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ABSTRACT
Deep convolutional neural networks (DCNNs) have achieved
great success in monocular depth estimation (MDE). How-
ever, few existing works take the contributions for MDE of
different levels feature maps into account, leading to inac-
curate spatial layout, ambiguous boundaries and discontinu-
ous object surface in the prediction. To better tackle these
problems, we propose a Pyramid Feature Attention Network
(PFANet) to improve the high-level context features and low-
level spatial features. In the proposed PFANet, we design
a Dual-scale Channel Attention Module (DCAM) to employ
channel attention in different scales, which aggregate global
context and local information from the high-level feature
maps. To exploit the spatial relationship of visual features, we
design a Spatial Pyramid Attention Module (SPAM) which
can guide the network attention to multi-scale detailed infor-
mation in the low-level feature maps. Finally, we introduce
scale-invariant gradient loss to increase the penalty on errors
in depth-wise discontinuous regions. Experimental results
show that our method outperforms state-of-the-art methods
on the KITTI dataset.

Index Terms— Depth estimation, channel attention, spa-
tial attention, pyramid feature, deep learning

1. INTRODUCTION

Monocular depth estimation (MDE) is an important task that
aims to predict pixel-wise depth from a single RGB image,
and has many applications in computer vision, such as 3D re-
construction, scene understanding, autonomous driving and
intelligent robots [1]. In the meanwhile, MDE is a technically
ill-posed problem as a single image can be projected from an
infinite number of different 3D scenes. To solve this inher-
ent ambiguity, one possibility is to leverage prior auxiliary
information, such as texture information, occlusion, object
locations, perspective, and defocus [2], but it is not easy to
effectively extract useful prior information.

More recently, some works on MDE based on encoder-
decoder architecture have shown significant improvements
in performance by using deep convolutional neural networks
(DCNNs) [3]. As backbone for encoder, very powerful deep
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Fig. 1. Depth estimation example. (a) Input RGB image; (b)
Ground truth depth; (c) Fu et al. [2]; (d) Ours.
networks such as ResNet [4], DenseNet [5] or ResNext [6]
are widely adopted. These networks cascade multiple con-
volutions and spatial pooling layers to gradually increase the
receptive field and generate the high-level depth information.
In decoder phase, state-of-the-art methods are based on up-
sampling layer with global context module [7], skip connec-
tion, depth-to-space [8], multi-scale local planar guidance for
upsampling operation [3]. These methods directly fuse differ-
ent scale features without considering their different contribu-
tions for MDE, which leads to ambiguous boundaries and dis-
continuous object surface in predicted depth (see Fig.1 (c)).
To tackle these problems, logarithmic discretization for ordi-
nal regression [2] and attention module with structural aware-
ness [9] are introduced to MDE network. However, the high-
level and low-level features play different roles in MDE. The
existing methods did not consider this aspect, which may af-
fect the effective extraction of depth information.

In this paper, we propose a novel monocular depth esti-
mation network named Pyramid Feature Attention Network
(PFANet). In order to enhance the global structural informa-
tion in high-level features, we introduced the Dense version of
Atrous Spatial Pyramid Pooling (Dense ASPP) [10], which is
generally utilized in pixel-level semantic segmentation. Since
Dense ASPP applies sparse convolutions with various expan-
sion rates, these convolutions expand receptive field of the
high-level features. And then we design Dual-scale Chan-
nel Attention Module (DCAM) to aggregate global context
and local information at different scales in high-level features.
During training process, DCAM assigns larger weight to the
channels that play an important role in MDE. Considering the
spatial relationship of visual features, we design Spatial Pyra-
mid Attention Module (SPAM) to fuse the attention of multi-
scale low-level features. This module improves the detailed
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Fig. 2. The overview of Pyramid Feature Attention Network. The network is composed of Ei (the i-th level of encoder), Dense
ASPP [10], Dual-scale Channel Attention Module and Spatial Pyramid Attention Module. The high-level features are from E3,
E4 and E5. The low-level features are from E1 and E2.

local information in the low-level features, which clearer ob-
ject edge and smoother object surface in prediction depth. Be-
sides, we introduce scale-invariant gradient loss [11] to lead
the network to learn more detail of object edges. With the
above operations, the proposed PFANet can produce good
depth maps (see Fig.1 (d)). In summary, our contributions
are as follows:

1) We propose a novel Pyramid Feature Attention Net-
work (PFANet) for MDE. For high-level features, we design
Dual-scale Channel Attention Module (DCAM) to aggregate
global context and local information. For low-level features,
we design Spatial Pyramid Attention Module (SPAM) to cap-
ture more detailed information.

