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ABSTRACT

Pansharpening is a widely used image enhancement technique
for remote sensing. Its principle is to fuse the input high-
resolution single-channel panchromatic (PAN) image and low-
resolution multi-spectral image and to obtain a high-resolution
multi-spectral (HRMS) image. The existing deep learning
pansharpening method has two shortcomings. First, features
of two input images need to be concatenated along the channel
dimension to reconstruct the HRMS image, which makes the
importance of PAN images not prominent, and also leads to
high computational cost. Second, the implicit information of
features is difficult to extract through the manually designed
loss function. To this end, we propose a generative adversarial
network via the fast guided filter (FGF) for pansharpening.
In generator, traditional channel concatenation is replaced by
FGF to better retain the spatial information while reducing
the number of parameters. Meanwhile, the fusion objects can
be highlighted by the spatial attention module. In addition,
the latent information of features can be preserved effectively
through adversarial training. Numerous experiments illustrate
that our network generates high-quality HRMS images that
can surpass existing methods, and with fewer parameters.

Index Terms— Pansharpening, Fast guided filter, Genera-
tive adversarial network, Image fusion

1. INTRODUCTION

Pansharpening (also known as remote sensing image fusion)
is a hot issue in environmental monitoring and multi-modal
image fusion. The purpose of this task is to fuse the spa-
tial/spectral information from source images including high-
resolution single-channel panchromatic (PAN) images and
low-resolution multi-spectral (LRMS) images. In the end,
high-resolution multi-spectral (HRMS) images with the same
size as PAN images and the same channel as LRMS images
are obtained.

The traditional pansharpening method can be divided
into three categories: component substitute [1, 2, 3], multi-
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resolution analysis [4, 5] and optimization-based methods [6],
where HRMS images are obtained by decomposing spec-
tral/spatial information, injecting detail information or solving
optimization models, respectively. In the era of deep learn-
ing (DL), DNN is often used as an extractor of spatial/spectral
information and a fusion operator among multi-modal features.
As a pioneering work, PNN [7] borrows a super-resolution con-
volutional neural network (CNN) to solve this task, but the net-
work is relatively shallow and it is difficult to extract features
effectively. DRPNN [8], MSDCNN [9] and RSIFNN [10] ex-
ploit deep residual learning, multi-scale and multi-depth CNN,
and two-branch CNN to enlarge the layer number of deep
network architecture and improve the ability of feature extrac-
tion. MIPSM [11] combines shallow-deep CNN and spectral
discrimination-based detail injection module to acquire HRMS
images retaining more spectral information.

For DL-based methods, there are two shortcomings worth
mentioning. First, before reconstructing the HRMS image,
the multi-channel PAN and LRMS features often need to be
concatenated in the channel dimension to pass through the
reconstructor. This not only makes the spatial information in
the PAN image indistinctive, but also causes the high training
cost due to a huge number of parameters. Second, manually
designed reconstruction loss, such as `2-loss, is difficult to
accurately extract implicit feature information.

Therefore, we propose a lightweight generative adversarial
network for pansharpening based on the fast guided filter (FGF-
GAN). In this paper, we formulate the pansharpening task as
an adversarial training game, where the generator reconstructs
a HRMS image containing spectral/spatial information from
the LRMS/PAN image, and the discriminator distinguishes
whether the generated image is a real sample. Our contribution
can be divided into three-fold:

(1) For the generator, to the best of our knowledge, this
is the first time that fast guided filter (FGF) is exploited to
fuse the extracted feature maps in the pansharpening task.
Compared with channel concatenation operation, the FGF
method can better highlight the role of PAN image by setting
the PAN image as the guidance image, while significantly
reducing the number of parameters. In addition, cooperating
with the spatial attention mechanism, object features useful for
fusion are further concerned and the spectral/detailed texture
information of the source image can be well preserved.
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(2) Inspired by LSGAN [12], adversarial training makes
the generated images contain more latent details which are not
easy to be learned by supervision of reconstruction loss.

(3) Extensive qualitative and quantitative experiments illus-
trate that our method can generate high-quality pansharpening
images with fewer parameters.

2. RELATED WORK

The guided filter [13], as an anisotropic diffusion-based edge-
aware image filter, is one of the fastest edge-preserving filters
and is widely used in image enhancement/dehazing, HDR com-
pression, saliency detection, etc. For relatively “flat” patches
in the guidance image where the variance is small, it can be
regarded as a mean filter for input images in the corresponding
area. For patches existing edges, it is equivalent to an edge-
preserving filter. Subsequently, FGF [14] is proposed with
an extra input, i.e., downsampling guidance image. So the
smoothed maps are calculated on the low-resolution feature
maps, which further improved the speed of the filter algorithm
without losing accuracy.

