
GSVNET: GUIDED SPATIALLY-VARYING CONVOLUTION FOR FAST SEMANTIC
SEGMENTATION ON VIDEO

Shih-Po Lee, Si-Cun Chen, Wen-Hsiao Peng

National Yang Ming Chiao Tung University, Taiwan
{splee, sicun.mapl.cs09, wpeng}@nycu.edu.tw

ABSTRACT

This paper addresses fast semantic segmentation on video.
Video segmentation often calls for real-time, or even faster
than real-time, processing. One common recipe for conserv-
ing computation arising from feature extraction is to propa-
gate features of few selected keyframes. However, recent ad-
vances in fast image segmentation make these solutions less
attractive. To leverage fast image segmentation for furthering
video segmentation, we propose a simple yet efficient propa-
gation framework. Specifically, we perform lightweight flow
estimation in 1/8-downscaled image space for temporal warp-
ing in segmentation outpace space. Moreover, we introduce
a guided spatially-varying convolution for fusing segmenta-
tions derived from the previous and current frames, to miti-
gate propagation error and enable lightweight feature extrac-
tion on non-keyframes. Experimental results on Cityscapes
and CamVid show that our scheme achieves the state-of-the-
art accuracy-throughput trade-off on video segmentation.

Index Terms— Video semantic segmentation, dynamic
filters

1. INTRODUCTION

Video semantic segmentation is a compute-intensive vision
task. It aims at classifying pixels in video frames into seman-
tic classes. This task often has real-time or even faster than
real-time requirements in data-center applications, in order to
process hours-long videos in a much shorter time. The ever
increasing video resolution in both spatial and temporal di-
mensions makes real-time processing even more challenging.

A simple approach to video segmentation is to adopt
image-based processing; that is, to process individual video
frames independently using an off-the-shelf image segmen-
tation network. This approach was once considered pro-
hibitively expensive, given that most image segmentation net-
works, like DeepLabv3+ [1], usually optimized the feature
extraction for segmentation accuracy rather than throughput.

To address the prolonged feature extraction, several fast
video segmentation frameworks are proposed. One common
recipe is to propagate features of few selected keyframes,
in order to conserve computation for feature extraction on
subsequent non-keyframes [2, 3]. This is motivated by the

high correlation between consecutive video frames. Due to
the evolution of video content in the temporal dimension,
some [4, 5] additionally introduce lightweight feature extrac-
tion, followed by fusion of spatio-temporal features [4, 5], for
non-keyframes to cope with scene changes or dis-occlusion.
Others propose adaptive keyframe selection [6, 5] or bi-
directional feature propagation [7] for alleviating error prop-
agation. Meanwhile, Xu et al.[6] perform adaptive inference
for cropped regions with scene changes.

However, recent advances in fast image segmentation
[8, 9, 10] make video-based solutions less attractive. For ex-
ample, BiSeNet [8] and SwiftNet [9] can now process high-
definition (2048×1024) videos at 40 to 60 frames per second
on modern graphics processing units (GPU) while achiev-
ing reasonably good segmentation accuracy. A question that
arises is whether video-based approaches can benefit from
these advanced image segmentation networks. The answer
relies crucially on how to address the following challenges.
First, the increasing spatial resolution of videos may render
optical flow estimation too expensive. Second, the excessive
amount of channels in feature space may make the propaga-
tion of features time-consuming. Third, the feature extraction
for non-keyframes has to be even more lightweight. Lastly,
errors resulting from imperfect flow estimation and feature
extraction may be propagated along the temporal dimension.

To tackle these issues, we propose a simple yet efficient
propagation framework, termed GSVNet, for fast semantic
segmentation on video. Our contributions include: (1) to
conserve computation for temporal propagation, we perform
lightweight flow estimation in 1/8-downscaled image space
for warping in segmentation outpace space; and (2) to mit-
igate propagation error and enable lightweight feature ex-
traction on non-keyframes, we introduce a guided spatially-
varying convolution for fusing segmentations derived from
the previous and current frames.

