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ABSTRACT

With the rapid development of social websites, recent years

have witnessed an explosive growth of social images with

user-provided tags which continuously arrive in a streaming

fashion. Due to the fast query speed and low storage cost,

hashing-based methods for image search have attracted in-

creasing attention. However, existing hashing methods for

social image retrieval are based on batch mode which may vi-

olate the nature of social images, i.e., social images are usu-

ally generated periodically or collected in a stream fashion.

Although there exist many online hashing methods, they ei-

ther adopt unsupervised learning which ignore the relevant

tags, or are designed in the supervised manner which needs

high-quality labels. In this paper, to overcome the above limi-

tations, we propose a new method named Weakly-supervised

Online Hashing (WOH). In order to learn high-quality hash

codes, WOH exploits the weak supervision, i.e., tags, by con-

sidering the semantics of tags and removing the noise. Be-

sides, we develop a discrete online optimization algorithm for

WOH, which is efficient and scalable. Extensive experiments

conducted on two real-world datasets demonstrate the superi-

ority of WOH.

Index Terms— Learning to hash; weakly-supervised; on-

line hashing; user-provided tags; large-scale retrieval

1. INTRODUCTION

Recently, there has been an explosive growth of data on the

Internet. As most traditional similarity search methods are not

applicable to large-scale data, hashing-based Approximate

Nearest Neighbor techniques have been proposed and widely

studied [1, 2, 3, 4]. These methods learn hash functions that

can transform high-dimensional data into short strings of bi-

nary codes while preserving the similarity of the original data.

As a result, the storage cost can be reduced and the retrieval

can be performed efficiently in the Hamming space.

Most existing hashing methods are batch-based, which

means that they need to accumulate all data and retrain the

hash functions when new data comes. However, in real-

world Internet, data usually become available continuously
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as streams [5, 6, 7], making those batch-based methods inef-

ficient. Recently, to overcome the limitations, several hashing

methods are designed in an online manner. Roughly speaking,

existing online hashing can be divided into supervised meth-

ods [6, 7, 8] and unsupervised ones [5, 9]. However, none

of existing online hashing methods is specially designed for

weakly-supervised images, i.e., social images with tags.

As social images with user-provided tags are being gener-

ated continuously and prevalent on the Web, these weakly-

supervised images naturally come in a streaming fashion.

Thus, it is essential to design approaches which can fulfill the

need for online social image retrieval. However, compared

to full supervision, i.e., the clean class labels, user-provided

tags are weak and imperfect. Hence, directly using the tags

as the supervised information and imputing them to online

supervised hashing methods may lead to suboptimal perfor-

mance. Unsupervised online hashing could support retriev-

ing social images without considering tags. However, these

freely available tags naturally contain relevant semantics of

images and leaving tags out of consideration may lead to in-

formation loss and poor performance. Although there exist

some weakly-supervised hashing methods (also known as so-

cial image hashing) [4, 10, 11], which are specially designed

to learn hash codes with the help of weakly-supervised tag-

ging information, all of them are batch-based and not able to

support the online setting.

To tackle the issues mentioned above, we propose a novel

hashing method named Weakly-supervised Online Hashing

(WOH), which incorporates hash code learning, the online

learning, and the weakly-supervised information mining into

one unified framework. To excavate the semantics in the

user-provided tags, construct the connections between tags

and hash codes and simultaneously avoid the adverse impacts

from imperfect tags by introducing the ℓ2,1-norm. Moreover,

an efficient discrete online optimization is proposed. The

main contributions of WOH are summarized as follows:

1) By considering the denoised tags, image level seman-

tic representations, and the visual features of images, WOH

can generate the hash codes of social images in online sce-

narios that preserve the semantic information from tags and

eliminate the negative effects of noisy tags.

2) We propose an iterative online optimization algorithm.

Its time complexity is linear to the newly arriving data size

per round, making WOH efficient and scalable. Besides, dur-
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ing optimization, hash codes can be discretely learnt with the

binary constraints maintained.

3) Extensive experiments are conducted over two widely-

used benchmark datasets. The results demonstrate the supe-

riority of WOH over several state-of-the-art online hashing

methods and social image hashing methods.

4) As far as we know, weakly-supervised online hashing is

a completely new domain and WOH may be the first attempt

to study this novel and valuable topic. The code is released

(https://github.com/smile555/WOH).

