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ABSTRACT

The advent of deep learning has brought a significant im-
provement in the quality of generated media. However, with
the increased level of photorealism, synthetic media are be-
coming hardly distinguishable from real ones, raising serious
concerns about the spread of fake or manipulated information
over the Internet. In this context, it is important to develop
automated tools to reliably and timely detect synthetic media.
In this work, we analyze the state-of-the-art methods for the
detection of synthetic images, highlighting the key ingredi-
ents of the most successful approaches, and comparing their
performance over existing generative architectures. We will
devote special attention to realistic and challenging scenar-
ios, like media uploaded on social networks or generated by
new and unseen architectures, analyzing the impact of suit-
able augmentation and training strategies on the detectors’
generalization ability.

Index Terms— Image forensics, synthetic media, Gener-
ative Adversarial Networks.

1. INTRODUCTION

In recent years, there has been intense research on the genera-
tion of synthetic media, and a large number of deep learning-
based methods have been proposed to this end. Generative ad-
versarial networks (GAN), in particular, have brought tremen-
dous quality improvements. There are GAN-based methods
to generate images from scratch as well as to modify the at-
tributes of an existing image. A number of exciting applica-
tions exist already. However, this technology can also be used
for malicious purposes, for example to generate fake profiles
on social network or to generate fake news. Even the most
careful observer can now be fooled by GAN-generated im-
ages, not to mention the average Internet user. Therefore,
there is urgent need for automatic tools that can reliably dis-
tinguish real content from manipulated content.

Indeed, despite their high visual quality, synthetic images
bear peculiar traces left by the generation process that can be
exploited to detect them. Sometimes they present visible ar-
tifacts, such as color anomalies or lack of symmetries, see
Fig.1. Nonetheless, with the fast pace of technology, these
obvious imperfections will likely disappear soon. More solid

Fig. 1. Examples of GAN synthetic images together with their
visible and not visible artifacts. From top to bottom: color
artifacts, artificial fingerprint and its averaged version, Fourier
spectrum and its averaged version.

and lasting evidence, though, are the invisible artifacts closely
linked to the architecture of the generative network. Indeed,
GAN-generated images have been shown [1, 2] to incorpo-
rate regular patterns, a sort of artificial fingerprints, specific
to each individual GAN architecture, see again Fig. 1. Such
patterns also show themselves as peaks in the Fourier domain,
not present in the spectral distribution of natural images. They
clearly depend on the up-sampling operations typical of each
GAN architecture. However, networks with the same archi-
tecture, but trained on different data, also have different fin-
gerprints, thus calling for more accurate explanations.

Recently, several GAN-image detectors have been pro-
posed in the literature, some using explicitly the features de-
scribed above, others relying entirely on suitably trained deep
networks [3]. In general, they seem to convey the idea that
detecting GAN images is not really a challenging task. How-
ever, we believe this is an overly optimistic view. In our ex-
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perience, detection performance impairs dramatically as soon
as some favorable conditions disappear. More specifically,
both the lack of well aligned training data and the presence of
significant image distortions affect performance heavily. Un-
fortunately, these situations are way too common on the web.
New generators are proposed by the day, for which training
examples are not available, and images are routinely com-
pressed and resized, destroying precious evidence.

In this paper we carry out a systematic experimental study
with the aim to establish where we really are in GAN-image
detection. Towards this end, several of the most promising
detectors are tested, considering challenging yet realistic sce-
narios, a number of different datasets, and using performance
metrics that are appropriate for large-scale screening. Besides
providing a solid reference for future proposals, the compar-
ative analysis of results allows us to single out some key fea-
tures of successful solutions, clearing the way for the design
of new and more effective tools. In the rest of the paper we
first describe state-of-the-art approaches, then we present the
datasets used to carry out our experimental analysis and fi-
nally draw conclusions.

2. STATE-OF-THE-ART METHODS

2.1. Learning spatial domain features

Early works on GAN image forensics focus on the attribution
problem, trying to identify the image provenance. In fact, just
like real cameras, which mark each acquired image with a
device-dependent signature, also GAN architectures insert in
each generated image a sort of fingerprint. This latter depends
not only on the specific model, but also on the dataset used for
training [1, 2], thus enabling model identification.

