
ROTATION TRANSFORMATION NETWORK: LEARNING VIEW-INVARIANT POINT
CLOUD FOR CLASSIFICATION AND SEGMENTATION

Shuang Deng∗†‡, Bo Liu∗†‡, Qiulei Dong∗†‡, and Zhanyi Hu∗†

∗National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, China

†School of Artificial Intelligence, University of Chinese Academy of Sciences, China
‡Center for Excellence in Brain Science and Intelligence Technology,

Chinese Academy of Sciences, China
{shuang.deng, qldong, huzy}@nlpr.ia.ac.cn, liubo2017@ia.ac.cn

ABSTRACT

Many recent works show that a spatial manipulation mod-
ule could boost the performances of deep neural networks
(DNNs) for 3D point cloud analysis. In this paper, we aim to
provide an insight into spatial manipulation modules. Firstly,
we find that the smaller the rotational degree of freedom
(RDF) of objects is, the more easily these objects are handled
by these DNNs. Then, we investigate the effect of the popu-
lar T-Net module and find that it could not reduce the RDF of
objects. Motivated by the above two issues, we propose a ro-
tation transformation network for point cloud analysis, called
RTN, which could reduce the RDF of input 3D objects to
0. The RTN could be seamlessly inserted into many existing
DNNs for point cloud analysis. Extensive experimental re-
sults on 3D point cloud classification and segmentation tasks
demonstrate that the proposed RTN could improve the perfor-
mances of several state-of-the-art methods significantly.

Index Terms— point cloud, rotation invariance, 3D ob-
ject classification, 3D object segmentation

1. INTRODUCTION

With the rapid development of 3D sensors, 3D point cloud
analysis techniques have drawn increasing attention in recent
years. Inspired by the great success of Deep Neural Net-
works (DNNs) in the image analysis filed, a large number of
works [1, 2, 3, 4, 5, 6] have utilized DNNs to handle various
tasks in the field of 3D point cloud analysis.

It is generally believed that one of the main factors which
impede the development of many existing DNNs for point
cloud classification and segmentation is: the input sets of

This work was supported by the National Natural Science Foundation
of China (U1805264, 61991423), the Strategic Priority Research Program
of the Chinese Academy of Sciences (XDB32050100), and the Open Re-
search Fund from Key Laboratory of Intelligent Infrared Perception, Chinese
Academy of Sciences. Corresponding author: Qiulei Dong.

point clouds belonging to a same object category are gener-
ally view-dependent, and they undergo different rigid trans-
formations (translations and rotations) relative to a unified
view. Compared with translation transformations whose in-
fluences could be easily eliminated through coordinate cen-
tralization, rotation transformations are more difficult to be
handled. Additionally, it still lacks experimental analysis of
the influence of object poses on the performances of these
DNNs in literature. It is noted that some recent works [1, 4]
showed that a learnable module that allows spatial manipu-
lation of data could significantly boost the performances of
DNNs on various point cloud processing tasks, such as point
cloud classification and segmentation. For example, the popu-
lar T-Net [1, 4] is a learnable module that predicts an transfor-
mation matrix with an orthogonal constraint for transforming
all the input point clouds to a 3-dimensional latent canoni-
cal space and has significantly improved the performance of
many existing DNNs. Despite its excellent performance, the
poses of different point clouds transformed via T-Net are still
up to some 3-degree-of-freedom rotations as analyzed in Sec-
tion Methodology.

Motivated by the aforementioned issues, we firstly com-
pare and analyze the influence of RDF of input 3D objects
on several popular DNNs empirically in this paper, observing
that the smaller the RDF of objects is, the better these DNNs
consistently perform. This observation encourages us to fur-
ther investigate how to reduce the RDF of objects via a learn-
able DNN module. Then, we evaluate the performances of the
T-Net used in [1] and [4], and find that although it could ma-
nipulate 3D objects spatially and improve the DNNs’ perfor-
mances to some extent, it could not transform the input view-
dependent data into view-invariant data with 0 RDF in most
cases. Finally, we propose a rotation transformation network,
called RTN, which utilizes a Euler-angle-based rotation dis-
cretization manner to learn the pose of input 3D objects and
then transforms them to a unified view. The proposed RTN
has a two-stream architecture, where one stream is for global

978-1-6654-3864-3/21/$31.00 ©2021 IEEE

ar
X

iv
:2

10
7.

