and artificial

intelligence in video), which are key technologies for video

production and communications. With this regard,

standardization organizations have started looking into the

potential of developing new video coding methods beyond

the capability of existing codecs. In ISO/IEC JTC 1/SC 29

WG1 (JPEG) and WG5 (JVET), expert groups have started

exploration of neural network-based image and video coding

technologies [5][6], respectively. In AOMedia, activities

have been kicked off for the exploration of video coding

technologies beyond AV1.

In this paper, several coding tools are investigated

together as a package in the context of exploring new coding

tools with capabilities beyond AV1. The coding tools are

related to several key modules of traditional hybrid video

coding structure, including block partitioning, intra

prediction, transform and loop filtering. The investigated

methods are described together with extensive experimental

results and analysis.

The remainder of this paper is organized as follows. In

Section 2, a brief review of AV1 coding tools is provided. In

Section 3, the proposed tool investigations are categorized

and described in different subsections. Experimental results,

including both tool on/off tests are reported in Section 4 and

the paper this concluded in Section 5.

2. BRIEF REVIEW OF AV1

Similar with other mainstream international video standards,

AV1 also adopts the traditional hybrid video coding structure

with extension and enhancement to different modules.

For block partitioning, in total 10 different partitioning

patterns are supported, including binary-tree, quad-tree, T-

type and 4-way horizontal/vertical splitting, and quad-tree

splitting is the only partitioning pattern that supports further

partitioning on each sub-block in a recursive manner.

For intra prediction, directional intra prediction modes

have been extended from 8 (in VP9) to 56, and new non-

directional intra prediction modes, including Paeth Predictor,

recursive filtering modes, and CfL mode have been

employed.

mailto:xinzzhao@tencent.com

For inter prediction, more flexible motion models with

different number of control parameters (up to 6), e.g., local

warped motion, are supported to simulate more complex

motion beyond translational model. The motion vectors of

non-adjacent neighboring blocks have been used for motion

vector prediction. In addition, in AV1, an Overlapped Block

Motion Compensation (OBMC) mode is also supported.

For transform coding, additional types of transform

kernels (namely ADST, flipped ADST and IDT) are

incorporated together with DCT-2 for performing the

transform on residual samples. For entropy coding, a multi-

symbol arithmetic coding engine is used to code a syntax with

up to 16 different values. For coefficient coding, a bit-plane

based coding approach is used.

For loop filtering, besides deblocking, AV1 also adopts

the Constrained Directional Enhancement Filter and Loop

Restoration (LR) filter. The LR filter further comprises two

methods, i.e., Winer filtering and self-guided filter. A film

grain synthesis method has also been adopted in AV1 as a

normative part of the codec to synthesize film grain.

For screen content coding, AV1 adopts the well-known

Intra Block Copy (IBC) [7] and Palette mode [8] with

different detailed designs compared to other existing video

codecs.

3. CODING TOOLS BEYOND AV1

3.1. Partitioning

3.1.1. Semi-decoupled partitioning

Image samples typically show strong correlations across

different color channels since they represent same object,

however, there can be still very different statistics for

different color components. With YCbCr color space, luma

component typically show finer details in textures whereas

chroma component is usually much smoother. To utilize the

correlation and adapt the different statistics among different

color components, a semi-decoupled partition (SDP) method

is proposed for coding block partitioning. With SDP, luma

and chroma share the same coding block partitioning toward

a specified partitioning depth. After this specified depth,

different partitioning patterns can be chosen and signalled for

luma and chroma components separately.

An example of block partitioning using SDP is shown in

Fig. 1, where solid lines indicate partitioning boundaries that

are shared and signalled together for luma and chroma, and

dashed lines indicate partitioning boundaries that are

signalled separately for luma and chroma. In this example,

the luma and chroma components share one level of block

partitioning and further splitting under this level is signalled

separately. From experimental results, different image/video

content and test conditions can have different preference on

the shared depth of block partitioning. With this proposed

SDP method, there is flexibility to decide how many levels

luma and chroma components share the partitioning depth,

and this is indicated in high-level syntax.

