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ABSTRACT

Chest X-ray plays a key role in screening and diagnosis of
many lung diseases including the COVID-19. Many works con-
struct deep neural networks (DNNs) for chest X-ray images
to realize automated and efficient diagnosis of lung diseases.
However, bias field caused by the improper medical image ac-
quisition process widely exists in the chest X-ray images while
the robustness of DNNs to the bias field is rarely explored,
posing a threat to the X-ray-based automated diagnosis system.
In this paper, we study this problem based on the adversarial
attack and propose a brand new attack, i.e., adversarial bias
field attack where the bias field instead of the additive noise
works as the adversarial perturbations for fooling DNNs. This
novel attack poses a key problem: how to locally tune the bias
field to realize high attack success rate while maintaining its
spatial smoothness to guarantee high realisticity. These two
goals contradict each other and thus has made the attack signif-
icantly challenging. To overcome this challenge, we propose
the adversarial-smooth bias field attack that can locally tune
the bias field with joint smooth & adversarial constraints. As
a result, the adversarial X-ray images can not only fool the
DNNs effectively but also retain very high level of realisticity.
We validate our method on real chest X-ray datasets with pow-
erful DNNs, e.g., ResNet50, DenseNet121, and MobileNet,
and show different properties to the state-of-the-art attacks in
both image realisticity and attack transferability. Our method
reveals the potential threat to the DNN-based X-ray automated
diagnosis and can definitely benefit the development of bias-
field-robust automated diagnosis system.

Index Terms— Medical image analysis, bias field, X-ray
recognition, adversarial attack

1. INTRODUCTION

Medical image diagnosis and recognition is starting to be auto-
mated by DNNs with a clear advantage of being very efficient
in diagnosing the disease outcomes. However, unlike human

∗Qing Guo and Xiaohong Li are the corresponding authors (ts-
ingqguo@ieee.org and xiaohongli@tju.edu.cn).

Adversarial Bias Field Adversarial Example

ResNet50: Pneumonia

ResNet50: NormalOriginal Input

ResNet50: Normal

ResNet50: Pneumonia
Fig. 1: Two cases of our adversarial bias field examples. Our proposed adversarial-
smooth bias field attack can adversarially but imperceptibly altered the bias field, mis-
leading the advanced DNN models, e.g., ResNet50, to diagnose the normal X-ray image
as the pneumonia one. More troubling, the DNN could be fooled to diagnose the pneu-
monia X-ray image as the normal one, having higher risk of delaying patients’ treatment.

experts, such automated methods based on DNNs still have
some caveats. For example, with the presence of image-level
degradations during the image acquisition process, the recog-
nition accuracy can be dramatically suppressed. Sometimes,
such DNN-based medical image recognition system can even
become entirely vulnerable when maliciously attacked by an
adversary or an abuser that is financially incentivized.

There are mainly two types of image perturbations or degra-
dations in medical imagery: (1) image noise, and (2) image
bias field. The image noise is primarily caused by the image
sensor noise and the image bias field is caused by the spatial
variations of radiation [1], which is common among medical
imaging, ranging from magnetic resonance imaging (MRI) [2],
computed tomography (CT) [3], to X-ray imaging, etc. The
bias field appears as the intensity inhomogeneity in the MRI,
CT, or X-ray images. For consumer digital imaging, the bias
field shows up as the illumination changes or vignetting effect.

In this work, we want to reveal this vulnerability caused by
image bias field. To the best of our knowledge, this is the very
first attempt to adversarially perturb the bias field, in order to
attack DNN-based X-ray recognition. Contrary to the additive
noise-perturbation attack on DNN-based recognition systems,
the attack on the bias field is multiplicative in nature [4], which
is fundamentally different from the noise attack. What is more
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important is that in order to make the bias field attack realistic
and imperceptible, the successful attacks need to maintain the
smoothness property of the bias field, which is genuinely more
challenging because local smoothness usually contradicts with
high attack success rates.