03
10

5v
1

 [
cs

.C
V

]
 7

 J
ul

 2
02

1

feature extraction while the other one is for local feature ex-
traction, and we also design a self-supervised scheme to train
the RTN.

In sum, our major contributions are three-fold:

• We empirically verify that the smaller the RDF of ob-
jects is, the more easily these objects are handled by
some state-of-the-art DNNs, and we find that the popu-
lar T-Net could not reduce the RDF of objects in most
cases.

• To our best knowledge, the proposed RTN is the first
attempt to learn the poses of 3D objects for point cloud
analysis under a self-supervised manner. It could effec-
tively transform view-dependent data to view-invariant
data, and could be easily inserted into many existing
DNNs to boost their performance on point cloud anal-
ysis.

• Extensive experimental results on point cloud classifi-
cation and segmentation demonstrate that the proposed
RTN could help several state-of-the-art methods im-
prove their performances significantly.

2. RELATED WORK

2.1. Deep Learning for 3D Point Clouds

PointNet [1] is the pioneering method to directly process 3D
point clouds using shared multi-layer perceptrons (MLPs)
and max-pooling layers. PointNet++ [2] extends PointNet
by extracting multiple-scale features of local pattern. Spatial
graph convolution based methods have also been applied to
3D point clouds. SpiderCNN [3] treats the convolutional ker-
nel weights as a product of a simple step function and a Taylor
polynomial. EdgeConv is proposed in DGCNN [4] where a
channel-wise symmetric aggregation operation is applied to
the edge features in both Euclidean and semantic spaces.

2.2. Rotation-Invariant Representation for 3D Point
Clouds

Rotation invariance is one of the most desired properties
for object recognition. Addressing this issue, many existing
works investigate how to learn rotation-invariant representa-
tions from the 3D point clouds. In [7, 8, 9, 10, 11], dif-
ferent types of convolutional kernel are designed to directly
extract approximately rotation-invariant features of the input
3D point clouds. In [12, 13, 14], they propose to manually
craft a strictly rotation-invariant representation in the input
space and uses this representation to replace the 3D Euclidean
coordinate as model input which will inevitably result in in-
formation loss. Unlike those above methods, this paper aims
to learn a spatial transformation which transforms the input
view-dependent 3D objects into view-invariant objects with 0
RDF.

Table 1. Classification performances of four methods on 3D
point clouds with different rotational degrees of freedom.

Method SO(0)(Ins/mCls) SO(1)(Ins/mCls) SO(3)(Ins/mCls)
PointNet [1] 89.1/85.9 88.1/85.2 84.4/79.9

PointNet++ [2] 90.6/86.8 89.9/86.2 85.7/80.6
DGCNN [4] 92.4/90.2 91.4/88.8 88.7/84.4

SpiderCNN [3] 91.5/87.8 90.2/87.8 83.9/78.7

Sample1 Sample2 Sample3 Sample4

RTN

T-Net

Fig. 1. Visualization of point clouds before and after two
spatial manipulation module (RTN and T-Net). The first line
presents the results of RTN and the second line presents those
of T-Net. The orange ones represent the point clouds before
spatial manipulation while the blue ones represent those after
spatial manipulation.

3. METHODOLOGY

In this section, we firstly compare and analyze the influences
of the rotational degree of freedom (RDF) of objects on the
performances of four popular DNNs for point cloud analysis.
Secondly, we investigate whether T-Net [15] could reduce the
RDF of objects or not. Finally, we describe the proposed ro-
tation transformation network (RTN) in detail.