3.2. Prediction

3.2.1. Improved intra mode coding

For intra prediction mode signalling, in AV1, 8 nominal intra

prediction modes (IPMs) together with 5 non-directional

IPMs are firstly signaled. Then, if current mode is directional

IPMs, an offset is further signaled to indicate the angle delta

relative to the associated nominal IPM. To better signal the

intra prediction modes, intra prediction using adaptive

prediction angles was proposed in [12], wherein only a subset

of the IPMs are allowed and signaled for each block. The

subset of IPM is adaptively selected according to the IPMs of

neighboring blocks.

In addition, to capture the correlation between luma and

chroma delta angles, it was proposed to derive the context of

the chroma delta angles based on the delta angles of the co-

located luma blocks [13]. In this paper, both methods are

combined and implemented on top of SDP, wherein the top-

left position in the chroma block is used to locate the

corresponding luma block since luma and chroma blocks may

have different partitions.

3.2.2. Intra prediction using extended references

The idea of using multiple reference lines (MRL) for intra

prediction was proposed in [10][11], and further investigated

on top of AV1 in [12]. In this paper, further optimizations

have been done when it is integrated together with other

coding tools presented in this paper. For non-zero reference

lines, instead of 2-tap bilinear interpolation, 4-tap edge

preservation interpolation filter is used for generating intra

prediction samples.

Figure 1: Illustration of coding block partitioning using SDP

for luma (left) and chroma blocks (right).

3.3. Transform

3.3.1. Extension on primary transform

Line graphs are mathematical structures consisting of

sets of vertices and edges, which are used for modelling

affinity relations between the objects of interest. In [19],

separable LGTs are designed and optimized by learning line

graphs from data to model underlying row and column-wise

statistics of blocks residual signals, where the associated

generalized graph Laplacian (GGL) matrices are used to

derive LGTs.

In the proposed extension of primary transforms (EPT),

the 4-point DST-VII in AV1 is replaced with a 4-point LGT

with self-loop weights (vc1 , vc2) = (2wc, 0), which leads to a

DST-IV. The principal basis of DCT-IV exhibits a steeper

slope and thus can better characterize the statistics of residual

samples in small block sizes. For larger blocks that involve

8-point and 16-point DST-IV in AV1, 8-point & 16-point

LGT with self-loop weights (vc1 , vc2) = (1.5wc, 0) and (vc1 ,

vc2) = (wc, 0) are used, respectively. The 16-point LGT is

essentially a DST-VII. All the LGTs described above (4-

point, 8-point and 16-point) are implemented as matrix

multiply. The LGT kernels are constructed by 8-bit integers

that are tuned for orthogonality.

3.3.2. Non-separable directional transforms

To investigate the impact of introducing a non-separable

transform scheme in AV1, a non-separable unified secondary

transform (NUST) scheme was implemented, and results

reported in [14]. In this paper, a non-separable directional

transform (NSDT) method is proposed that further improves

NUST.

Different from the method in [14], input to forward and

inverse secondary transform are low frequency primary

transform coefficients in zig-zag scan order instead of raster

scan order. This helps to achieve more efficient decorrelation

of neighboring low frequency coefficients.

In AV1, both intra and inter coded blocks can be further

partitioned into multiple transform units with the partitioning

depth up to 2 levels. In the proposed method, NSDT is limited

to be applied to the root (depth 0) of the transform partitioning

tree structure. A decrease in the software encoder run-time

with minor impact in compression efficiency can be achieved

by this change. In addition, the signaling of transform indices

are further improved by using a prediction mode and

transform block size dependent context for entropy coding

the NSDT index.

3.4. Loop filtering

3.4.1 Cross-component sample offset

Cross-component video coding technology aims at capturing

the statistical correlations across different color components,

e.g., Cross-Component Linear Model, Joint Cb and Cr

residual coding and Cross-Component Adaptive Loop Filter

[20] applied in VVC. In this paper, a new non-linear loop

filtering approach called Cross-Component Sample Offset

(CCSO) is proposed. The proposed CCSO is featured by a

non-linear offset mapping process implemented as a look-up-

table (LUT). The filtering of CCSO utilizes a diamond shape

filtering support that includes 5 samples as input.