Recently, Goodfellow et al. [15] propose a generative ad-
versarial network (GAN) to complete the latent distribution
learning of target data without any approximation through the
adversarial training between generator and discriminator. LS-
GAN [12], as a variant of GAN, replaces the cross-entropy
loss of discriminator with least square loss function to solve
the two shortcomings of traditional GAN, i.e., low quality for
generated image and unstable training process. The idea of
adversarial training is also applied in some information fusion
tasks [16, 17].

3. METHOD

In this section, we will introduce the network architecture and
detailed information for our proposed FGF-GAN model.

3.1. Motivation and Overview of FGF-GAN

In order to better preserve the spectral and resolution infor-
mation of the PAN/MS image, and meanwhile reduce the
expensive calculation cost in the pansharpening task, we em-
bed FGF [14] in the information fusion framework. Different
from the traditional applications for FGF which implement
edge-aware in the image domain, we combine deep learning
and FGF together, i.e., FGF is employed to transfer the infor-
mation from PAN images into multi-spectral (MS) images in
the feature domain. By using the low-resolution feature maps
instead of the full-resolution maps, FGF can significantly re-
duce the number of parameters while retaining the information
fusion performance of our model. In addition, some features
that are difficult to be learned explicitly will be complemented
by adversarial training.

Table 1: The architecture of the FGF-GAN. Feature maps in
Landsat8 is employed as samples to show the activation size.

Name Layer∗ Activation size†

Generator Architecture

FPAN
1 32×1×3 conv, ReLU 64×64×32
FLR

1 32×C×3 conv, ReLU 32×32×32

FPAN
k

‡ 32×32×3 conv,
64×64×32

32×32×3 conv, ReLU

FLR
k

32×32×3 conv,
32×32×32

32×32×3 conv, ReLU
Gk - 64×64×32
Sk SAM in CBAM [18] 64×64×32

R 32×(32×K)×3 conv,
64×64×CReLU, C×32×3 conv

Discriminator Architecture

32×(2×C + 1)×3 conv, BN, LReLU 8×8×32
64×32×3 conv, BN, LReLU 8×8×64
128×64×3 conv, BN, LReLU 8×8×128
256×128×3 conv, BN, LReLU 8×8×256
1×256×3 conv, BN, Sigmoid 8×8×1

∗ Convolution kernels: output channels×input channels×kernel size.
† The representation paradigm: width × height × channels.
‡ k = 2, 3, · · · ,K in FPAN

k and FLR
k here.

In short, our method implements PAN/LRMS image fea-
ture extraction, information fusion and HRMS image recon-
struction through the generator, and then the supplement of
extra information is accomplished through the discrimina-
tor. For convenience, we define IPAN ∈ R1×H×W , ILR ∈
RC×h×w , IHR ∈RC×H×W , ÎHR ∈RC×H×W as the input PAN
image, the input LRMS image, the ground truth HRMS im-
age and the output HRMS image of our model, respectively.
The framework of FGF-GAN is illustrated in Fig. 1 and the
architecture in each module can be found in Tab. 1.

3.2. Generator Details

There are four main components in the generator of FGF-GAN,
i.e., feature extraction layer, FGF layer, spatial attention layer
and image reconstruction layer. The goal of each module is to
capture features useful for information fusion from the source
images, fuse and retain the extracted features, highlight the
salient objects and obtain the HRMS images, respectively.

In detail, the paired {IPAN
n , ILRn }Nn=1 are input into feature

extractor {FPAN
k ,FLR

k }Kk=1, where {FPAN
k ,FLR

k } denote the
kth feature extraction layer for PAN/LRMS images in the
generator. Note that there is no shared parameter between
FPAN
k and FLR

k , and the number of feature extraction layers
K is determined in the validation set. After obtaining the cor-
responding feature maps {ΦPAN

k ,ΦLR
k }Kk=1, the information
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Fig. 1: Neural network framework of FGF-GAN.

fusion is accomplished by

ΦHR
k = Gk

(
ΦPAN
k ↓,ΦLR

k ,ΦPAN
k

)
, (1)

where Gk(·, ·, ·) represented the FGF operator [14] correspond-
ing to the kth group of feature maps and ↓ is the bicubic
downsampling operator. Then we exploit the spatial attention
layer Sk to highlight the salient objects for fusion by:

Φ̃HR
k = Sk

(
ΦHR
k

)
, (2)

where Sk is the spatial attention module (SAM) in CBAM [18].
At last, the attention feature maps {Φ̃HR

k }Kk=1 are concatenated
along the channel dimension and are input into the reconstruc-
tion layerR(·). At last, it sets a skip connection between the
upsampled LRMS image and the output of the reconstruction
layer to output the final HRMS image, that is,

ÎHR = R(Φ̃HR)⊕ (ILR ↑), (3)

where ↑ is the bicubic upsampling operator and ⊕ is the
element-wise addition.