3.1. Influences of RDF of Objects on DNNs

We investigate the influences of the RDF of objects on
four state-of-the-art methods including PointNet [1], Point-
Net++ [2], DGCNN [4], and SpiderCNN [3], where no spe-
cial modules are employed for explicitly extracting rotation-
invariant representations from 3D point clouds. These meth-
ods are trained and evaluated on point cloud classification
with the following three sets of data:

• Data SO(0): for the input objects belonging to each
category, they locate a same pose in a centralized 3D
space. The RDF of these objects is 0.

• Data SO(1): for the input objects belonging to each cat-
egory, they locate on a reference plane in a centralized
3D space. The RDF of these objects is 1.

2

Input view-dependent
point cloud

E
d

g
e
C

o
n

v

Key Points
Sampling

S
h

a
re

d
 M

L
P

N

*

3

K

*

3

Z
-Y

-Z
 E

u
le

r-A
n
g

le

Output view-invariant
point cloud

E
d

g
e
C

o
n

v

E
d

g
e
C

o
n

v

F
C

M
a
x
-P

o
o

lin
g

…
…

F
C

M
a
x
-P

o
o

lin
g

F
C

F
C

S
h

a
re

d
 M

L
P

S
h

a
re

d
 M

L
P

Local Branch

Global Branch

5
1
2

5
1
2

1
0
2

4

Fig. 2. Architecture of the Proposed RTN.

• Data SO(3): for the input objects belonging to each cat-
egory, they locate with an arbitrary pose in a centralized
3D space. The RDF of these objects is 3.

The instance accuracy (Ins(%)) and average per-class accu-
racy (mCls(%)) for the classification task on the public Mod-
elNet40 dataset by the four methods are reported in Table 1.
We also investigate the influences of the RDF of objects on
ShapenetPart for point cloud segmentation, which refers to
the supplementary material. As seen from Table 1, the classi-
fication performances by the referred methods on Data SO(0)
and Data SO(1) are significantly higher than those on Data
SO(3), and their performances on Data SO(0) are best in most
cases. This demonstrates that the smaller the RDF of objects
is, the more easily these objects are handled, which encour-
ages us to investigate whether the popular T-Net used in some
state-of-the-art methods [1, 4] could reduce the RDF of ob-
jects and how to design a more effective DNN module to do
so in the following two subsections respectively.

3.2. Could T-Net Reduce the RDF of Objects?

The observation in the above subsection naturally raises the
following question: Could the T-Net extensively used in some
state-of-the-art methods [1, 4] reduce the RDF of objects or
not? In theory, T-Net aims to learn a spatial transformation
matrix with only an orthogonal constraint, and the learnt or-
thogonal matrix by T-Net could not strictly guarantee that the
input view-dependent objects could be transformed into a uni-
fied view.

In order to further investigate the above question, we vi-
sualize many samples from each category in ModelNet40 and
the corresponding transformed point clouds by the T-Net used
in [4] 1. Due to the limited space, the second row of Figure
1 shows four samples of the planes where the orange point
clouds with 3 RDF are the inputs to T-Net, while the blue

1Due to the fact that the T-Net were used similarly in [1, 4], we only
visualize the prediction results by the T-Net used in [4].

point clouds are the corresponding transformed ones by T-
Net. As seen in Figure 1, the transformed point clouds by
T-Net still have 3 RDF. This demonstrates that T-Net could
not reduce the RDF of objects.

3.3. Rotation Transformation Network

Inspired by the above observations, we investigate how to de-
sign a network for reducing the RDF of input object point
clouds effectively. Here, we propose a rotation transforma-
tion network (RTN), which could learn the rotations of the
input 3D objects and then use the learnt rotations to obtain
view-invariant objects by performing inverse rotations. The
architecture of the proposed RTN is shown in Figure 2.

In the proposed RTN, the rotation learning problem is
transformed into a classification problem where a Euler-
angle-based rotation discretization is employed. Then a self-
supervised learning scheme is designed to train the proposed
RTN. In the following, we firstly give a detailed explanation
on the Euler-angle-based rotation discretization in our net-
work. Then, we describe the detailed architecture. Lastly,
we present the details of the proposed self-supervised learn-
ing scheme.