To overcome this challenge, we capitalize on this pro-
prietary degradation surrounding X-ray imagery and initiate
adversarial attacks based on imperceptible modification on the
bias field itself. Specifically, we have proposed the adversarial-
smooth bias field generator that can locally tune the bias field
with joint smooth and adversarial constraints by tapping into
the bias field generation process based on a multivariate poly-
nomial model. As a result, the adversarially perturbed bias
field applied to the X-ray image can not only fool the DNN-
based recognition system effectively, but also retain high level
of realisticity. We have validated our proposed method on sev-
eral chest X-ray classification datasets with the state-of-the-art
DNNs such as ResNet, DenseNet, and MobileNet, by showing
superior performance in terms of both image realisticity and
high attack success rates. A careful investigation into which
bias field region contributes more significantly to the adversar-
ial nature of the attack can lead to a better interpretation and
understanding of the DNN-based recognition system and its
vulnerability, which, we believe, is of utmost importance. The
ultimate goal of this work is to reveal that the bias field does
pose a potential threat to the DNN-based automated recog-
nition system, and can definitely benefit the development of
bias-field-robust automated diagnosis system in the future.

2. RELATED WORK

X-Ray imagery recognition. X-ray radiography is widely
used in the medical field for diagnosis or treatment of dis-
eases. [5] releases the ChestX-ray14 dataset and evaluates the
performance of 4 classic convolutional neural network (CNN)
on the multi-label image classification of diseases. [6] pro-
poses the use of a CNN backbone with a variant of DenseNet
model. [7] presents a three-branch attention guided CNN that
combines local cues and global features. CNNs are also ex-
plored for COVID-19 detection [8, 9], motivated by the need
of quick and convenient screening, since abnormalities can be
found in some patients’ chest X-Ray images.

Despite considerations made to address data irregularities
like class imbalance in dataset, the effect of medical image
degradation is rarely addressed. For example, bias field could
adversely affect quantitative image analysis [10]. Though
many inhomogeneity correction strategy are proposed [11, 12],
the possible detrimental effect on disease identification, loca-
tion or segmentation by bias field is rarely explored, possibly
reducing DNN’s robustness. To the best of authors’ knowledge,
this paper is very first work that looks at the effect of bias field
from the view of adversarial attack.

General adversarial attack. DNNs in image, speech or
natural language processing application are susceptible to ad-

Original Input Adversarial ExampleNon-smooth Adv. Bias Field ResNet50: PneumoniaResNet50: Normal
Fig. 2: An example of using Eq. (3) to generate the non-smooth adversarial bias field.

versarial attacks [13, 14, 15, 16, 17, 18, 19]. Specifically, fast
gradient sign method (FGSM) proposed by [13] involves only
one back propagation step when calculating the cost function’s
gradient, allowing fast adversarial example generation. [20]
proposes basic iteration method (BIM), an iterative version of
FGSM. [16] proposes to use margin loss instead of entropy loss
during attacks. [15] proposes the exploitation of transferability
of adversarial examples.

Adversarial attack on medical imagery. There are ex-
isting literature that look into adversarial attack against deep
learning system for medical imagery. [21] shows that both
black box and white box PGD attack and adversarial patch at-
tack can affect the classifiers’ performance on fundoscopy,
chest X-ray and dermoscopy, respectively. By producing
crafted mask, an adaptive segmentation mask attack (ASMA)
is proposed to fool DNN model [22].

However, very few literature has leveraged on and con-
ducted adversarial attack based on the inherent characteristics
of the targeted medical imagery. For example, common noise
degradation used for general adversarial attacks are rarely
found in X-ray imagery. Hence in this work, we capitalize on
the proprietary degradation surrounding X-ray imagery, bias
field, and initiate adversarial attacks based on imperceptible
modification on the bias field itself.

3. METHODOLOGY

3.1. Adversarial Bias Field Attack and Challenges

Given a X-ray image, e.g., Xa, we can assume it is generated
by adding a bias field B to a clean version, i.e., X, with the
widely used imaging model

Xa = XB. (1)

Under the automate diagnosis task where a DNN is used to
recognize the category (i.e., normal or abnormal) of Xa, it
is necessary to explore a totally new task, i.e., adversarial
bias field attack aiming to fool the DNN by calculating an
adversarial bias field B, with which we can study the influence
of the bias field as well as the potential threat of utilizing it to
fool the automate diagnosis.