In CCSO, given the collocated reconstructed luma

sample rl of the current chroma sample rc that is to be filtered,

the four surrounding samples of rl are used as input, denoted

as p0, p1, p2, p3. The delta values between p0 - p3 and rl are

further quantized into d0 - d3. A LUT is used taking d0 - d3 as

input, and outputs an offset value s. Finally, the offset value

s is applied on rc. The LUT is optimized and signaled per

Cb/Cr component. The enabling of CCSO is controlled at

both frame- and block-level.

4. EXPERIMENTAL RESUTLS

The proposed coding tools have all been implemented on top

of the research branch of libaom [16], the associated commit

hash # is

994c889176bcabbc149445971ae12d1f0069eab9,

which corresponds to a recent version (released in Sep. 2020)

of libaom research branch.

The test set has a total of 56 sequences, including 10 Class

A1 (4K), 17 Class A2 (1080p), 8 Class A3 (720p), 6 Class

A4 (360p), 4 Class A5 (240p) camera captured sequences and

11 Class B1 (synthetic) sequences. These test sequences are

defined in the common test condition (CTC) specified by

AOMedia Testing Subgroup [17]. The Bjøntegaard delta

bitrate (BD-Rate) [18] is used to evaluate the coding gain.

The quantization parameters (QP) settings are 23, 31, 39, 47,

55 and 63. The run-time complexity is measured by the ratio

between the anchor and tested method, i.e., T =

TProposed/TAnchor. The BD-rates are calculated using several

quality metrics, including luma PSNR/SSIM, chroma (Cb

and Cr separately) PSNR/SSIM and overall PSNR/SSIM that

is calculated using 6/8, 1/8 and 1/8 weightings on luma, Cb

and Cr components quality scores, respectively.

The following encoder parameters are used for the

simulations as defined in CTC. Please note that, Palette mode

is also disabled (--enable-palette=0) because the current

implementation of the proposed tools is not completely

properly working with Palette mode yet at the moment of this

paper submission.

All Intra (AI): --cpu-used=0 --passes=1 --end-usage=q
–cq-level=x --kf-min-dist=0 --kf-max-dist=0 --use-fixed-
qp-offsets=1 --limit=X --deltaq-mode=0 --enable-tpl-

mode=0 --end-usage=q --enable-keyframe-filtering=0 --obu
--enable-palette=0

Random Access (RA): --cpu-used=0 --passes=1 --lag-in-
frames=19 --auto-alt-ref=1 --min-gf-interval=16 --max-
gf-interval=16 --gf-min-pyr-height=4 --gf-max-pyr-
height=4 --limit=130 --kf-min-dist=65 --kf-max-dist=65 -
-use-fixed-qp-offsets=1 --deltaq-mode=0 --enable-tpl-
model=0 --end-usage=q --cq-level=<qp> --enable-keyframe-
filtering=0 --obu --enable-palette=0

The coding tools are tested using tool-on and tool-off tests.

In a tool-on test, the anchor is libaom (AV1 compatible), and

the test is the anchor with a specified individual coding tool

being enabled. In a tool-off test, the anchor is libaom with all

the proposed tool being enabled, and the test is the anchor

with a specified individual coding tool being disabled. If the

tool-on gain is more than tool-off gain, it means the coding

gain of a specific coding tool overlaps other coding tools. If

the tool-on gain is equal to or less than the tool-off loss, it

means the coding gain of a specific coding tool is additive or

even more efficient with the presence of other coding tools.

In the following subsections, detailed test results will be

discussed and analyzed.

4.1. Tool-on test

In this test, the coding performance of each individual tool is

studied on top of AV1 without the presence of other proposed

coding tools. For this investigation, the anchor is libaom

research branch (hash tag #994c88*), and test is anchor with

Tool X being enabled, where Tool X represent one of the

proposed tools.