Other methods exploit the intrinsic constraints of GAN
generators. For example, [4] leverages the fact that GANs
produce only a limited range of intensity values, and do not
generate saturated and/or under-exposed regions. Likewise,
[5] exploits GANs failure to accurately preserve the natu-
ral correlation among color bands. Consequently, to extract
discriminative features for detection, the chrominance com-
ponents are high-pass filtered and summarized by their co-
occurrence matrices. It is worth noting that co-occurrences
of high-pass filtered versions of the image are popular tools
in image forensics since invisible artifacts are often present
in the high-frequency signal components [3]. In fact, co-
occurrence matrices extracted from the RGB channels are
also used in [6] as input of a CNN. and in [7] across color
bands.

A first investigation of detectors based on very deep net-
works is carried out in [8], where state-of-the-art pre-trained
CNNs, like Xception, Inception, and DenseNet, are shown to
ensure excellent performance for GAN image detection. In
particular, they turn out to outperform CNN models specifi-
cally tailored to forensics tasks and trained from scratch, and

especially in the most challenging scenarios.

2.2. Learning frequency domain features

GAN images display clear traces of their synthetic origin in
the Fourier domain. The detector proposed in [9] exploits
the presence of spectral peaks caused by the upsampling op-
erations routinely performed in most GAN architectures. A
frequency-domain analysis is carried out also in [10] to study
the presence of artifacts across different network architec-
tures, datasets and resolutions. Again, these artifacts are used
to tell apart generated images from real ones. In particular,
a CNN-based classifier is trained with Fourier spectra taken
from both real images and their synthetic versions obtained
trough an adversarial autoencoder. Likewise, in [11] it is
shown that GAN images do not faithfully mimic the spectral
distributions of natural images. A simple detector is proposed
that takes the energy spectral distribution as input feature. The
authors also propose a spectral loss to use during GAN train-
ing so as to limit the appearance of spectral artifacts.

2.3. Learning features that generalize

The fully supervised approaches described above are all very
effective when the GAN images under test come from a model
that is also present in training. However, they fail to general-
ize to data generated by new unseen models. Therefore, some
methods have been proposed recently to address this problem.
In [12, 13] few-shot learning strategies are proposed, with
an autoencoder-based architecture, to adapt to new manipula-
tions with just a few examples. In [14], instead, an approach
based on incremental learning is used. Despite the improved
generalization, these methods still need some examples of the
new GAN architecture, which is not always realistic.

A different solution is proposed in [15]. The idea is
to carry out augmentation by gaussian blurring so as to
force the discriminator to learn more general features. A
similar approach is followed in [16] where a standard pre-
trained model, ResNet50, is further trained with a strong aug-
mentation based on compression and blurring. Experiments
show that, even by training on a single GAN architecture,
the learned features generalize well to unseen architectures,
datasets, and training methods. A different perspective is
taken in [17] where a fully-convolutional patch-based clas-
sifier is proposed. The authors show that by focusing on local
patches rather than global structure, they can achieve better
performance.

3. DATASETS

In our experimental analysis all networks are trained and
tested on the very same data. For training, we use the dataset
provided by [16], comprising 362K real images extracted
from the LSUN dataset and 362K generated images obtained

2



Low Resolution (256× 256)
Name Content # Images
Various ImageNet, COCO, Unpaired-real 11.1k
StyleGAN Generated objects (LSUN) 6.0k
StyleGAN2 Generated objects (LSUN) 8.0k
BigGAN Generated objects (ImageNet) 2.0k
CycleGAN Image-to-image translation 4.0k
StarGAN Generated faces (CelebA) 2.0k
RelGAN Generated faces (CelebA) 3.0k
GauGAN Generated scenes (COCO) 5.0k

High Resolution (1024× 1024)
Name Content # Images
RAISE [18] Central crop of real photos 7.8k
ProGAN Generated faces (CelebA-HQ) 3.0k
StyleGAN Generated faces (CelebA-HQ) 3.0k
StyleGAN Generated faces (FFHQ) 3.0k
StyleGAN2 Generated faces (FFHQ) 3.0k

Table 1. Datasets used for testing the methods under analysis.

by 20 ProGAN [19] models, each trained on a different LSUN
object category. All images have a resolution of 256×256
pixel. A subset of 4K images is used for validation.