A simple way is to take logarithm on Eq. (1) and transform
the multiplication to additive operation

X̂a = X̂+ B̂, (2)
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Fig. 3: Examples of adversarial examples generated with different techniques.

where we use the ‘̂·’ to represent the logarithm of a variable.
With Eq. (2), it seems that all existing additive-based adver-
sarial attacks, i.e., FGSM, BIM, MIFGSM, DIM, and TIM-
IFGSM, could be used for the new attack. For example, we
can calculate B̂ to realize attack by solving

argmax
B̂

J(X̂+ B̂, y), subject to ‖B̂‖p ≤ ε, (3)

where J(·) is the loss function for classification, e.g., the cross-
entropy loss, and y denotes the ground truth label of X. Nev-
ertheless, we argue that such solution cannot generate the real
‘bias field’ since the optimized B̂ violated the basic property of
bias field, i.e., spatially smooth changes resulting in intensity
inhomogeneity. For example, as shown in Fig. 2, when we
optimize Eq. (3) to produce a bias field, we can attack the
ResNet50 successfully while the bias field is noise-like and far
from the appearance in the real world.

As a result, due to requirement of spatial smoothness of
bias field, the adversarial bias field attack posts a totally new
challenge to the field of adversarial attack: how to generate
the adversarial perturbation that can not only achieve high
attack success rate but maintain its spatial smoothness for the
realisticity of bias field. Actually, since the high attack success
rate relies on the pixel-wise tunable perturbation and violates
the smoothness requirement of bias field, the two constraints
contradicts each other and make the adversarial bias field
attack significantly challenging.

3.2. Adversarial-Smooth Bias Field Attack

In this section, we propose the distortion-aware multivariate
polynomial model to represent the bias field whose inherit
property guarantees the spatial smoothness of the bias field
while the distortion helps achieve effective attack. Then, we
define a new objective function for effective attack by com-
bining the constraints of spatially smooth bias field, sparsity
of the original image with the adversarial loss. Finally, we
introduce the optimization method and attack algorithm.

Fig. 4: Pipeline and examples of exploring bias-field-sensitive regions. A subject model,
i.e., ResNet50, is employed to generate adversarial bias field examples for 240 X-ray
images and we then use Eq. (8) to produce the interpretable map M for each image
(i.e., the images at the second row where the maps are blended with the raw X-ray
images for better understanding.). Finally, we can calculate an averaging map covering
all interpretable maps and blend it with raw images (i.e., the images at the third row.)

Distortion-aware multivariate polynomial model. We
model the bias filed B̂ as

B̂i =

D∑
t=D0

D−t∑
l=D0

at,lTθ(xi)tTθ(yi)l (4)

where Tθ represents the distortion transformation and we use
the thin plate spline (TPS) transformation with θ being the
control points. We denote i as the i-th pixel with its coor-
dinates (xi, yi) while (Tθ(xi),Tθ(yi)) means the pixel has
been distorted by a TPS. In addition, {at,l} and D are the
parameters and degree of the multivariate polynomial model,
respectively, and the number of parameters are |{at,l}| =
(D−D0+1)(D−D0+2)

2 . For convenient representations, we con-
catenate {at,l} and obtain a vector a.

Adversarial-smooth objective function. With Eq. (4),
we can tune a and θ for adversarial attack and the multivariate
polynomial model can help preserve the smoothness of bias
field. Intuitively, on the one hand, the lower degree D leads
to less model parameters |{at,l}| and smoother bias field. On
the other hand, the distortion (Tθ(xi),Tθ(yi)) can be locally
tuned with different θ and can help achieve effective attack.
The key problem is how to calculate {at,l} and θ to balance
the spatial smoothness and adversarial attack. To this end, we
define a new objective function to realize the attack.

argmax
a,θ

J(X̂+ B̂(a, θ), y)− λa‖a‖1 − λθ‖θ − θ0‖1, (5)

where θ0 denotes parameters of the identify TPS transforma-
tion, i.e., xi = Tθ0(xi). The first term is to tune the a and
θ to fool a DNN. The second term encourages the sparse of
{at,l} and would let the bias field smooth. The final term is to
let the TPS transformation not go far away from the identity
version. Two hyper-parameters, i.e., λa and λθ control the
balance between the smoothness and adversarial attack.