3D Rotation Discretization. Here, our goal is to dis-
cretize infinite 3-degree-of-freedom rotations into a finite
group of rotation classes. We use the Z-Y-Z Euler-angle rep-
resentation under a world coordinate system: An arbitrary 3D
rotation is accomplished by firstly rotating the object around
the Z axis by angle α, and secondly rotating it around the Y
axis by angle β, and lastly rotating it around the Z axis by
angle γ, which is also formulated by the following equation:

R(α, β, γ) = RZ(γ) ◦RY (β) ◦RZ(α)

s.t. α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π)
(1)

where R(α, β, γ) indicates an arbitrary 3D rotation, RZ(α)
(also RZ(γ)) indicates a rotation with α (also γ) around the
Z axis, RY (β) indicates a rotation with β around the Y axis,
and ◦ means matrix multiplication.

3

After defining the Z-Y-Z Euler-angle representation of 3D
rotations, we discretize the continuous range of {α, β, γ} into
a set of discrete values. In detail, we uniformly discretize the
range of α ∈ [0, 2π) into N1 = 2π/θ values with a pre-
fixed interval θ. To avoid singular points, we adopt a sphere
equiangular discretization to jointly discretize β ∈ [0, π] and
γ ∈ [0, 2π) intoN2 = (πθ −1)×

2π
θ +2 values with interval θ.

Then, the total number of rotation classes is N = N1 × N2.
Note that the discretized rotation classes will become more
fine-grained (larger N) as the interval θ becomes smaller.

Network Architecture. As shown in Figure 2, the pro-
posed RTN employs a global branch and a local branch,
where the local branch uses local aggregation method to ex-
tract features and the global branch only extracts point-wise
features of the key points. The inputs to the RTN are point
clouds with an arbitrary view, while its outputs are the corre-
sponding view-invariant point clouds.

The global branch firstly samples M key points of the
3D objects, which is described in the supplementary material
specifically. Then, these M key points are used to extract the
point-wise features via three shared MLP layers, and a max-
pooling followed by a fully-connected layer is applied to the
features of these key points.

The local branch takes dense points clouds as inputs and
employs five EdgeConv [4] layers to extract features. The last
EdgeConv layer takes as input the feature concatenated by the
outputs of the preceding EdgeConv layers to aggregate local
features of the point clouds, and the final feature is obtained
by a max-pooling layer followed by a fully-connected layer.

After obtaining the features from the global branch and
the local branch, we concatenate and feed them into fully-
connected layers to predict a discretized rotation class. Once
the rotation of an input object relative to the unified view is
obtained, an inverse rotation is applied to the input object to
obtain its corresponding view-invariant point cloud.

Self-Supervised Rotation Training. Here, a self-
supervised scheme for generating labeled training samples is
introduced. Assuming that some samples with a fixed view
are given, for each sample, we firstly generate a random Z-Y-
Z Euler-angle-based rotation. Its rotation label y is obtained
according to the discretized {α, β, γ} rotation angles, where
y ∈ {1, 2, · · · , N} and N is the number of all classes of dis-
cretized rotations. Then we apply the generated 3D rotation
to the sample under a world coordinate system for generating
a new sample. Accordingly, we could obtain a large amount
of labeled samples with different views and utilize them to
train the RTN via multi-class cross-entropy loss.

4. EXPERIMENTS

In this section, we firstly introduce the experimental setup.
Secondly, we evaluate the rotation estimation performance of
the proposed RTN. Then we give the comparative experimen-
tal results on the classification and segmentation tasks. Lastly,

Table 2. The mean inCD and outCD values of RTN on Mod-
elNet40 and ShapenetPart.

Dataset ModelNet40 ShapenetPart
Mean inCD 0.19 0.21

Mean outCD 0.09 0.08

we end up with ablation analysis. Additionly, we also provide
experiments on the effect of different rotation representations
in the supplementary material. The code will be available at
https://github.com/ds0529/RTN.