Since our main aim is to verify the model transferability,
in the testing phase we use images coming from GAN archi-
tectures never seen in training. Testing datasets are listed in
Table 1. They include both low resolution (256×256) and
high resolution (1024×1024) images, generated by: Style-
GAN [20], StyleGAN2 [21], BigGAN [22], CycleGAN [23],
StarGAN [24], RelGAN [25], and GauGAN [26]. We ex-
clude low resolution ProGAN images, since they are used for
training, but consider instead their high-resolution versions.
Overall, we have about 39K synthetic images. Then we have
11.1K low-resolution real images coming from ImageNet,
COCO [27], and Unpaired real dataset [23], and 7.8K high-
resolution images, extracted from the RAISE [18] dataset.
We do not use high-resolution images from the CelebA-HQ
dataset, as done elsewhere, since they are GAN-upsampled
versions of the low-resolution real images.

4. EXPERIMENTAL RESULTS

In our analysis we compare a number of detectors: Xception
[8], SRNet [28], Spec [9], M-Gb [15], Co-Net [6], Wang2020
[16], PatchForensics [17]. Their main features are summa-
rized in Table 2. Together with methods specifically proposed
for GAN image detection, and already described in Section 2,
we also include SRNet, originally proposed for steganalysis.
Indeed, steganalysis and image forensics pursue very similar
goals, and successful methods transfer well from one domain
to the other [3]. In particular, we find SRNet worth studying
because, to preserve features related to noise residual, it per-
forms no down-sampling in the first layers of the network, a

solution of potential interest for GAN detection.
The first set of experiments aims at assessing the gener-

alization ability of the tested methods. Results are shown
in Fig.2 for low-resolution (top) and high-resolution (bot-
tom) images in terms of several performance metrics: area
under the receiver-operating curve (AUC), accuracy at the
fixed threshold of 0.5, and probability of detection for a 5%
(Pd@5%) and 1% (Pd@1%) false alarm rate (FAR). AUC re-
sults on low-resolution (LR) images are generally very good,
considering that training and testing data are not aligned, with
several methods exceeding the 0.9 level. However, accuracy
results are much less encouraging, since a fixed threshold is
used, lacking the optimal one. Considering the Pd@FAR met-
ric, results become pretty bad, and only some methods keep
ensuring a good detection ability. On the other hand, if detec-
tors are to be used for systematic screening of media content,
only very low FARs are acceptable. Results are somewhat
better for high-resolution (HR) images but the same general
behavior is observed.

The above results are obtained on uncompressed images
at their original size. However, on social networks images are
routinely compressed and resized, so we now investigate ro-
bustness to these processing steps. Fig.3 reports the Pd@5%
performance for LR and HR images as a function of com-
pression factor and resizing scale. Several methods suffer
dramatic impairments as soon as they move away from the
ideal case of no compression and 100% scale. A relatively
stable performance is ensured by methods trained with aug-
mentation. In any case, a 2x downsampling has catastrophic
effects, as expected given the nature of GAN artifacts.

In order to move a step towards a better solution, we carry
out further investigations aimed at identifying the key ingre-
dients of the most promising solutions. Therefore, we con-
sider as baseline the method proposed in [16], which pro-
vided a good and stable performance in the previous exper-
iments. On this framework, we introduce the following vari-
ations: remove Imagenet pre-training (no-pretrain), include
an initial layer for residual extraction (residual), do not per-
form down-sampling in the first layer as suggested by [28]
(no-down), perform a stronger augmentation (strong-aug) by
including gaussian noise adding, geometric transformations,
cut-out, and brightness and contrast changes. In addition, for
the no-down variant, we also change the backbone network,
replacing ResNet50 with XceptionNet (Xception no-down)
and Efficient-B4 (Efficient no-down). Results for the vari-
ous metrics are shown in Fig.4 in the absence of compression
and resizing, while Fig.5 shows results in terms of Pd@5% as
a function of compression level and scaling factor.

Finally, in Table 3 we show the results for the baseline and
the best variant over all the different GAN architectures. We
also considered a new version of the best variant that is trained
on 23 StyleGAN2 models. Avoiding down-sampling in the
first block of the architecture provides an average gain of
about 15% in terms of accuracy and 14% in terms of Pd@5%.
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Ref. Acronym Description Test strategy
[8] Xception pre-trained Xception without augmentation no cropping and no resizing
[28] SRNet 12-layer network with no down-sampling in the first 7 layers no cropping and no resizing
[9] Spec pre-trained ResNet34 with image spectrum as input central cropping (224× 224)
[15] M-Gb 6-layer network with gaussian blurring augmentation resizing (128× 128)
[6] Co-Net 8-layer network with co-occurrence matrix as input no cropping and no resizing
[16] Wang2020 pre-trained ResNet50 with blurring and compression augment. no cropping and no resizing
[17] PatchForensics first blocks of Xception trained at patch-level resizing (299× 299)

Table 2. List of the methods used in our experiments together with the test strategy, as proposed in the original papers.