Optimization Like the optimization methods used in gen-
eral adversarial noise attack, we solve Eq. (3) and (5) via sign
gradient descent where a and θ are updated via fixed rate

at = at−1 + εasign(∇at−1), (6)
θt = θt−1 + εθsign(∇θt−1), (7)

3
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Fig. 5: Effects of the multivariate polynomial model with different number of degrees,
i.e.,D0 andD in Eq. (4).

where∇at−1 and∇θt−1 denote the gradient of at−1 and θt−1

with respect to the objective function in Eq. (5), respectively.
For Eq. (3), we use the same to update B̂ directly. We fix
εa = εθ = 0.06 with the iteration number being 10.

4. EXPERIMENTS

4.1. Setup and Dataset

Dataset. We carry out our experiments on a chest-xray dataset
about pneumonia, which contains 5863 X-ray images1. These
images were selected from retrospective cohorts. The dataset
is divided into two categories, i.e., pneumonia and normal.
Models. In order to show the effect of the attack on dif-
ferent models, we finetune three pre-trained models on the
chest-xray dataset. The three models are ResNet50, MobileNet
and Densenet121 (Dense121).The accuracy of ResNet50, Mo-
bileNet and Densenet121 is 88.62%, 88.94% and 87.82%.
Metrics. We choose the attack success rate and image quality
to evaluate the effectiveness of the bias field attack. The image
quality measurement metric is BRISQUE [23]. BRISQUE is
an unsupervised image quality assessment method. A high
score for BRISQUE indicates poor image quality.
Baselines. We select five adversarial attack methods as our
baselines, including basic iterative method (BIM) [20], Carlini
& Wagner L2 method (C&WL2) [16], saliency map method
(SaliencyMap) [24], fast gradient sign method (FGSM) [13]
and momentum iterative fast gradient sign method (MIFGSM)
[25]. For the setup of hyperparameters of these baselines, we
use the default setup of foolbox [26]. We set max perturbation
to be ε = 0.1 relative to [0,1] range in basic experiments.
Besides, we set iterations as 10 for MIFGSM and BIM.

4.2. Comparison with Baseline Methods

For our method, we set the size of the control points, D and
D0 as (16*16), 10, and 1, respectively. Table 1 shows the
quantitative results with our method and the baseline methods,
which are conducted with different settings. Specifically, we
conduct two different attacks, i.e., the white-box attack and the
transfer attack. The white-box attack aims to attack the target
DNN directly while the transfer attack attacks the target DNN

1Please find more details about the dataset in https://www.kaggle.com/
paultimothymooney/chest-xray-pneumonia.

with the adversarial examples generated from other models.
For example, for the transfer attack in Table 1, the attack
is performed on DNNs in the first row, and the generated
adversarial examples are used to attack DNNs in the first two
columns of the second row.

As we can see, for the white-box attack (i.e., the third col-
umn for each model), we could find that the success rate of
our method is lower than the existing baselines. For example,
on ResNet50, our method achieves 38.69% success rate while
most of the baselines achieves 100% success rate. The main
reason is that the existing attacking techniques could add arbi-
trary noises on the image, which is not realistic. However, our
method has a strict smooth limitation such that the generated
adversarial examples look more realistic. As shown in Fig. 3,
we show some examples generated by different attacks. The
first row shows the original images while the following rows
list the corresponding adversarial examples. It is clear that our
method could generate high-quality adversarial examples that
are smooth and realistic. In most cases, the change between
original image and the generated image is imperceptible. How-
ever, we could find obvious noises in the adversarial examples
generated by the baseline methods. Such noises are difficult to
appear in X-rays in the real world.