Experimental results on Cityscapes [11] show when work-
ing with BiSeNet [8] and SwiftNet [9], our scheme can pro-
cess up to 142 high-definition video frames per second on
GTX 1080Ti with 71.8% accuracy in terms of Mean Inter-
section over Union (mIoU). It achieves the state-of-the-art
accuracy-throughput trade-off on video segmentation and can
work with any off-the-shelf image segmentation network.
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Fig. 1. Illustration of our proposed propagation framework,
wheremi is the optical flow map, N denotes the image-based
segmentation network and PF indicates our propagation net-
work.

2. RELATED WORK

Image Semantic Segmentation: Image semantic segmenta-
tion models [1, 12] have achieved great success in segmen-
tation accuracy by incorporating sophisticated feature extrac-
tors and task decoders [1, 12]. To achieve better accuracy-
throughput trade-offs, recent research [13, 8, 10] has been fo-
cused on making feature extractors lightweight and less sen-
sitive to the adaptation of input resolution. To this end, Yu et
al. [8] introduce a cost-effective feature extractor by includ-
ing a spatial path for preserving spatial details and a context
path for capturing contextual information in a wide receptive
field. In another attempt, Orsic et al. [9] take the advantage of
transfer learning by using pre-trained encoder on ImageNet
and adopting a simple upsampling decoder with lateral con-
nections.
Video Semantic Segmentation: Efficient video segmenta-
tion is another active research area. Unlike images, consecu-
tive video frames usually have a high correlation or similarity.
To conserve computation for feature extraction, several works
leverage the temporal correlation between video frames to
reuse features of selected keyframes on non-keyframes. Shel-
hamer et al. [2] employ features at different stages of the net-
work from previous frames. For feature propagation, Zhu et
al. [3] use optical flow estimated by a flow network, while
Li et al. [5] adopt spatially variant convolution. [4, 5] ad-
ditionally introduce lightweight feature extraction for non-
keyframes together with spatio-temporal feature fusion, to re-
duce error propagation arising from scene changes or warp-
ing errors. However, the emergence of lightweight image
segmentation calls for a careful rethink of these strategies.
Specifically, the feature extraction on non-keyframes must be
even more lightweight and the extracted features must be used
to their fullest potential to mitigate error propagation.

3. METHOD

This work addresses the problem of efficient semantic seg-
mentation on video. Given an input video consisting of
a set {It}N−1

t=0 of video frames, each being of dimension
3×H ×W , our task is to predict for every video frame It its
downscaled, semantic segmentation Ŝt ∈ RC×H/8×W/8 with
C classes, aiming to strike a good balance between accuracy
and throughput. Following common practice, the final seg-
mentation is obtained by upsampling Ŝt to the full resolution,
where the segmentation accuracy is measured.

3.1. System Overview
Fig. 1 illustrates our proposed method for efficient semantic
segmentation on video. The process begins by segmenting
the first keyframe to obtain its semantic segmentation Ŝ0 with
an image-based segmentation network N . Our propagation
framework PF then propagates temporally the segmentation
Ŝ0 (respectively, Ŝt−1) of the previous step to assist in pre-
dicting the segmentation Ŝ1 (respectively, Ŝt) for the current
non-keyframe I1 (respectively, It). The process repeats until
the next keyframe is reached.

3.2. Spatiotemporal Propagation Framework

Fig. 2 shows the pipeline of our segmentation propagation
framework PF . Starting with the downscaled segmenta-
tion Ŝt−1 ∈ RC×H/8×W/8 for the previous frame It−1, we
(1) perform temporal (backward) warping of Ŝt−1 based on
the optical flow mt ∈ R2×H/8×W/8 to arrive at an initial
estimate Ŝ−

t ∈ RC×H/8×W/8 of the downscaled segmen-
tation for the current frame It. It is obvious that not ev-
ery semantic prediction in Ŝ−

t is reliable. The errors can
propagate along the temporal dimension through the warp-
ing process. Moreover, the optical flow mt may be error-
prone due to dis-occlusion or imperfect flow estimation. We
thus (2) refine the warped segmentation Ŝ−

t by applying a
guided spatially-varying convolution. This is achieved in
three sequential steps. The first convolves the Ŝ−