2. OUR METHOD

2.1. Notations

Suppose the training data comes at a streaming manner. At the

t-th round, a new data chunk of social images ~X
(t)

∈ R
nt×d

is added to the training set, where nt is the size of new data

chunk and d is the dimensionality of image feature. Please

note that, in social image hashing, no labels are provided and

the tags ~Y
(t)

∈ {0, 1}nt×c are viewed as weak supervision

information for learning. Specifically, c is the number of tags,

~Y
(t)

ij = 1 if the i-th image at the t-th round is associated with

tag j and 0 otherwise. Correspondingly, the already accumu-

lated old data, which has been accumulated before round t,

is represented as X̃
(t)

∈ R
Nt−1×d and the user-provided tags

is denoted as Ỹ
(t)

, where Nt−1 =
∑t−1

i=1 ni is the size of the

existing data. The goal of weakly-supervised online hashing

is to learn r-bit binary hash codes [B̃
(t)
; ~B

(t)
] ∈ {−1, 1}Nt×r,

where B̃
(t)

is the hash codes of the existing old data and ~B
(t)

is the hash codes of the newly coming data, respectively.

2.2. Model Formulation

Weak Supervision (tags) Processing. The idea that regress-

ing hash codes to supervision information [2] or regressing

supervision information to hash codes [12] has been widely

accepted and proven to be effective in hashing literature.

Thus, the corresponding objective at round t can be given:

Oreg=‖ Ỹ
(t)

−B̃
(t)

W(t) ‖2,1+‖ ~Y
(t)

−~B
(t)

W(t) ‖2,1, (1)

where W(t) is a projection from hash codes to weak supervi-

sion. As weakly-supervised tagging information may contain

noise, directly building up relationship among hash codes and

tags tend to be suboptimal. Thus, in Eq.(1), we adopt the ℓ2,1-

norm [13], which has demonstrated to be effective to alleviate

the noise problem.

In order to effectively mine the user-provided tags, we

try to represent the image with the high-level tag semantics.

Through taking advantages of the superior ability endowed by

the NLP techniques [14], we can project tags into a word em-

bedding space. In this way, each tag word is represented as a

vector embedding. Thereafter, we further aggregate the vec-

tor embeddings of one image by average pooling and get the

image level semantic representation zi for image i. As have

been analysed in previous works in hashing literature [10, 15],

the advantages of using word2vec tool can be two-sided: 1)

the zero-shot problem caused by tag incompleteness could be

alleviated; 2) the noisy tags could be suppressed to some ex-

tent. However, the embedding model is off-the-shelf and may

bring in potential semantic shift between the tags in our task

and words in its training corpus. To consider this problem, we

further refer to the visual information for help. Specifically,

at round t, the objective function to learn hash codes from the

high-level tag semantics along with the visual features can be

formulated as follows,

Osem = β ‖ X̃
(t)

−B̃
(t)

U(t) ‖2F +β ‖ ~X
(t)

−~B
(t)

U(t) ‖2F

+θ‖ Z̃
(t)

−B̃
(t)

V(t) ‖2F +θ‖~Z
(t)

−~B
(t)

V(t) ‖2F ,
(2)

where β and θ are trade-off parameters, Z̃
(t)

and ~Z
(t)

are the

image level semantic representations of old data and new data,

U(t) and V(t) are both auxiliary variables, and ‖ · ‖F is the

Frobenius norm. The first two terms and the last two terms

embed the visual information and the high-level tag seman-

tics, respectively.

Hash Function Learning. The hash function is learnt

to transform the out-of-sample images into hash codes. For

example, at the t-th round, when a new query sample comes,

we need to generate its hash code by B(t)
q = sign(XqP(t)),

where P(t) is the projection matrix of hash function. For this

purpose, we define the hash function learning loss at round t:

Ofun=µ ‖ B̃
(t)

−X̃
(t)

P(t) ‖2F +µ ‖~B
(t)

−~X
(t)

P(t) ‖2F , (3)

where µ is a parameter. In online hashing settings, relying

only on the newly arrived data to update hash functions may

lose the information of existing data and become suboptimal.

Thus, we consider both the old accumulated data (the first

term) and the newly arrived data (the second term) in Eq.(3).