3.3. Discriminator Details

After obtaining the ÎHR, in order to further enhance the texture
information and implicit detail information of fusion images,

we establish an adversarial game between the generator and
the discriminator. We input {IHR, ÎHR} into the discriminator,
and define IHR as real data while ÎHR as fake data. Through
the adversarial training, the quality of fusion images is effec-
tively improved, and the rationality of adversarial training is
proved in the ablation experiment in Sec. 4.3.

3.4. Loss Function

The loss function of our FGF-GAN consists of two compo-
nents, the loss of generator LG and the loss of discriminator
LD. In the following, we will introduce the two components
respectively.
Loss function of generator. There are two terms in LG, i.e.,
the reconstruct loss LGcon

and the adversarial loss LGadv
. For

LGcon
, the `1-loss is selected to make our model robust to the

outlier in regression. For LGadv
, inspired by LSGAN [12],

the `2-loss between the predicted probability and the real data
label is used to make the discriminator DθD believe for the
generated fake data. So LG is formulated as:

LG=LGcon
+αLGadv

=

N∑
n=1

∥∥∥IHR
n , ÎHR

n

∥∥∥
1

+
α

N

N∑
n=1

(
DθD (ÎHR

n )−a
)2
,

(4)
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Table 2: Dataset employed in this paper.

Dataset Division∗ Bands SUS ratio†

Landsat8 350/50/100 10 2
QuickBird 474/103/100 4 4
GaoFen2 350/50/100 4 4

∗ The paradigm of dataset division: number of training/validation/test sets.
† SUS ratio represents the spatial up-scaling ratio.

where a is the real data label and α is the turning parameter.
Loss function of discriminator. The discriminator is estab-
lished to distinguish the ground truth and the generated HRMS
image, and LD is expressed as:

LDadv
=

1

N

N∑
n=1

[
DθD

(
ÎHR
n

)
−b
]2

+
[
DθD

(
IHR
n

)
−c
]2
, (5)

where b and c are labels of fake data and real data, respectively.

4. EXPERIMENTS

In this section, we will use a variety of experiments to verify
the effectiveness of our model and the rationality of the mod-
ule settings. All experiments are conducted with Pytorch on
a computer with Intel Core i9-10900K CPU@3.70GHz and
NVIDIA GeForce RTX2080Ti GPU.

4.1. Experimental Settings

Datasets and evaluation metrics. We choose three satellite
datasets, i.e., Landsat8, QuickBird and GaoFen2, as our ex-
perimental datasets, whose details are displayed in Tab. 2.
Wald protocol [20] is employed to prepare for the training
samples. Additionally, in the training phase, we crop the
LRMS samples into 32×32 patches and PAN samples into
(32×SUS)×(32×SUS) patches, where SUS denotes the spa-
tial up-scaling ratio. In the test phase, three spatial assessment
metrics including peak signal-to-noise ratio (PSNR), correla-
tion coefficient (CC), relative dimensionless global error in
synthesis (ERGAS) and a spectral assessment metric spec-
tral angle mapper (SAM) are employed to measure the fusion
effectiveness of our model. The larger PSNR, CC and the
smaller ERGAS, SAM imply the higher quality of the fusion
images.
Training details. In the training phase, FGF-GAN is opti-
mized by Adam in 200 epochs. The batch size is set to 64 and
the learning rate equals to 5×10−4 with a 10 times decrease
after 100 epochs. As for the data labels in Eqs. (4) and (5), we
set a, c = U(0.9, 1.1) and b = U(0, 0.2) as soft labels [12],
where U(·, ·) denotes the uniform distribution. α is set to 0.01
in Eq. (4) to keep loss terms with the same magnitude.