t with several
ideal-delay kernels θ1, θ2, . . . , θD, yielding {fst,d}Dd=1, f

s
t,d ∈

RC×H/8×W/8. The second arranges {fst,d}Dd=1 together with
a crude estimate f it ∈ RC×H/8×W/8 of the current frame’s
segmentation from a lightweight network intoC chunks, each
concatenating the channels of the same index from {fst,d}Dd=1

and f it . The last applies a spatially-varying 1× 1 convolution
across the channels of each of these C chunks, with their re-
sults concatenated together to form our downscaled estimate
Ŝt ∈ RC×H/8×W/8 of the current frame’s segmentation.

3.3. Temporal Segmentation Warping

This very first step performs temporal warping of Ŝt−1 to ar-
rive at an initial estimate Ŝ−

t of the current frame’s segmenta-
tion. In symbols, we have

Ŝ−
t (c, x, y) = Ŝt−1(c, x+m

(x)
t (x, y), y+m

(y)
t (x, y)),∀c ∈ C

(1)
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Fig. 2. Architecture diagram of the proposed propagation network PF .

where (x, y), 1 ≤ x ≤ W/8, 1 ≤ y ≤ H/8 denotes
pixel locations in the downscaled segmentation and mt =

(m
(x)
t ,m

(y)
t ) is the optical flow describing the backward mo-

tion from It to It−1 also in the downscaled domain, and is
estimated by a lightweight optical flow network O based on
the hierarchical feature fusion block. More details of this flow
network can be found in the supplementary document. Per-
forming temporal warping in the 1/8-downscaled domain is
motivated by two observations. First, lowering the spatial res-
olution can significantly reduce the runtime costs of both op-
tical flow estimation and temporal warping. Second, the 1/8
downscaling factor is chosen empirically to match common
practice in most segmentation network design that the final
high-resolution segmentation is usually recovered by interpo-
lating the network output by a factor of 8.

3.4. Guided Spatially-Varying Convolution

To correct unreliable segmentation predictions in Ŝ−
t , we

resort to a guided spatially-varying filtering. This opera-
tion serves as a means to propagate spatially within Ŝ−

t the
segmentation predictions from reliable regions to unreliable
ones. Apparently, in what direction the propagation should
be performed to correct the erroneous prediction at a pixel
depends on the error pattern in its local neighborhood. As
such, our filtering kernel is designed to be both context- and
pixel-adaptive.

3.4.1. Spatial Propagation with Ideal-delay Kernels
Such spatial propagation starts by convolving the temporally
warped segmentation Ŝ−

t with several ideal-delay kernels
θ1, θ2, . . . , θD. As a result of the convolution, each of these

kernels shifts the Ŝ−
t channel-wise by one pixel or more in

a certain direction. When viewed from each pixel’s perspec-
tive, these shifting operations line up its surrounding seman-
tic predictions as potential candidates for propagation. For
implementation, we consider each ideal-delay kernel as a 3-
D tensor of size 1 × K × K, where K indicates the prop-
agation range measured in the maximum horizontal or ver-
tical displacement of the unit impulse from the origin. It
is then convolved with Ŝ−

t , also regarded as a 3-D tensor,
using 3-D convolution ⊗ to get fst,d = Ŝ−

t ⊗ θd, where
fst,d ∈ RC×H/8×W/8, d = 1, 2, . . . , D.

3.4.2. Lightweight Intra-frame Segmentation
Recognizing that there may be areas in a video frame where
new image contents emerge or our spatial propagation may
not work well, we further develop a lightweight network ϕ
for segmentation in these areas. The former is also known as
the dis-occluded areas; the latter is because our spatial prop-
agation is susceptible to the errors of the previous frame’s
segmentation and the optical flow estimation. The module is
showed in the upper branch of Fig. 2. Since these areas nor-
mally represent only a small percentage of pixels in a video
frame, we design ϕ for low complexity, with its prediction ac-
curacy focused on those error-prone areas. Our current imple-
mentation comprises only 3 convolutional layers with kernel
size 3×3 without resolution downscaling. As shown in Fig. 2,
it takes as input the 1/8-downscaled current video frame and
outputs the segmentation f it = ϕ(Ŝ−

t ), f it ∈ RC×H/8×W/8.