The results of Tool-On tests are tabulated in Table 2. From

the results, it can be observed that the coding tools mainly

contributing luma BD-rate gains are MRL, IMC and NSST,

and the coding tools mainly contributing chroma BD-rate

gains are SDP and CCSO. There is a significant 15% encoder

run-time saving from SDP that comes from using larger

transform sizes for chroma. The decoder run-time increase of

SDP is mainly caused by implementation issue, which will be

further optimized as future work. Most of the coding tools

contribute only intra coding gains except for CCSO that

operates on both key frame and inter frame.

4.2. Tool-off test

In this test, the coding performance of each individual tool is

studied on top of AV1 with the presence of all other proposed

coding tools. For this investigation, the anchor is libaom

research branch (hash tag #994c88*) with all proposed

coding tools except for Tool X being enabled, where Tool X

represent one of the proposed tools. The test is libaom

research branch with all proposed coding tools being enabled.

The results of Tool-Off tests are tabulated in Table 1.

Comparing to the Tool-On test results, it can be observed that,

among the investigated coding tools, the coding gain of MRL

and IMC overlaps with other tools, while SDP, EPT, NSDT

and CCSO provide relatively consistent coding gain

Table 2: Results of Tool-On tests for all proposed tools.

Tools
All Intra Random Access

BDR-Y BDR-U BDR-V YUV ΔTEnc ΔTDec BDR-Y BDR-U BDR-V YUV ΔTEnc ΔTDec

SDP -1.3% -11.7% -12.9% -3.5% 85% 127%

MRL -1.4% -0.9% -1.1% -1.3% 166% 104% -1.1% 0.3% 0.9% -0.8% 129% 99%

IMC -1.8% 1.7% 1.8% -1.1% 160% 106% -0.9% 1.4% 1.9% -0.5% 112% 100%

EPT -0.2% 0.2% -0.1% -0.2% 210% 117% -0.1% 0.1% 0.1% -0.1% 131% 108%

NSDT -2.8% 1.7% 1.3% -2.0% 156% 110% -1.0% 0.0% 0.3% -0.8% 109% 103%

CCSO 0.3% -4.9% -5.7% -0.8% 117% 120% 0.4% -5.4% -5.9% -0.8% 108% 114%

Table 1: Results of Tool-Off tests for all proposed tools.

Tools
All Intra Random Access

BDR-Y BDR-U BDR-V YUV ΔTEnc ΔTDec BDR-Y BDR-U BDR-V YUV ΔTEnc ΔTDec

SDP -1.1% -13.8% -14.6% -3.7% 89% 113%

MRL -0.5% -0.5% -0.5% -0.5% 86% 100% -0.2% -0.2% 0.0% -0.2% 107% 103%

IMC -0.6% 0.1% 0.1% -0.5% 93% 104% -0.2% 0.6% 0.6% 0.0% 91% 104%

EPT -0.2% 0.0% -0.1% -0.2% 156% 111% -0.1% 0.0% 0.1% -0.1% 139% 106%

NSDT -2.8% -0.5% -0.7% -2.4% 130% 103% -1.1% 1.1% 1.5% -0.7% 122% 104%

CCSO 0.3% -3.5% -4.0% -0.5% 105% 115% 0.4% -5.8% -6.1% -0.9% 105% 117%

regardless the presence of other coding tools. However, it is

noted that the encoder run-time impact of MRL and IMC is

also largely reduced when other coding tools are enabled,

therefore, there are some encoder designs to be further

studied and optimized in future.

4.3. Tool package

In this test, the combined coding performance of all proposed

coding tools as a package is studied on top of AV1. The

anchor is libaom research branch (hash tag #994c88*), and

the test is libaom research branch with all proposed coding

tools being enabled. The detailed results are listed in Table 3

for each class, using PSNR and SSIM as the metrics.