For the transfer attack (i.e., the first two columns), we
found that our method achieves much higher success rate
than others. For example, the attack on ResNet50 achieves
7.57% and 14.05% transfer success rate on MobileNet and
DenseNet121, respectively. However, the the best results of
the baseline are only 1.08% and 0.18%. It is because that exist-
ing techniques calculate the ad-hoc noise, which may be only
effective on the target DNN but not on other models. However,
our attack considers the smoothness such that the generated
adversarial examples are more realistic. Such adversarial exam-
ples are more robust and could reveal the common weakness
of different DNNs (i.e., higher success rate of the transfer
attack). The results indicate that our method could generate
high-quality adversarial examples. We also compare the image
quality with the BRISQUE score (i.e., the forth column). The
results show that our method could achieve competitive results
with the-state-of-the-arts.

In summary, our method aims to generate high-quality and
realistic adversarial examples. To generate such adversarial
examples, the attack success rate is naturally lower than the
noise-based adversarial attack techniques.

4.3. Understanding Effects of Bias Field

In this subsection, we aim to explore how the bias field affect
the DNN-based X-ray recognition. [27] proposes a method
for understanding DNNs with the adversarial noise attack and
generates an interpretable map indicating the classification-
sensitive regions of a DNN. Inspired this idea, we can study
which regions in the chest X-ray images are sensitive to the
bias filed and affect the X-ray recognition. Specifically, given

4



Crafted from ResNet50 Dense121 MobileNet

Attacked model&BRISQUE MobileNet Dense121 ResNet50 BRISQUE ResNet50 MobileNet Dense121 BRISQUE ResNet50 Dense121 MobileNet BRISQUE

BIM 0.36 0 100 30.0249 0.54 0.36 100 29.6599 0 0 100 29.9947
C&WL2 0.36 0 100 30.1128 1.08 0.72 100 29.6455 0 0 100 30.051
SaliencyMap 1.08 0.18 100 28.7108 2.53 1.26 100 28.4046 0.72 0.18 100 30.8351
FGSM 0 0.18 67.8 67.0028 0.72 0.72 29.38 28.5753 0 0 30.09 28.5404
MIFGSM 0.36 0 100 30.0578 0.54 0.36 94.34 29.6094 0 0 100 30.0134
AdvSBF (Ours) 7.57 14.05 38.69 28.5703 7.78 5.95 34.49 28.9535 20.07 18.98 33.51 29.5475

Table 1: Adversarial comparison results on chest-Xray dataset with five attack baselines and our method. It contains the success rates (%) of transfer & whitebox adversarial attack
on three normally trained models: ResNet50, Dense121, and MobileNet. For each four columns, whitebox attack results are shown in the third one. The first two columns display the
transfer attack results. And the last column shows the BRISQUE score.

(gridsize, gridsize), D0
ResNet50 Dense121 MobileNet

MobileNet Dense121 ResNet50 BRISQUE ResNet50 MobileNet Dense121 BRISQUE ResNet50 Dense121 MobileNet BRISQUE

(4,4), 0 10.84 15.33 37.97 32.4873 14.65 8.29 31.39 31.331 21.52 20.44 35.68 34.9368
(8,8), 0 9.91 14.05 37.79 32.5778 13.2 6.49 31.57 31.3609 21.7 20.26 35.68 34.0957

(12,12), 0 9.73 14.23 37.61 32.097 12.84 6.49 31.2 31.9176 21.7 20.44 35.86 34.3194
(16,16), 0 10.81 14.42 38.34 32.3661 13.56 6.85 31.02 31.4455 21.34 20.26 36.04 34.0944
(16,16), 1 11.35 13.5 36.89 31.3312 14.65 9.37 32.12 30.6853 17 19.34 32.79 31.7842
(16,16), 2 8.11 7.85 29.48 29.0977 12.84 8.83 26.09 30.0223 12.12 11.86 26.85 29.5885
(16,16), 3 4.15 2.19 18.81 28.606 4.7 4.68 16.24 29.0152 4.7 3.47 15.32 29.2909