3.4.3. Guided Dynamic Filtering
Given {fst,d}Dd=1 and f it from the previous two steps, the
guided dynamic filtering forms a semantic prediction of ev-
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ery pixel by spatially-varying 1 × 1 filtering. To proceed,
we first organize {fst,d}Dd=1 and f it into C chunks. Each
chunk concatenates the channels of the same semantic class
from {fst,d}Dd=1 and f it ; that is, the resulting channels of a
chunk correspond to semantic predictions of the same class
yet shifted spatially from Ŝ−

t in different directions. We then
use a guiding network G to produce the 1×1 kernel for every
pixel. In particular, this kernel varies from one pixel location
to another, determining dynamically how the spatial propaga-
tion is conducted at every pixel location or whether the intra-
frame segmentation should be weighted more heavily.

The process is illustrated in the lower and right parts
of Fig. 2. For implementation, the guiding network Γt =
G(f it , Et) takes as inputs f it andEt, whereEt = σ(Ŝ−

t ⊗M)
is an edge map derived from convolving Ŝ−

t with a Lapla-
cian kernel M . In particular, before the convolution, we
take the argmax operation with respect to Ŝ−

t to keep only
the structure information inherent in the segmentation map.
The output of the convolution is further passed through a Sig-
moid function σ to clip the edge response. This design is
inspired by the observation that Ŝ−

t tends to be erroneous
at the object boundaries and in regions where the structure
contour of Ŝ−

t is inconsistent with that of f it , which cap-
tures rough semantic predictions. Finally, the network output
Γt ∈ R(D+1)×H/8×W/8 is the 1 × 1 kernel for every pixel
location (x, y), 1 ≤ x ≤ W/8, 1 ≤ y ≤ H/8. The filtering
of every chunk then follows by evaluating

Ŝt,c(x, y) = Γ̂t(x, y)� chunkt,c(x, y),∀c, x, y (2)

where Γ̂t(x, y) denotes the normalized kernel at (x, y) that
has a unity gain across channels and � is the inner product.
The filtered results, when pooled together, form the final seg-
mentation output Ŝt.

We train the propagation framework PF end-to-end. The
training objective involves an ordinary cross-entropy loss im-
posed on the final segmentation output.

4. EXPERIMENTS

4.1. Setup

Datasets: We validate our method on Cityscapes [11]
and CamVid [14], the datasets for scene understanding.
Cityscapes includes video snippets of urban scenes, of which
2975/500/1525 are for training/validation/test. Each snip-
pet of resolution 2048 × 1024 is 30 frames long, with only
the 20th frame annotated. CamVid has 4 video sequences.
In each video, only one frame in every 30 frames is anno-
tated, leading to a total of 701 labeled video frames of size
960 × 720. Among these video frames, 367/101/233 are for
training/validation/test.
Accuracy Metrics: For evaluating the segmentation accu-
racy, we follow the protocol in [3, 4] to measure the Mean
Intersection over Union (mIoU) over l image pairs (20−i, 20)

in every snippet with i = 0, 1, . . . , l− 1. For each image pair
(a, b), we propagate the segmentation for frame a (keyframe)
recursively to frame b (non-keyframe). The mIoU measured
this way is known as the average mIoU. We also report the
minimum mIoU measured with respect to the non-keyframe
farthest away from the keyframe in every snippet, i.e. the
non-keyframe that is expected to be impacted the most by er-
ror propagation in the temporal dimension. Unless otherwise
stated, the keyframe interval l is defaulted to 5. Note that all
the mIoU numbers reported are measured at full resolution.
Complexity Metrics: For complexity assessment, we report
the throughput in frames per second (FPS) on GTX 1080Ti,
the number of network parameters in bytes, and the aver-
age number of floating-point operations per second (FLOPS)
over a keyframe interval.
Implementation Details: We implement our network on Py-
torch, and use pre-trained SwiftNet-R18 [9], termed SN-R18
or BiSeNet-R18, termed BN-R18, as the segmentation model
for keyframes. Both SN-R18 and BN-R18 adopt the ResNet-
18 backbone. At inference time, the size of the keyframe is
downscaled for the best accuracy-throughput trade-off. By
the same token, our propagation module operates at one-
eighth the resolution of the input video frame, followed by
an interpolation of the segmentation output to the full resolu-
tion for mIoU measurement. Similar to [3, 4], we train our
network for keyframe intervals ranging from 1 to 5. We use
stochastic gradient descent (SGD) with momentum 0.9 and a
learning rate of 0.002, which is decreased by a factor of 0.992
every 100 iterations. We set the batch size to 8 and the weight
decay to 0.0005. Our model, exclusive of the pre-trained
SwiftNet-R18 or BiSeNet-R18 for keyframe segmentation, is
then trained end-to-end over image patches cropped from the
input image. Each patch is three quarters of the input size.
Our code and pre-trained weights are available online. 1