Overall Objective Function. Combining Eq.(1), Eq.(2),

and Eq.(3), the overall objective function can be written as,

min
~B
(t)

,W(t),U(t),V(t),P(t)

Oreg+Osem+Ofun

+αR(W(t),U(t),V(t),P(t)), s.t. ~B(t) ∈ {−1, 1}nt×r

(4)

where α is a parameter, R(·) =‖ · ‖2F is the regularization

term to avoid overfitting, and ‖ · ‖F is the Frobenius norm.

Besides, to capture the nonlinear characteristics, the ker-

nel features φ(X) are adopted to replace the original image

features. Specifically, the RBF kernel mapping is adopted,

i.e., φ(x) = exp(
−‖x−ai‖

2
2

2σ2 ), where {ai}
m
i=1 denotes the ran-

domly selected m anchor points from the training samples at

the first round and σ denotes the kernel width calculated by

σ = 1
nm

∑n
i=1

∑m
j=1 ‖ xi − aj ‖2.



2.3. Efficient Discrete Online Optimization

To solve the optimization problem in Eq. (4), we propose a

five-step iterative scheme as follows.

U(t) Step. We fix W(t), V(t), P(t), and ~B
(t)

, and update

U(t) by solving the following objective function,

min
U(t)

β ‖ φ(X̃
(t)
)− B̃

(t)
U(t) ‖2F

+ β ‖ φ(~X
(t)
)− ~B

(t)
U(t) ‖2F +α ‖ U(t) ‖2F .

(5)

By setting the derivative of Eq.(5) w.r.t. U(t) to zero, we have,

U(t) = (C
(t)
1 +

α

β
I)−1C

(t)
2 , (6)

where C
(t)
1 = B̃

(t)⊤
B̃
(t)

+ ~B
(t)⊤~B

(t)
and C

(t)
2 =

B̃
(t)⊤

φ(X̃
(t)
) + ~B

(t)⊤
φ(~X

(t)
). Apparently, C

(t)
1 can be trans-

formed as follows,

C
(t)
1 = B̃

(t)⊤
B̃
(t)

+~B
(t)⊤~B

(t)

=
[

B̃
(t−1)

; ~B
(t−1)

]⊤[

B̃
(t−1)

; ~B
(t−1)

]

+~B
(t)⊤~B

(t)

=C
(t−1)
1 +~B

(t)⊤~B
(t)
.

(7)

Similarly, we have C
(t)
2 = C

(t−1)
2 + ~B

(t)⊤
φ(~X

(t)
).

P(t) Step and V(t) Step. As the optimizations of these

two variables are very similar, we discuss them together. By

setting the partial derivative of Eq.(4) w.r.t. P(t) to zero, we

can update it by,

P(t) = (C
(t)
3 +

α

µ
I)−1C

(t)
4 , (8)

where C
(t)
3 = C

(t−1)
3 +φ(~X

(t)
)
⊤

φ(~X
(t)
) and C

(t)
4 = C

(t−1)
4 +

φ(~X
(t)
)
⊤
~B
(t)

.

Similarly, the solution of V(t) is given,

V(t) = (C
(t)
1 +

α

θ
I)−1C

(t)
5 , (9)

where C
(t)
5 = C

(t−1)
5 + ~B

(t)⊤~Z
(t)

.

W(t) Step. With U(t), V(t), P(t), and ~B
(t)

fixed, the prob-

lem of optimizing W(t) can be formulated as,

min
W(t)

‖ Ỹ
(t)

− B̃
(t)

W(t) ‖2,1

+ ‖ ~Y
(t)

− ~B
(t)

W(t) ‖2,1 +α ‖ W(t) ‖2F .

(10)

To optimize the ℓ2,1-norm, the first two terms in Eq.(10) are

reformulated as,

Tr
(

(Ỹ
(t)

− B̃
(t)

W(t))⊤E(t)(Ỹ
(t)

− B̃
(t)

W(t)
)

, (11)

Tr
(

(~Y
(t)

− ~B
(t)

W(t))⊤K(t)(~Y
(t)

− ~B
(t)

W(t)
)

, (12)

where E(t) and K(t) are diagonal matrices, E
(t)
ii = 1/ ‖

(Ỹ
(t)

− B̃
(t)

W(t))i ‖2, K
(t)
ii = 1/ ‖ (~Y

(t)
− ~B

(t)
W(t))i ‖2,

and (·)i denotes the i-th row of a matrix. Then, by setting the

derivative w.r.t. W(t) to zero, we have,

W(t) = (D1
(t) + ~B

(t)⊤
K(t)~B

(t)
+ αI)−1

· (D2
(t) + ~B

(t)⊤
K(t)~Y

(t)
),

(13)

where D1
(t) = B̃

(t)⊤
E(t)B̃

(t)
, D2

(t) = B̃
(t)⊤

E(t)Ỹ
(t)

, and I

is the identity matrix.