Table 2: Adversarial comparison results on chest-Xray dataset with different setup of hyper-parameters in our method. It contains the success rates (%) of transfer& whitebox
adversarial attacks. For each model, the first two columns display the blackbox attack results, the third one shows the attack results and the last column shows the BRISQUE score.

an adversarial bias field example Xa generated by our method
and the original image X, we can calculate an interpretable
map M for a DNN DNN(·) by optimizing

argmin
M

DNNy(M�Xa + (1−M)�X) (8)

+ λ1‖M‖1 + λ2TV(M)

where DNNy(·) denotes the score at label y that is the ground
truth label of X and TV(·) is the total-variation norm. Intu-
itively, optimizing Eq. (8) is to find the region that causes
misclassification. We optimize Eq. (8) via gradient decent in
150 iterations and fix λ1 = 0.05 and λ2 = 0.2.

With Eq. (8), given a pre-trained model, i.e., DNN(·), and
a dataset X containing the successfully attacked X-ray images,
we calculate a M for each X-ray image and then average
all interpretable maps to show the statistical regions that are
sensitive to the bias field. For example, we adopt ResNet50 as
the subject model and construct X with 240 attacked X-ray
images that can fool ResNet50 successfully. Then, we calculate
the interpretable maps for all images in X (e.g., the second row
in Fig. 4) and average them, achieving a statistical mean map
(e.g., the left image shown in Fig. 4). With the visualization
results, we observe that: ¶ Our method helps identify the
bias-field-sensitive regions in each attacked image and we
observe that these regions are related to the organ positions.
This demonstrates that the effects of the bias field to the DNN
stems from intensity variation around organs. · According to
the statistical mean map, we see that the bias-field sensitive
regions mainly locate at the top and bottom positions across
all attacked images, suggesting that future designed DNN
should consider the spatial variations within in X-ray images.
We observe similar results on other DNNs (Please find more
results in the supplementary material), hinting that these are
common phenomenons in the DNN-based X-ray recognition
and demonstrating the potential applications of this work.

4.4. Effects of Hyper-parameters

We also evaluate the effects of hyper-parameters in our at-
tack, i.e., θ and D in Equation 4. Specifically, we change θ
for TPS transformation by changing the number of control
points. (gridsize× gridsize) is denoted to represent the con-
trol points in the TPS transformation. Then we select different
gridsize to conduct the attack. For the parameter D, we set
the fixedD as 10 and change the value ofD0, i.e., observe part
of the sample display of the bias field by ignoring the lowest
D0 degree in the multivariate polynomial model.

Table 2 shows the results with different configurations.
In the second row, we fix the D0 as 0 and change value of
gridsize as 4, 8, 12 and 16, respectively. As we can see, there
seems to be no clear difference in the attack success rate when
the parameter gridsize varies. We conjecture that the attack
could easily reach the upper bound in terms of the success rate
with different gridsize.

Then we fix the gridsize as 16 and change the parameter
D0 as 0, 1, 2 and 3 (in the third row). As we can see, as D0

increases (i.e., more lower degree are ignored), the success rate
of our method decreases and the BRISQUE score decreases. It
is reasonable as ignoring more low degree in Equation 4 may
reduce the space of the manipulation, resulting in higher image
quality and lower attack success rate. The visualization results
are shown in Fig. 5. When more lower degree is ignored (i.e.,
larger D0), the bias field samples tend to be less smooth.

5. CONCLUSION

Deep learning has been used in chest X-ray image recogni-
tion for the diagnosis of lung diseases (e.g., COVID-19). It is
especially important to ensure the robustness of the DNN in
this scenario. To tackle this problem, this paper proposed a
new adversarial bias field attack, which aims to generate more
realistic adversarial examples by adding more smooth pertur-
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bations instead of noises. We demonstrated the effectiveness
of our attack on the widely used DNNs. The results show that
our method can generate high quality adversarial examples,
which achieve high success rate of the transfer attack. The gen-
erated realistic images can reveal issues of the DNN, which
calls for the attention of robustness enhancement of the deep
learning-based healthcare system.