As shown in Table 3, the average coding gain is -8.0% and

-7.9% when using PSNR and SSIM as the quality metrics,

respectively. The coding gain can go up to 22% (for one

sequence in Class B1). The encoder and decoder run-time is

385% and 176%, respectively, however, this is not fair

comparison, since for directional intra prediction modes and

4-p, 8-p and 16-p primary transform using LGT, pure C code

implementation is used while the anchor (libaom) is using

SIMD optimization for these functions. In the last two

columns of Table 3, we also compared the run-time when the

related SIMD optimizations are turned off. The PSNR-bitrate

curve for two sequences are shown in Figure 2.

4.3. Visual quality

Subjective visual quality of the image reconstructed by AV1

and proposed codec is also compared. As shown in Figure 3,

the partial reconstructed picture of frame 14 of TunnelFlag

(1080p) is shown. The picture coded by AV1 is using 20660

Bytes with QIndex 224, and the picture coded by proposed

methods is using 20550 Bytes with QIndex 220. It is observed

that reconstructed picture using proposed method show better

visual quality, especially around the edges. The objective

metric also shows 0.83dB, 1.11dB and 1.69dB higher PSNR

for Y, Cb and Cr components, respectively. There are also

other aspects that show subjective quality improvements,

such as less color inconsistency, finer texture details, less

distorted straight lines.

5. CONCLUSIONS

In this paper, several coding tools beyond AV1 are proposed,

which improve coding efficiency based on a hybrid video

coding structure, including block partitioning, intra

prediction, transform and loop filtering. The coding tools are

implemented together as a package to investigate the

combined coding gain as well as individual coding gain when

other coding tools are present. With the design described in

Figure 2: Illustration of coding block partitioning using

SDP for luma (left) and chroma blocks (right).

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

0 5000 10000 15000

P
S

N
R

 (
d

B
)

Bitrate (kbps)

Sol_Levante_Face_SDR

libaom

libaom with proposed tools

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

3000 13000 23000 33000 43000 53000 63000

P
S

N
R

 (
d

B
)

Bitrate (kbps)

Tunnel_Flags

libaom

libaom with proposed tools

Table 3: Results of proposed tool package for All-Intra configurations.

Class
PSNR SSIM SIMD on SIMD off

BDR-Y BDR-U BDR-V YUV BDR-Y BDR-U BDR-V YUV ΔTEnc ΔTDec ΔTEnc ΔTDec

Class A1 (4K) -4.8% -11.6% -13.1% -6.4% -6.0% -12.1% -12.4% -6.7% 328% 173% 157% 142%

Class A2 (2K) -6.6% -12.3% -14.7% -7.9% -8.2% -13.3% -12.2% -8.8% 379% 180% 158% 141%

Class A3 (720P) -5.3% -17.3% -19.6% -7.8% -6.1% -12.4% -11.8% -6.4% 446% 184% 187% 150%

Class A4 (360P) -6.2% -26.4% -32.7% -10.5% -8.0% -19.7% -17.9% -10.0% 420% 169% 176% 135%

Class A5 (240P) -4.4% -19.3% -13.9% -7.0% -5.3% -5.7% 5.5% -4.9% 425% 159% 188% 128%

Class B1 (Synthetic) -6.8% -17.1% -16.3% -8.8% -7.1% -18.0% -15.6% -8.8% 303% 171% 157% 141%

Min -22.0% -22.3% 126% 123% 108% 99%

Max -2.9% -2.4% 614% 259% 245% 221%

Average -5.9% -15.8% -17.3% -8.0% -7.1% -14.0% -12.2% -7.9% 385% 176% 167% 142%

this paper, a combined 8.0% coding gain for intra coding has

been demonstrated using the proposed methods.

12. REFERENCES

[1] Y. Chen, et al., “An overview of core coding tools in the

AV1 Video Codec”, in Proc. Picture Coding Symposium

(PCS), pp. 41-45, Jun 2018.

[2] J. Zhang, et al., “Recent development of avs video

coding standard: AVS3,” in Proc. Picture Coding

Symposium (PCS), 2019.

[3] B. Bross, J. Chen, S. Liu, Y.-K. Wang, “Versatile video

coding (draft 9)”, Joint Video Experts Team (JVET) of

ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,

JVET-R2001, 18th Meeting: by teleconference, 15–24

April 2020.