It is worth noting that, given the new coming data and

the accumulated data, both D1
(t) and D2

(t) can be computed

efficiently based the rules of block matrices. For example,

D1
(t)= B̃

(t)⊤
E(t)B̃

(t)

=
[

B̃
(t−1)

; ~B
(t−1)

]

[

E(t−1) 0

0 K(t−1)

]

[

B̃
(t−1)

; ~B
(t−1)

]

=D1
(t−1)+~B

(t−1)⊤
K(t−1)~B

(t−1)
.

(14)

Similarly, D2
(t) = D2

(t−1) + ~B
(t−1)⊤

K(t−1)~Y
(t−1)

.

~B
(t)

Step. Fixing other variables and rewriting Eq.(4), we

can get the learning problem of ~B
(t)

,

min
~B
(t)

β ‖ ~B
(t)

U(t) ‖2F +θ ‖ ~B
(t)

V(t) ‖2F

+ Tr(W(t)⊤~B
(t)⊤

K(t)~B
(t)

W(t))− 2Tr(~B
(t)⊤

Q(t))

(15)

where Q(t) represents K(t)~Y
(t)

W(t)⊤ + β~X
(t)

U(t)⊤ +

θ~Z
(t)

V(t)⊤+µ~X
(t)

P(t). Since ~B
(t)

is discrete, it is difficult to

optimize. To solve this problem, we adopt the discrete cyclic

coordinate descent algorithm [2] to learn ~B
(t)

bit-by-bit iter-

atively until convergence. Due to the page limit, we directly

give the solution,

~b
(t)⊤

= sign
(

q(t)⊤ − w(t)W(t)′⊤~B
(t)′⊤

K(t)

− βu(t)U(t)′⊤~B
(t)′⊤

− θv(t)V(t)′⊤~B
(t)′⊤)

,

(16)

where ~b
(t)⊤

denotes the l-th row of ~B
(t)

, l ∈ {1, 2, ..., r},

~B
(t)′

is the submatrix of ~B
(t)

excluding ~b
(t)⊤

, similarly, q(t)⊤

denotes the l-th row of Q(t); w(t)⊤ denotes the l-th row of

W(t), W(t)′ is the submatrix of W(t) excluding w(t)⊤; u(t)⊤

denotes the l-th row of U(t), U(t)′ is the submatrix of U(t)

excluding u(t)⊤; v(t)⊤ denotes the l-th row of V(t), V(t)′ is

the submatrix of V(t) excluding v(t)⊤. At the t-th round, each

bit ~b
(t)

of newly coming data is iteratively updated based on

the pre-learnt matrix ~B
(t)′

until the procedure converges to a

set of better codes ~B
(t)

.



Table 1. The MAP results of various methods on MIRFlickr and NUS-WIDE at the last round.

Method
MIRFlickr NUS-WIDE

8 bits 16 bits 32 bits 64 bits 96 bits 8 bits 16 bits 32 bits 64 bits 96 bits

SH [1] 0.6117 0.5994 0.5954 0.5990 0.5978 0.4221 0.4035 0.3819 0.3893 0.3802
SDH [2] 0.5940 0.6054 0.6307 0.6330 0.6353 0.4405 0.4910 0.4935 0.5057 0.5124
COSDISH [3] 0.5774 0.5786 0.5930 0.6085 0.6156 0.3828 0.4220 0.4711 0.5058 0.5317
WDH [4] 0.5800 0.6102 0.6265 0.6462 0.6565 0.4927 0.5168 0.5587 0.5856 0.6210
OSH [5] 0.6389 0.6418 0.6429 0.6474 0.6575 0.4687 0.4709 0.4749 0.4906 0.4998
BOSDH [6] 0.5705 0.5676 0.5621 0.5626 0.5607 0.3214 0.3937 0.4014 0.4064 0.4090
HMOH [7] 0.5788 0.5797 0.5839 0.5966 0.5984 0.3256 0.3309 0.3405 0.3409 0.3454
WOH 0.6714 0.6833 0.6945 0.6967 0.6964 0.5521 0.5888 0.6043 0.6182 0.6221
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Fig. 1. The MAP-round curves of various methods on MIRFlickr and NUS-WIDE.