In the future, we will extend the proposed attack against
other tasks, e.g., visual object tracking [28, 29, 30] and Deep-
Fake evasion [31, 32], and also in tandem with other natural
modalities such as [33, 34, 35]. In addition, we can regard
the adversarial bias field as a new kind of mutation for DNN
testing [36, 37, 38, 39].
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sored by the National Science Foundation of China (No.
61872262) and the Natural Science Foundation of Tianjin
(No. KJZ40420200017).

6. REFERENCES

[1] Uro Vovk, Franjo Pernus, and Botjan Likar, “A review of methods for correction
of intensity inhomogeneity in mri,” IEEE transactions on medical imaging, vol.
26, no. 3, pp. 405–421, 2007.

[2] Mohamed N Ahmed, Sameh M Yamany, Nevin Mohamed, Aly A Farag, and
Thomas Moriarty, “A modified fuzzy c-means algorithm for bias field estima-
tion and segmentation of mri data,” IEEE transactions on medical imaging, vol.
21, no. 3, pp. 193–199, 2002.

[3] Qing Guo, Shuifa Sun, Fangmin Dong, Wei Feng, Bruce Zhi Gao, and Siyu Ma,
“Frequency-tuned acm for biomedical image segmentation,” in 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2017, pp. 821–825.

[4] Yuanjie Zheng and James C Gee, “Estimation of image bias field with sparsity
constraints,” in 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. IEEE, 2010, pp. 255–262.

[5] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common tho-
rax diseases,” CoRR, vol. abs/1705.02315, 2017.

[6] Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, and Kevin
Lyman, “Learning to diagnose from scratch by exploiting dependencies among
labels,” CoRR, vol. abs/1710.10501, 2017.

[7] Qingji Guan, Yaping Huang, Zhun Zhong, Zhedong Zheng, Liang Zheng, and
Yi Yang, “Diagnose like a radiologist: Attention guided convolutional neural net-
work for thorax disease classification,” CoRR, vol. abs/1801.09927, 2018.

[8] Linda Wang and Alexander Wong, “Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest x-ray images,”
arXiv preprint arXiv:2003.09871, 2020.

[9] Parnian Afshar, Shahin Heidarian, Farnoosh Naderkhani, Anastasia Oikonomou,
Konstantinos N Plataniotis, and Arash Mohammadi, “Covid-caps: A capsule
network-based framework for identification of covid-19 cases from x-ray images,”
arXiv preprint arXiv:2004.02696, 2020.

[10] Jaber Juntu, Jan Sijbers, Dirk Van Dyck, and Jan Gielen, “Bias field correction for
mri images,” in Computer Recognition Systems, pp. 543–551. Springer, 2005.

[11] Ayres Fan, William M Wells, John W Fisher, Müjdat Cetin, Steven Haker, Robert
Mulkern, Clare Tempany, and Alan S Willsky, “A unified variational approach
to denoising and bias correction in mr,” in Biennial international conference on
information processing in medical imaging. Springer, 2003, pp. 148–159.

[12] David L Thomas, Enrico De Vita, Ralf Deichmann, Robert Turner, and Roger J
Ordidge, “3d mdeft imaging of the human brain at 4.7 t with reduced sensitivity
to radiofrequency inhomogeneity,” Magnetic Resonance in Medicine: An Official
Journal of the International Society for Magnetic Resonance in Medicine, vol. 53,
no. 6, pp. 1452–1458, 2005.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and har-
nessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
2015, pp. 1322–1333.

[15] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and communica-
tions security, 2017, pp. 506–519.

[16] Nicholas Carlini and David Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE, 2017, pp.
39–57.

[17] Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Jian Wang, Wei Feng, and Yang
Liu, “Abba: Saliency-regularized motion-based adversarial blur attack,” arXiv
preprint arXiv:2002.03500, 2020.

[18] Qing Guo, Xiaofei Xie, Felix Juefei-Xu, Lei Ma, Zhongguo Li, Wanli Xue, Wei
Feng, and Yang Liu, “Spark: Spatial-aware online incremental attack against vi-
sual tracking,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2020.

[19] Run Wang, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Yihao Huang, and Yang Liu,
“Amora: Black-box adversarial morphing attack,” in ACM Multimedia Conference
(ACMMM), 2020.