Overall accuracy is always above 90% irrespective of the type
of architecture and further improves (above 97%) if training
is carried out on StyleGAN2 1.

Although these experiments are very limited and prelimi-
nary, they provide some interesting hints for future research.
First of all, they confirm the importance of diversity to in-
crease robustness, like ImageNet pre-training, as already ob-
served in steganalysis [29]. In addition, they suggest there is
still much room for improvements with respect to the existing
solutions, especially in terms of robustness to compression
and resizing. In particular, the no-down variants appear quite
promising and suggest to move along this direction by per-
forming full-resolution end-to-end processing to design better
and more robust detectors, as also suggested in [30].

5. CONCLUSIONS

In this paper, we carried out a fair experimental analysis of
several existing detectors, considering various challenging
cases. Our first conclusion is that we are still very far from
having reliable tools for GAN image detection. Misalignment
between training and test, compression and resizing are all
sources of serious impairments and, at the same time, highly
realistic scenarios for real-world applications. On the positive
side, this analysis allows us to single out some key ingredients
of successful solutions, and provides hints for future research.
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1code available at: https://github.com/grip-unina/
GANimageDetection

Accuracy / Pd@5%
Wang2020 Best variant Best variant
(baseline) (no-down) (no-down)
[ProGAN] [ProGAN] [StyleGAN2]

L
ow

R
es

.

ProGAN 99.3 /100.0 94.7 /100.0 99.8 /100.0
StyleGAN 75.9 / 73.9 93.7 / 93.1 99.9 /100.0
StyleGAN2 71.5 / 69.0 92.2 / 88.8 99.9 /100.0
BigGAN 59.2 / 45.2 93.5 / 92.0 96.5 / 99.4
CycleGAN 77.4 / 80.5 90.3 / 81.5 96.5 / 99.5
StarGAN 84.3 / 89.4 94.5 / 97.6 99.9 /100.0
RelGAN 63.6 / 56.0 92.8 / 86.6 99.7 /100.0
GauGAN 82.5 / 86.3 93.6 / 93.5 90.8 / 97.1

H
ig

h
R

es
. ProGAN 99.7 /100.0 97.1 /100.0 99.7 /100.0

StyleGAN(Cel.) 99.3 /100.0 97.1 /100.0 99.7 /100.0
StyleGAN(FFHQ) 82.6 / 93.7 96.6 / 98.7 99.7 /100.0
StyleGAN2 73.2 / 78.1 96.9 / 99.6 99.7 /100.0

Table 3. Accuracy and Pd@5% for the baseline and the best
variant that avoids down-sampling in the first block. First two
columns training is on ProGAN, last column on StyleGAN2.
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Fig. 2. Results of the methods under comparison in terms of AUC, Accuracy, Pd@5% and Pd@1% for all the tested methods
on low-resolution (top) and high resolution images (bottom).

Fig. 3. Results of the methods under comparison in terms of Pd@5% as a function of JPEG compression level and resizing
factor. LR images (top) are both enlarged and reduced in size, while HR images (bottom) are only reduced.

Fig. 4. Results of the baseline (Wang2020) and its variants in terms of AUC, Accuracy, Pd@5% and Pd@1% for variants of
Wang2020 on low-resolution (top) and high resolution images (bottom).
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Fig. 5. Results of the baseline (Wang2020) and its variants in terms of Pd@5% as a function of JPEG compression level and
resizing factor. LR images (top) are both enlarged and reduced in size, while HR images (bottom) are only reduced.

Cross-Band Co-occurrences Analysis,” in IEEE WIFS,
2020.

[8] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Ver-
doliva, “Detection of GAN-generated fake images over
social networks,” in IEEE MIPR, 2018.

[9] X. Zhang, S. Karaman, and S.-F. Chang, “Detecting and
Simulating Artifacts in GAN Fake Images,” in IEEE
WIFS, 2019, pp. 1–6.

[10] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer,
D. Kolossa, and T. Holz, “Leveraging Frequency Anal-
ysis for Deep Fake Image Recognition,” in CVPR, 2020.

[11] R. Durall, M. Keuper, and J. Keuper, “Watch your up-
convolution: CNN based Generative Deep Neural Net-
works are failing to reproduce spectral distributions,” in
CVPR, 2020.

[12] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner,
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