4.1. Experimental Setup

We evaluate the proposed method on the ModelNet40 shape
classification benchmark [16] and the ShapenetPart part seg-
mentation benchmark [17]. The poses of shapes in Mod-
elNet40 is not totally aligned, so we manually rotated the
shapes belonging to an same category to locate at an same
pose for precise alignment. The pose of all the shapes in
ShapenetPart is aligned precisely. The discretization interval
of R(α, β, γ) is set to π/6, so that N is 744. The details of
datasets and network parameters are described in the supple-
mentary material.

4.2. Performance of RTN on Rotation Estimation

We evaluate the rotation estimation performance of the pro-
posed RTN on ModelNet40 and ShapenetPart through Cham-
fer Distance (CD) [18] and rotation classification accuracy.
CD can directly evaluate the quality of rotation estimation but
the other can not due to symmetric 3D objects. The details of
rotation classification results are discribed in the supplemen-
tary material.

CD calculates the average closest point distance between
two point clouds. For each 3D object, we calculate two CD
values, one of which is between input rotated point cloud and
the point cloud with 0 RDF (inCD), and the other is between
output point cloud by proposed RTN and the point cloud with
0 RDF (outCD). Then we average the calculated CD values
of all 3D objects. We perform the experiments five times in-
dependently and use the mean results as the final results.

The mean CD values are listed in Table 2. As seen from
Table 2, the mean outCD values on both datasets are pretty
lower than the mean inCD values, which indicates that the
proposed RTN has ability to transform the input 3-RDF point
clouds to 0-RDF point clouds in most cases. Furthermore, we
visualize the input rotated point clouds in ModelNet40 and
the corrected counterpart via two spatial manipulation module
(RTN and T-Net [4]) in Figure 1. The visualization shows that
T-Net could not reduce the RDF of objects, but the proposed
RTN could effectively reduce 3 RDF from them.

4

https://github.com/ds0529/RTN

Table 3. Comparison on ModelNet40 with Data SO(3) for
3D point cloud classification.

Method Input(size) Ins/mCls
PointNet(with T-Net) [1] ♦ pc(1024×3) 84.4/79.9

PointNet++ [2] ♦ pc(1024×3) 85.7/80.6
DGCNN(with T-Net) [4] ♦ pc(1024×3) 88.7/84.4

SpiderCNN [3] ♦ pc(1024×3) 84.0/78.7
Zhang et al.[9] ♥ pc(1024×3) 86.4/-

Poulenard et al.[7] ♥ pc(1024×3) 87.6/-
Li et al.[8] ♥ pc+normal(1024×6) 88.8/-

ClusterNet [13] ♥ pc(1024×3) 87.1/-
SRINet [12] ♥ pc+normal(1024×6) 87.0/-

REQNNs [14] ♥ pc(1024×3) 83.0/-
Ours(RTN+PointNet) pc(1024×3) 86.0/81.0

Ours(RTN+PointNet++) pc(1024×3) 87.4/82.7
Ours(RTN+DGCNN) pc(1024×3) 90.2/86.5

Ours(RTN+SpiderCNN) pc(1024×3) 86.6/82.4

4.3. 3D Point Cloud Classification

Here, we combine the proposed RTN with four state-of-
the-art methods including PointNet [1], PointNet++ [2],
DGCNN [4], and SpiderCNN [3] respectively, denoted
as RTN+PointNet, RTN+PointNet++, RTN+DGCNN, and
RTN+SpiderCNN, and evaluate their performances on 3D
point cloud classification task. The models are trained and
tested with Data SO(3) on ModelNet40 for comparing the
performance on 3D rotation invariance, and two criteria are
used to evaluate the performance: instance accuracy (denoted
as Ins (%)) and average per-class accuracy (denoted as mCls
(%)). We perform the experiments five times independently
and use the mean results as the final results. We compare
the results of the proposed methods with nine recent state-of-
the-art methods as summarized in Table 3. In Table 3, the
results of the four methods marked by ♦ are obtained by re-
implementing these methods by the authors, because these
methods are not evaluated on Data SO(3) in the original pa-
pers, while the results of the five methods marked by ♥ are
cited from the original papers directly. As noted from Table
3, we find that the proposed RTN is able to help the existing
DNNs to improve their performances on dealing with 3D rota-
tion variance by transforming the input view-dependent point
clouds to view-invariant point clouds. The comparative re-
sults also show us that the RTN-based DNNs are superior to
the T-Net-based DNNs, which informs us that the proposed
RTN is better at reducing RDF than T-Net. The DGCNN
equipped with the proposed RTN outperforms the current
state-of-the-art methods with significant improvement.