4.2. Results

Accuracy-throughput Trade-off: Table 1 compares the
accuracy-throughput trade-offs of the competing methods. As
shown, at FPS around 130, Ours-BN-R18 (l = 4) outper-
forms BiSeNet-R18 with input size 0.5 by 2.3% mIoU. Like-
wise, Ours-SN-R18 (l = 4) surpasses SwiftNet-R18 with in-
put size 0.5 by 3.1% mIoU. Comparing with the video-based
methods like [2, 4, 6], our scheme achieves much higher
FPS and mIoU. In particular, Ours-SN-R18 (l = 2) out-
paces considerably [5, 15], which target also high through-
put, in FPS at the cost of a modest drop in mIoU. Results
on Camvid [14] (Table 3) show that our method runs faster
than the image-based schemes [8] while achieving higher or
comparable mIoU. It is to be noted that the other video-based
schemes can hardly compete with ours in FPS, although [15]
has higher mIoU due to the use of better backbones.

1https://github.com/robert80203/GSVNet
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Method Input Avg. FPS
size mIoU

CLK [2] 1.0 64.4 6.3
LVS-LLS [5] 1.0 75.9 8.4
Accel-R18 [4] 1.0 72.1 2.2
DVSNet [6] 1.0 63.2 30.3
TD-BN-R18 [15] 1.0 75.0 47
Fast-SCNN [10] 0.5 68.6 123.5
BiSeNet-R18 [8] 0.75 73.7 62
BiSeNet-R18 [8] 0.5 68.9 131
SwiftNet-R18 [9] 0.75 74.4 63.2
SwiftNet-R18 [9] 0.5 68.7 134
Ours-BN-R18 (l=2) 0.75 72.9 98.5
Ours-BN-R18 (l=3) 0.75 72.0 123.4
Ours-BN-R18 (l=4) 0.75 71.2 140
Ours-SN-R18 (l=2) 0.75 73.6 100
Ours-SN-R18 (l=3) 0.75 72.6 125
Ours-SN-R18 (l=4) 0.75 71.8 142

Table 1. Accuracy and throughput comparison on Cityscapes
dataset. The l specifies the keyframe interval. The input
size indicates the downscaling factor for keyframes in the
video-based schemes or for input images in the image-based
schemes.

Method Input FPS Key Non-key FLOPS
size params params

BiSeNet-R18 0.75 62.0 49.0M - 58.0G
SwiftNet-R18 0.75 63.2 47.2M - 58.5G
SwiftNet-R18 0.5 134 47.2M - 26.0G
Ours-SN-R18 (l=4) 0.75 142 47.2M 1.6M 16.7G

Table 2. Complexity comparison in terms of network param-
eters, FLOPS and FPS.

Network Parameters and FLOPS: Table 2 compares the
number of network parameters and FLOPS. As can be seen,
our scheme introduces 1.6M additional network parameters
for segmenting non-keyframes, representing less than 3.3%
additional overhead relative to image-based segmentation
with SwiftNet-R18 or BiSeNet-R18. It achieves the least
number of FLOPS, with a FPS of 142 and 71.8% average
mIoU. The FLOPS of our scheme is variable depending on
the keyframe interval. On average, a non-keyframe requires
2.8G FLOPS, as compared to 58.5G FLOPS for processing a
keyframe with SwiftNet-R18 (0.75). As such, the higher the
keyframe interval, the lower the FLOPS.