[4] X. Zhao, et al., “A comparative study of HEVC, VVC,

VP9, AV1 and AVS3 video codecs,” Proc. SPIE 11510,

Applications of Digital Image Processing XLIII,

1151011, Aug. 2020.

[5] T. Ebrahimi, “Call for Evidence on Learning-based

Image Coding Technologies (JPEG AI)”, ISO/IEC JTC

1/SC29/WG1, N86018, 86th Meeting, Sydney,

Australia, 20–24 Jan. 2020.

[6] S. Liu, et al., “JVET AHG report: Neural-network-based

video coding”, Joint Video Experts Team (JVET) of

ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,

JVET-T0011, 20th Meeting: by teleconference, 7–16

Oct. 2020.

[7] X. Xu, et al., “Intra Block Copy in HEVC Screen

Content Coding Extensions”, IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, Volume 6,

Issue 4, Pages 409-419.

[8] W. Pu, et al., “Palette Mode Coding in HEVC Screen

Content Coding Extension”, IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, Volume 6,

Issue 4, Pages 420-432.

[9] X. Zhao, et al., “Enhanced multiple transform for video

coding,” in Proc. Data Compression Conference, pp. 73–

82, 2016.

[10] J. Li, B. Li, J. Xu, and R. Xiong, “Efficient Multiple

Line-Based Intra Prediction for HEVC,” IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 28, no. 4, pp. 947–957, 2016.

[11] Y.-J. Chang, et al., “Intra prediction using multiple

reference lines for the versatile video coding standard,”

Proc. SPIE 11137, Applications of Digital Image

Processing XLII, 1113716, 6 Sep. 2019.

[12] L. Zhao, X. Zhao and S. Liu, “Improved Intra Coding

Beyond AV1 Using Adaptive Prediction Angles and

Reference Lines,” 2020 IEEE International Conference

on Image Processing, Abu Dhabi, United Arab Emirates,

2020, pp. 3408-3412.

[13] Y. Jin, L. Zhao, X. Zhao, S. Liu and Alan. C. Bovik,

“Improved intra mode coding beyond AV1,” submitted

to 2021 IEEE International Conference on International

Conference on Acoustics, Speech and Signal Processing,

Toronto, Ontario, Canada, 2021.

[14] X. Zhao and S. Liu, “Unified Secondary Transform for

Intra Coding Beyond AV1,” 2020 IEEE International

Conference on Image Processing (ICIP), Abu Dhabi,

United Arab Emirates, 2020, pp. 3393-3397.

[15] X. Zhao, etc., “AV2 Common Test Conditions and

Performance Measurement”, Alliance for Open Media,

Testing Subgroup, 2020.

[16] https://aomedia.googlesource.com/aom/

[17] X. Zhao, R. Lei, A. Norkin, T. Daede, A. Tourapis,

“AV2 Common Test Conditions and Performance

Measurement,” Testing Subgroup of AOMedia Codec

Work Group.

[18] G. Bjøntegaard, “Improvement of BD-PSNR model,”

ITU-T SG16/Q6, Doc. VCEG-AI11, Berlin, Germany,

Jul. 2008. [Online] Available: http://wftp3.itu.int/av-

arch/video-site/0807_Ber/

[19] H. E. Egilmez, Y. H. Chao, A. Ortega, B. Lee, and S.

Yea, “GBST: Separable transforms based on line graphs

for predictive video coding,” 2016 IEEE International

Conference on Image Processing (ICIP), Sept 2016, pp.

2375–2379.

[20] K. Misra, F. Bossen, A. Segall, “On Cross Component

Adaptive Loop Filter for Video Compression”, 2019

Picture Coding Symposium (PCS). IEEE, 2019.

Figure 3: Comparison on the reconstructed image of

TunnelFlag sequence using AV1 (top, 20660 Bytes) and

proposed codec (bottom, 20550 Bytes).

https://aomedia.googlesource.com/aom/
http://wftp3.itu.int/av-arch/video-site/0807_Ber/
http://wftp3.itu.int/av-arch/video-site/0807_Ber/