4.4. 3D Point Cloud Segmentation

Although the results in the classification task have demon-
strated the effectiveness of the proposed RTN, we further

Table 4. Comparison on ShapenetPart with Data SO(3) for
3D point cloud segmentation.

Method Input(size) mIoU/Acc
PointNet(with T-Net) [1] ♦ pc(2048×3) 79.1/90.6

PointNet++ [2] ♦ pc(2048×3) 75.4/88.4
DGCNN(with T-Net) [4] ♦ pc(2048×3) 78.9/90.8

SpiderCNN [3] ♦ pc(2048×3) 74.5/87.9
Zhang et al.[9] ♥ pc(2048×3) 75.5/-
SRINet [12] ♥ pc+normal(2048×6) 77.0/89.2

Ours(RTN+PointNet) pc(2048×3) 80.1/91.2
Ours(RTN+PointNet++) pc(2048×3) 80.0/91.0

Ours(RTN+DGCNN) pc(2048×3) 82.8/92.6
Ours(RTN+SpiderCNN) pc(2048×3) 80.1/90.7

Table 5. Results of RTNs using different backbones on Mod-
elNet40 with Data SO(3). GA means global architecture. LA
means local architecture. GLA means global-local architec-
ture.

Backbone GA LA GLA
Ins 89.7 89.6 90.2

mCls 85.1 85.8 86.5

evaluate the proposed RTN by conducting experiments in 3D
point cloud segmentation task. We perform segmentation on
ShapenetPart, and average per-shape IoU (denoted as mIoU
(%)) and point-level classification accuracy (denoted as Acc
(%)) are used to evaluate the performances. We also perform
the experiments five times independently and use the mean
results as the final results, where the models are trained and
tested with Data SO(3). The results are compared with six
recent state-of-the-art methods as listed in Table 4. A more
detailed comparison among the RTN based DNNs and the
comparative methods is described in the supplementary mate-
rial. As seen in Table 4, the methods equipped with RTN lead
to a significant improvement compared to the corresponding
original methods without RTN respectively. The DGCNN
equipped with the proposed RTN outperforms all the current
methods.

4.5. Ablation Analysis

Effect of backbone. To prove the superiority of the pro-
posed global-local architecture(GLA), we perform the classi-
fication task on ModelNet40 with RTNs with the global archi-
tecture(GA), the local architecture(LA) and the global-local
architecture. DGCNN is used as the classification network af-
ter RTN. The results under different backbone configurations
are summarized in Table 5. It shows that the proposed global-
local architecture achieves the best performance among all
the backbone configurations, which demonstrates the benefit

5

Table 6. Results of RTNs with different quantization intervals
on ModelNet40 with Data SO(3).

Quantization Interval π/9 π/6 π/4 π/3
Ins 89.7 90.2 89.8 89.5

mCls 86.0 86.5 85.9 85.2

of the global-local architecture.
Effect of Discretization Interval. The interval affects

the rotation classification performance of RTN, and thus af-
fects the performance of existing DNNs equipped with RTN
for point cloud analysis. Here we conduct experiments to ana-
lyze the effect of the discretization interval by setting a group
of intervals {π/9, π/6, π/4, π/3} in the classification task on
ModelNet40. The results are listed in Table 6. As seen from
Table 6, the classification accuracies under the above internals
are quite close, demonstrating that the proposed method is not
sensitive to the angle interval. The interval π/6 achieves the
best performanceand, so we use this interval in both classifi-
cation and segmentation experiments.