Algorithm 1 Online optimization of WOH at round t.

Input: new data chunk: φ(~X
(t)
) and ~Y

(t)
; accumulated

data (old data): φ(X̃
(t)
), Ỹ

(t)
, Z̃

(t)
, and W(t−1).

Output: Hash codes and hash function.

Procedure:

Generate the image level semantic representation ~Z
(t)

.

Randomly initialize ~B
(t)

and W(t).

for t = 1, ..., T do

Update U(t) according to Eq.(6);

Update P(t) according to Eq.(8);

Update V(t) according to Eq.(9);

Update W(t) according to Eq.(13);

Update ~B
(t)

iteratively according to Eq.(16);

end for

2.4. Analysis

At the t-th round, the time complexity for updating W(t),

U(t), V(t), and P(t) is O((ntr
2 + ntcr + r3)T ), O((ntr

2 +
r3 + ntrd + r2d)T ), O((ntr

2 + r3 + ntrf + r2f)T ), and

O((ntd
2+d3+ntrd+d2r)T ), respectively. The complexity

for obtaining ~B
(t)

is O((cr2 + dr2+ fr2+ntr
2)gT ). There-

into, nt is the size of the newly coming data, r is the hash

code length, g is the iteration of DCC, c is the amount of tags,

f is the dimensionality of word2vec embedding features, d is

the dimensionality of visual features, and T is the number of

iterations. Therefore, the overall computational complexity is

linear to the size of the newly coming data nt, which makes

our method scalable. The whole optimization algorithm is

summarized in Algorithm 1.

3. EXPERIMENTS

3.1. Datasets and Evaluation metric

MIRFlickr [16] consists of 25, 000 images collected from

Flickr associated with 1, 386 user-provided tags. The tags ap-

pearing less than 50 times are removed. We further removed

those tags which cannot be transformed into the embedding

space, such as “2007”, “i500”, and “d200”; and those images

with no tags are omitted. Finally, 17, 833 images are left. We

randomly split the dataset into a query set with 1, 000 images

and the remaining are served as the training set. To support

the online learning, the training set further divided into 8 data

chunks with each of the first 7 chunks containing 2, 000 sam-

ples and the last chunk containing 2, 833 instances.

NUS-WIDE [17] contains 269, 648 images collected

from Flickr by the Lab for Media Search in the National Uni-

versity of Singapore. This dataset is large-scale and covers

5, 018 unique tags. 194, 541 social images, which correspond

to the 21 most frequent labels, are left. Following [7], we

randomly split the data set into a query set with 2, 000 im-

ages and a retrieval set with the others, and further randomly

picked out 40, 000 samples from retrieval set as the training

set. In order to support the online learning, we split the train-

ing set into 8 chunks and per chunk contains 5, 000 instances.

For both datasets, the 4, 096-D output of the pre-trained

VGG-F, which is trained on the ImageNet dataset, is used to

represent images. If two images share at least one ground-

truth label, they are similar; otherwise, they are semantically

dissimilar. Note that, during training, only user-generated

tags and image features are used while the ground-truth la-

bels are only leveraged during evaluation.

We employed the widely-used criteria, i.e., mean average
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Fig. 2. Sensitivity analysis of parameters α, β, µ, and θ.

precision (MAP) to evaluate the retrieval performance. The

larger value indicates the better retrieval performance.

3.2. Baselines and Implementation details

Seven state-of-the-art hashing models are selected for com-

parison: 1) traditional methods, i.e., SH [1], SDH [2], and

COSDISH [3]; 2) social image hashing, i.e., WDH [4]; 3)

online hashing, i.e., OSH [5], BOSDH [6], and HMOH [7].

Except for OSH, BOSDH, and HMOH, other baselines

are batch-based and their hash functions and hash codes are

retrained on all accumulated data at each round. Compared

to online methods, the training of traditional deep hashing is

not practical for online retrieval [18]. Thus, no deep weakly-

supervised hashing methods are adopted.

We set the parameter α, β, θ, µ, and T to 300, 0.1, 0.1,

10, and 7 according to parameter experiments. Moreover, the

amount of anchor points m is 1, 000 and the dimensionality

of embedding feature denoted as f is 300, and the iterations

of DCC g is 3.