[20] Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Adversarial machine learn-
ing at scale,” arXiv preprint arXiv:1611.01236, 2016.

[21] Samuel G Finlayson, Hyung Won Chung, Isaac S Kohane, and Andrew L Beam,
“Adversarial attacks against medical deep learning systems,” arXiv preprint
arXiv:1804.05296, 2018.

[22] Utku Ozbulak, Arnout Van Messem, and Wesley De Neve, “Impact of adversar-
ial examples on deep learning models for biomedical image segmentation,” in
International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2019, pp. 300–308.

[23] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik, “No-reference
image quality assessment in the spatial domain,” IEEE Transactions on image
processing, vol. 21, no. 12, pp. 4695–4708, 2012.

[24] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Ce-
lik, and Ananthram Swami, “The limitations of deep learning in adversarial set-
tings,” in 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[25] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li, “Boosting adversarial attacks with momentum,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 9185–
9193.

[26] Jonas Rauber, Wieland Brendel, and Matthias Bethge, “Foolbox: A python tool-
box to benchmark the robustness of machine learning models,” arXiv preprint
arXiv:1707.04131, 2017.

[27] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes by mean-
ingful perturbation,” in ICCV, 2017, pp. 3449–3457.

[28] Qing Guo, Ruize Han, Wei Feng, Zhihao Chen, and Liang Wan, “Selective spa-
tial regularization by reinforcement learned decision making for object tracking,”
IEEE Transactions on Image Processing, vol. 29, pp. 2999–3013, 2020.

[29] Qing Guo, Wei Feng, Ce Zhou, Chi-Man Pun, and Bin Wu, “Structure-regularized
compressive tracking with online data-driven sampling,” IEEE Transactions on
Image Processing, vol. 26, no. 12, pp. 5692–5705, 2017.

[30] Ce Zhou, Qing Guo, Liang Wan, and Wei Feng, “Selective object and context
tracking,” in 2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2017, pp. 1947–1951.

[31] Yihao Huang, Felix Juefei-Xu, Run Wang, Qing Guo, Lei Ma, Xiaofei Xie, Jian-
wen Li, Weikai Miao, Yang Liu, and Geguang Pu, “Fakepolisher: Making deep-
fakes more detection-evasive by shallow reconstruction,” in Proceedings of the
28th ACM International Conference on Multimedia, 2020, pp. 1217–1226.

[32] Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo, Lei Ma, and Yang
Liu, “Countering malicious deepfakes: Survey, battleground, and horizon,”
arXiv:2103.00218, 2021.

[33] Ruijun Gao, , Qing Guo, Felix Juefei-Xu, Hongkai Yu, Xuhong Ren, Wei Feng,
and Song Wang, “Making Images Undiscoverable from Co-Saliency Detection,”
arXiv preprint arXiv:2009.09258, 2020.

[34] Yupeng Cheng, Felix Juefei-Xu, Qing Guo, Huazhu Fu, Xiaofei Xie, Shang-Wei
Lin, Weisi Lin, and Yang Liu, “Adversarial Exposure Attack on Diabetic Retinopa-
thy Imagery,” arXiv preprint arXiv:2009.09231, 2020.

[35] Liming Zhai, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Lei Ma, Wei Feng,
Shengchao Qin, and Yang Liu, “It’s Raining Cats or Dogs? Adversarial Rain
Attack on DNN Perception,” arXiv preprint arXiv:2009.09205, 2020.

[36] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu,
Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See, “DeepHunter: A Coverage-
Guided Fuzz Testing Framework for Deep Neural Networks,” in ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), 2019.

[37] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang, “DeepMutation: Mutation
Testing of Deep Learning Systems,” in The 29th IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2018.

[38] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao, “Deep-
stellar: Model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 477–487.

[39] Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan Zhang,
Minhui Xue, Bo Li, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang, “Deep-
Gauge: Multi-Granularity Testing Criteria for Deep Learning Systems,” in The
33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2018.

6


		2022-08-24T22:32:45-0400
	Preflight Ticket Signature