5. CONCLUSION

In this paper, we firstly find that the smaller the RDF of ob-
jects is, the more easily these objects are handled by these
DNNs. Then, we find that T-Net module has limited effect
on reducing the RDF of input 3D objects. Motivated by the
above two issues, we propose a rotation transformation net-
work, called RTN, which has the ability to explicitly trans-
form input view-dependent point clouds to view-invariant
point clouds by learning the rotation transformation based on
an Euler-angle-based rotation discretization manner. Exten-
sive experimental results indicate that the proposed RTN is
able to help existing DNNs significantly improve their perfor-
mances on point cloud classification and segmentation.

6. REFERENCES

[1] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in CVPR, 2017, pp.
652–660.

[2] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” in NeurIPS, 2017, pp.
5099–5108.

[3] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and
Yu Qiao, “Spidercnn: Deep learning on point sets with
parameterized convolutional filters,” in ECCV, 2018, pp.
87–102.

[4] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon, “Dy-

namic graph cnn for learning on point clouds,” TOG,
vol. 38, no. 5, pp. 1–12, 2019.

[5] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen, “Pointcnn: Convolution on x-
transformed points,” in NeurIPS, 2018, pp. 820–830.

[6] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu
Wang, and Ulrich Neumann, “Grid-gcn for fast and scal-
able point cloud learning,” in CVPR, 2020, pp. 5661–
5670.

[7] Adrien Poulenard, Marie-Julie Rakotosaona, Yann
Ponty, and Maks Ovsjanikov, “Effective rotation-
invariant point cnn with spherical harmonics kernels,”
in 3DV, 2019, pp. 47–56.

[8] Jiaxin Li, Yingcai Bi, and Gim Hee Lee, “Discrete ro-
tation equivariance for point cloud recognition,” arXiv:
1904.00319, 2019.

[9] Zhiyuan Zhang, Binh-Son Hua, David W Rosen, and
Sai-Kit Yeung, “Rotation invariant convolutions for 3d
point clouds deep learning,” in 3DV, 2019, pp. 204–213.

[10] Yongming Rao, Jiwen Lu, and Jie Zhou, “Spherical
fractal convolutional neural networks for point cloud
recognition,” in CVPR, 2019, pp. 452–460.

[11] Yang You, Yujing Lou, Qi Liu, Yu-Wing Tai, Lizhuang
Ma, Cewu Lu, and Weiming Wang, “Pointwise rotation-
invariant network with adaptive sampling and 3d spher-
ical voxel convolution,” in AAAI, 2020, pp. 12717–
12724.

[12] Xiao Sun, Zhouhui Lian, and Jianguo Xiao, “Srinet:
Learning strictly rotation-invariant representations for
point cloud classification and segmentation,” in MM,
2019, pp. 980–988.

[13] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen,
Meng Wang, and Liang Lin, “Clusternet: Deep hierar-
chical cluster network with rigorously rotation-invariant
representation for point cloud analysis,” in CVPR, 2019,
pp. 4994–5002.

[14] Binbin Zhang, Wen Shen, Shikun Huang, Zhihua Wei,
and Quanshi Zhang, “3d-rotation-equivariant quater-
nion neural networks,” arXiv: 1911.09040, 2019.

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman,
et al., “Spatial transformer networks,” in NeurIPS, 2015,
pp. 2017–2025.

[16] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao,
“3d shapenets: A deep representation for volumetric
shapes,” in CVPR, 2015, pp. 1912–1920.

[17] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al., “Shapenet:
An information-rich 3d model repository,” arXiv:
1512.03012, 2015.

[18] Haoqiang Fan, Hao Su, and Leonidas J Guibas, “A point
set generation network for 3d object reconstruction from
a single image,” in CVPR, 2017, pp. 2463–2471.

6

	1 Introduction
	2 Related Work
	2.1 Deep Learning for 3D Point Clouds
	2.2 Rotation-Invariant Representation for 3D Point Clouds

	3 Methodology
	3.1 Influences of RDF of Objects on DNNs
	3.2 Could T-Net Reduce the RDF of Objects?
	3.3 Rotation Transformation Network

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance of RTN on Rotation Estimation
	4.3 3D Point Cloud Classification
	4.4 3D Point Cloud Segmentation
	4.5 Ablation Analysis

	5 Conclusion
	6 References