4.3. Ablation Experiments

This section aims at dissecting our design to understand better
the contributions of each component.
Using Lightweight Flow Estimation and Feature Extrac-
tion in A-R18: Fig. 3 shows that Accel-R18, when trained
end-to-end with our lightweight flow estimation network and
feature extractor (a scheme termed A-Lite), suffers from a
significant mIoU drop, although its throughput is much im-

Method Input Avg. FPS
size mIoU

Accel [4] 1.0 66.7 7.58
TD-PSP18 [15] 1.0 71.0 25
TD-PSP50 [15] 1.0 74.7 10
BiSeNet-R18 [8] 0.75 66.6 142
BiSeNet-R18 [8] 0.5 60.7 232
Ours-BN-R18 (l=2) 0.75 65.9 210
Ours-BN-R18 (l=3) 0.75 64.8 250

Table 3. Accuracy and FPS comparison on CamVid test set.

80 90 100 110 120 130 140 150
62
64
66
68
70
72
74

Throughput (FPS)
A

vg
.m

Io
U

(%
)

Ours Ours-FlowNet A-Lite

Fig. 3. Comparison of accuracy-throughput curves. A-Lite
adopts the same flow network and feature extractor as ours.
Ours-FlowNet uses FlowNet2s for flow estimation.

proved (red vs. cyan curves). This stresses the novelty of
our guided dynamic filtering. Also shown in Fig. 3, using
FlowNet2s [16] in our framework has little impact on mIoU
(blue vs. green curves). This however causes the throughput
to reduce, due to the prolonged runtime for flow estimation.
Discarding Intra Features: Intra features refer to the fea-
tures extracted from the current frame. They serve the pur-
poses of guiding the 1 × 1 dynamic filtering and refining
the semantic predictions propagated from the previous frame.
Table 4 shows discarding intra features causes the minimum
mIoU to drop much faster along with the increasing keyframe
interval, highlighting their necessity for mitigating error prop-
agation.

4.4. Qualitative Evaluation

Fig. 4 presents qualitative evaluation. For a fair comparison,
all the competing models are configured to have a similar
throughput (120 to 140 FPS). Because of lightweight tem-
poral propagation, video-based methods can afford higher-
accuracy keyframe segmentation, e.g. SwiftNet-R18 (0.75) in
our method and BiSeNet-R18 (0.75) in A-Lite.y We adopt A-
Lite instead of A-X39 for comparison as it is the only version
of Accel that achieves a similar throughput to the others. It is
seen that our method produces consistently better segmenta-
tions across video frames (see the poles especially in the top-
left area) than SwiftNet-R18 (0.5). In addition, A-Lite suffers
from seriously distorted object boundaries. More qualitative
results can be found in our supplementary document.
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Keyframe interval
Metric Intra Feature 1 2 3 4 5
Min. with 74.4 72.9 70.7 69.6 67.7
mIoU without 74.4 72.1 69.1 67.4 65.1

Table 4. Accuracy comparison between models with and
without the use of the current frame’s features (intra features).
The accuracy is measured in minimum mIoU over a keyframe
interval to emphasize the worst case.

G
T

(a
)

(b
)

(c
)

k+1 k+2 k+3

Fig. 4. Qualitative evaluation: (a) Ours-SN-R18 (0.75), (b)
A-Lite, and (c) SwiftNet-R18 (0.5). From left to right, each
column with index k + n shows the segmentation results for
a video frame that is n steps after the keyframe k. Note that
only the last frame (k+3) has the ground-truth segmentation.

5. CONCLUSION

This paper presents a simple propagation framework for ef-
ficient video segmentation. We show that it is more cost-
effective to perform warping in segmentation output space
than in feature space. This also allows the propagation error
to be minimized at each time step by our guided spatially-
varying convolution. Our scheme has the striking feature of
being able to work with any off-the-shelf fast image segmen-
tation network to further video segmentation.
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