3.3. Comparison with Baselines

Table 1 lists the MAP results of WOH and all the comparison

methods at the last rounds. The MAP results of all methods at

each round with 16 bits and 64 bits are plotted in Fig.1. From

these results, we can observe that:

1) Although the superiority of supervised hashing meth-

ods over unsupervised ones is found by many literatures, such

phenomenon is not obvious in the weakly-supervised case.

We can easily find that some unsupervised methods can offer
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Fig. 3. The results of ablation and convergence experiments.

Table 2. Training time (seconds) on MIRFlickr.

Method chunk1 chunk2 chunk3 chunk4 chunk5

OSH 1.0173 1.0388 1.0391 1.0319 1.0100
BOSDH 0.0665 12.0278 22.9630 34.0123 51.3250
HMOH 0.2913 0.2509 0.2560 0.2640 0.2712
WOH 1.7246 1.7026 1.7425 1.7382 1.7619

better accuracy than the supervised ones, e.g., OSH outper-

forms BOSDH and HMOH. And the reason may be that the

weakly-supervised information, i.e., tags, is weak and noisy.

2) Our method outperforms WDH, which is specifically

designed for weakly-supervised social image retrieval task.

Besides, WDH also uses the ℓ2,1-norm. Compared to WDH,

we can find the performance of WOH is better, further con-

firming that our WOH can better harness the tags and learn

better hash codes in the online manner.

3) Compared with all online hashing methods, i.e., OSH,

BOSDH, and HMOH, our method always offers better per-

formance. This phenomenon also shows that our model can

effectively remove the noise in tags and benefit from the weak

supervision information.

4) WOH outperforms all the adopted state-of-the-art base-

lines, demonstrating its effectiveness.

In summary, our WOH works well for retrieving weakly-

supervised social images in an online manner.

3.4. Further Analysis

Parameter Sensitivity Analysis: To analyze the influence of

parameters on the performance, we conducted experiments

on MIRFlickr and NUS-WIDE in the case of 16-bit code

length and the results are plotted in Fig.2. It can be seen

that the search performance is strongly related to the param-

eters α and µ. The performance maintains satisfactory when

α ranges from 300 to 500 and µ ranges from 1 to 10 on both

two datasets. It also can be found that WOH is robust to pa-

rameters β and θ. Thus, we set α, β, µ, and θ to 300, 0.1, 10,

and 0.1, respectively.

Ablation Experiments: To provide ablation analysis,

four derivatives of our model are designed and the experi-

mental results on MIRFlickr is presented in Fig.3-(a). WOH-

1 denotes the variant that sets θ = 0; WOH-2 sets θ = 0 and

omits Oreg in Eq. (4); WOH-3 represents the variant which



sets α to 0; for the last derivative WOH-4, both β and µ are set

to 0 and the hash functions are learnt by a two-step hashing

strategy [19]. From this figure, we can find: 1) WOH out-

performs WOH-1 and WOH-2, demonstrating that by elab-

orately learning from weakly-supervision, i.e., user-provided

tags, better hash codes can be obtained; 2) WOH outperforms

WOH-3, showing the necessity of regularization; 3) WOH-4

learns only from tags and performs worse than WOH, reveal-

ing the importance of visual information.

Convergence: We validated the convergence of the pro-

posed alternative optimization algorithm by experiments.

Fig.3-(b) illustrates the convergence curves of WOH based

on the first data chunk in the case of 16-bit on MIRFlickr and

NUS-WIDE. From this figure, we can see that WOH con-

verges quickly. Considering both efficiency and performance,

we chose T = 7 in all experiments.

Time Analysis: As shown in Section 2.4, the time com-

plexity of WOH is linearly dependent on the size of newly

coming data nt. To quantitatively evaluate the efficiency of

WOH, we further conducted experiments and the time cost

of four online hashing methods on MIRFlickr with the 16-bit

codes is listed in Table 2. We can observe that: 1) The un-

supervised OSH holds the best training efficiency because it

leaves tags out of consideration while supervised and weakly-

supervised methods need to spend extra time handling tags. 2)

Although the reported training time of HMOH is little, it takes

a lot of time to calculate the Hadamard Matrix, which is not

included in the training time. 3) Considering both efficiency

and effectiveness, WOH is the best choice.