4.2. Comparison with SOTAs

In this section, we compare our FGF-GAN with some
SOTA methods in pansharpening, including BDSD [6],
Brovey [1], GS [2], HPF [19], IHS [3], Indusion [4], SFIM [5],
MIPSM [11], DRPNN [8], MSDCNN [9] and RSIFNN [10].
Qualitative comparison. Visual inspection results of RGB
bands are displayed in Fig. 2. Compared with other methods,
FGF-GAN can better preserve the detailed texture informa-
tion of the PAN images and the spectral information of the
MS images, and the generated images are the closest to the
ground truth. The amplified area can also show that our method
successfully avoids spatial and spectral distortion, and can gen-
erate high-quality fusion results with lower noise.
Quantitative comparison. The values of metrics in three test
datasets are exhibited in Tab. 3. It is obvious that our model
achieves almost all the best results with regard to all metrics
while the other methods can only perform well in a part of
metrics. It proves that our method can generate excellent fu-
sion images and preserve more texture details and spectral
information from source images.
Parameters comparison. In addition, we compare the param-
eters contained in the DL-based models and exhibit them in
Fig. 3. The result shows that our method can generate sat-
isfactory pansharpening images with fewer parameters and
demonstrates the superiority of our lightweight networks.

4.3. Ablation Experiments

Layer number determination. The number of feature extrac-
tion layersK of FPAN

k and FLR
k is a very important parameter

in our model. We train models with different K and show
fusion results of validation set in Tab. 4. When K > 4, the
fusion results are not significantly improved. Balancing model
accuracy and computational cost, we finally determine K = 4.
Module rationality analysis. We show the rationality of ad-
versarial training and spatial attention layer by ablation ex-
periments. In experiment w/o GAN, the adversarial training
is eliminated, i.e., only the generator is trained to complete
pansharpening. In the experiment w/o SAM, we deleted the
spatial attention layer in the generator and display the results
of Landsat8 test set in Tab. 4. Compared with FGF-GAN,
the fusion effects of the two ablation experiment groups are
reduced, which proves the rationality of our model.

5. CONCLUSION

In this paper, we propose a lightweight pansharpening network
based on generative adversarial training. In the generator, the
fast guided filter is used to fuse the extracted feature maps.
Compared with the existing methods that use channel con-
catenation before reconstruction, the fast guided filter can
better emphasize the role of PAN images in pansharpening
while reducing the number of parameters. In addition, the
spatial attention mechanism highlights the targets that need

4



(a) PAN (b) LRMS (c) Ground Truth (d) Brovey [1] (e) GS [2] (f) HPF [19] (g) IHS [3]

(h) Indusion [4] (i) SFIM [5] (j) MIPSM [11] (k) DRPNN [8] (l) MSDCNN [9] (m) RSIFNN [10] (n) FGF-GAN (Ours)

Fig. 2: Qualitative results for SOTAs and ours.

Table 3: Quantitative results. Bold indicates the best result and underlined indicates the second best result.

Dataset: Landsat8 Dataset: QuickBird Dataset: GaoFen2
Methods PSNR CC SAM ERGAS PSNR CC SAM ERGAS PSNR CC SAM ERGAS

BDSD 33.806 0.889 0.025 1.913 23.554 0.737 0.076 4.887 30.211 0.912 0.013 2.396
Brovey 32.403 0.703 0.021 1.981 25.274 0.823 0.064 4.209 31.590 0.952 0.011 2.209

GS 32.016 0.815 0.030 2.212 26.031 0.686 0.059 3.950 30.436 0.916 0.010 2.308
HPF 32.669 0.843 0.025 2.067 25.998 0.789 0.059 3.945 30.481 0.923 0.011 2.331
IHS 32.877 0.732 0.024 2.313 24.383 0.751 0.065 4.621 30.475 0.924 0.011 2.355

Indusion 30.848 0.758 0.036 2.422 25.762 0.651 0.067 4.251 30.536 0.920 0.011 2.346
SFIM 32.721 0.843 0.025 2.078 24.035 0.676 0.074 4.828 30.402 0.910 0.013 2.369

MIPSM 35.489 0.891 0.021 1.577 27.732 0.841 0.052 3.155 32.176 0.955 0.010 1.883
DRPNN 37.364 0.889 0.017 1.330 31.041 0.910 0.038 2.225 35.118 0.971 0.010 1.278

MSDCNN 36.254 0.887 0.018 1.416 30.124 0.889 0.043 2.565 33.671 0.979 0.009 1.472
RSIFNN 37.078 0.884 0.017 1.327 30.577 0.890 0.040 2.353 33.059 0.972 0.011 1.566

Ours 38.179 0.902 0.016 1.271 31.458 0.906 0.038 2.185 35.193 0.972 0.009 1.276

to be fused, and the adversarial training makes the generated
images contain more latent information from source images.
Qualitative and quantitative results show that our method can
generate satisfactory pansharpening images with fewer model
parameters.
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