4. CONCLUSION

In this paper, we present a novel hashing method named

Weakly-supervised Online Hashing, which is specially de-

signed for retrieving weakly labeled social images in online

fashion. To the best our knowledge, it is the first attempt to

apply the idea of online hashing to weakly-supervised social

image retrieval. To learn more accurate hash codes, WOH ex-

plores the weak supervision by considering the semantics of

tags and removing the noise. Extensive experiments on two

real-world social image datasets have been conducted and the

results demonstrate the superiority of WOH over the state-of-

the-art baselines.

5. REFERENCES

[1] Yair Weiss, Antonio Torralba, and Rob Fergus, “Spec-

tral hashing,” in NeurIPS, 2009, pp. 1753–1760.

[2] Fumin Shen, Chunhua Shen, Wei Liu, and Heng

Tao Shen, “Supervised discrete hashing,” in CVPR,

2015, pp. 37–45.

[3] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou,

“Column sampling based discrete supervised hashing,”

in AAAI, 2016, pp. 1230–1236.

[4] Hui Cui, Lei Zhu, Chaoran Cui, Xiushan Nie, and Huax-

iang Zhang, “Efficient weakly-supervised discrete hash-

ing for large-scale social image retrieval,” PRL, vol. 130,

pp. 174–181, 2020.

[5] Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, and

Hanqing Lu, “Online sketching hashing,” in CVPR,

2015, pp. 2503–2511.

[6] Mingbao Lin, Rongrong Ji, Hong Liu, Xiaoshuai Sun,

Yongjian Wu, and Yunsheng Wu, “Towards optimal dis-

crete online hashing with balanced similarity,” in AAAI,

2019, vol. 33, pp. 8722–8729.

[7] Mingbao Lin, Rongrong Ji, Hong Liu, Xiaoshuai Sun,

Shen Chen, and Qi Tian, “Hadamard matrix guided on-

line hashing,” IJCV, vol. 128, no. 8, pp. 2279–2306,

2020.

[8] Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff, “On-

line supervised hashing,” CVIU, vol. 156, pp. 162–173,

2017.

[9] Xixian Chen, Irwin King, and Michael R Lyu, “Frosh:

Faster online sketching hashing,” in UAI, 2017.

[10] Vijetha Gattupalli, Yaoxin Zhuo, and Baoxin Li,

“Weakly supervised deep image hashing through tag

embeddings,” in CVPR, 2019, pp. 10375–10384.

[11] Zechao Li, Jinhui Tang, Liyan Zhang, and Jian Yang,

“Weakly-supervised semantic guided hashing for social

image retrieval,” IJCV, vol. 128, no. 8, pp. 2265–2278,

2020.

[12] Jie Gui, Tongliang Liu, Zhenan Sun, Dacheng Tao, and

Tieniu Tan, “Fast supervised discrete hashing,” TPAMI,

vol. 40, no. 2, pp. 490–496, 2017.

[13] Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding,

“Efficient and robust feature selection via joint l2, 1-

norms minimization,” in NeurIPS, 2010, pp. 1813–

1821.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean, “Efficient estimation of word representations in

vector space,” arXiv preprint arXiv:1301.3781, 2013.

[15] Ziyu Guan, Fei Xie, Wanqing Zhao, Xiaopeng Wang,

Long Chen, Wei Zhao, and Jinye Peng, “Tag-based

weakly-supervised hashing for image retrieval.,” in IJ-

CAI, 2018, pp. 3776–3782.

[16] Mark J. Huiskes and Michael S. Lew, “The mir flickr

retrieval evaluation,” in MIR, 2008, pp. 39–43.

[17] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li,

Zhiping Luo, and Yantao Zheng, “Nus-wide: A real-

world web image database from national university of

singapore,” in CIVR, 2009.

[18] Dayan Wu, Qi Dai, Jing Liu, Bo Li, and Weiping Wang,

“Deep incremental hashing network for efficient image

retrieval,” in CVPR, 2019, pp. 9069–9077.

[19] Guosheng Lin, Chunhua Shen, D. Suter, and A. V. D.

Hengel, “A general two-step approach to learning-based

hashing,” ICCV, pp. 2552–2559, 2013.


	1  Introduction
	2  Our Method
	2.1  Notations
	2.2  Model Formulation
	2.3  Efficient Discrete Online Optimization
	2.4  Analysis

	3  Experiments
	3.1  Datasets and Evaluation metric
	3.2  Baselines and Implementation details
	3.3  Comparison with Baselines
	3.4  Further Analysis

	4  Conclusion
	5  References