2) We introduce scale-invariant gradient loss to empha-
size the depth discontinuity at different object boundaries and
enhance smoothness in homogeneous regions.

3) The proposed method achieves state-of-the-art results
on KITTI dataset.

2. RELATED WORK

Monocular Depth Estimation. As a pioneering work, Sax-
ena et al. [12] propose to learn depth from visual cues based
on Markov Random Field (MRF). Eigen et al. [1] introduce
deep learning network that make coarse global prediction and
refine it with local information, and extend it to a multi-scale
network for depth estimation [13]. Since then, given the suc-
cess of DCNNs in computer vision, more and more depth
estimation networks have been proposed. Laina et al. [14]
use a fully convolutional architecture with residual upsam-
pling blocks to tackle the high-dimension regression prob-
lem. Jiao et al. [15] apply semantic segmentation network
to assist depth estimation, and propose attention-driven loss
that address long-tail distribution of depth values. The lat-

est SOTA network DORN [2] models MDE as an ordinal re-
gression problem, to address the increase in error with depth
magnitude, via spacing-increasing discretization strategy.

Attention Mechanism. Attention mechanism is derived
from human perception, it can selectively focus on the promi-
nent parts to capture useful information in entire scene. Sim-
ilarly, attention mechanism is also suitable for various com-
puter vision tasks, such as image classification, depth esti-
mation, etc. SENet [16] proposes channel attention mod-
ule to adaptively recalibrate channel-wise feature responses
by explicitly modeling the interdependence between chan-
nels. CBAM [17] introduces spatial attention module based
on channel attention module, and concatenates two modules
for adaptive feature refinement. Wang et al. [18] design pyra-
mid diverse attention (PDA) to learn multi-scale diverse lo-
cal representations automatically, leading to network focus on
different local patches.

3. OUR METHOD

3.1. Overview

In this paper, we propose Pyramid Feature Attention Network
based on encoder-decoder architecture. DenseNet-161 [5]
pre-trained on ILSVRC as our encoder. Decoder is composed
of Dense ASPP [10], Dual-scale Channel Attention Module,
and Spatial Pyramid Attention Module.

The proposed network architecture is shown in Fig.2. In-
put a single RGB image with resolution H. In encoder, the
five convolutional blocks {E1, E2, E3, E4, E5} output fea-
ture maps with different resolutions that are H/2, H/4, H/8,
H/16 and H/32 respectively. The high-level features are from
E3, E4 and E5. The low-level features are from E1 and E2,
which upsample to resolution of E2. After the backbone net-



Fig. 3. The architecture of Dual-scale Channel Attention Module (DCAM). It consists of two blocks: local channel attention
block and global channel attention block. The outputs of two blocks are fused to generate the channel attention map. Recal-
ibration block is utilized to calibrate the channel attention map and further extract useful information for MDE. GAP denotes
global average pooling layer. GMP denotes global max pooling layer.

work, for high-level features, we apply Dense ASPP module
to fuse high-level features and expand the receptive field. This
module produces an H/8 feature map via various dilated con-
volutional operations. The dilation rates r are 3, 6, 12, 18 and
24 respectively. Following Dense ASPP, we place DCAM to
extract global context and local information from high-level
features. Then, we apply SPAM to capture spatial informa-
tion at multi-scale from the low-level feature maps. To get
the high-level and low-level features with same resolution H,
we utilize up-convolutional layer, which consists of upsam-
pling operations and a 3×3 convolutional layer. Finally, them
are concatenated and fed into the final convolutional layer to
get the depth estimation d̃.

3.2. Dual-scale Channel Attention Module

The previous channel attention methods based on the squeeze
and excitation [16] capture global context from the feature
maps. However, this way ignores local information in fea-
tures. To aggregate global context and local information
simultaneously, we propose Dual-scale Channel Attention
Module, as shown in Fig.3. DCAM consists of global chan-
nel attention block, local channel attention block and recali-
bration block. Its core idea is to implement channel attention
on different scales.

In global channel attention block, average pooling layer
and max pooling layer apply to reduce computational cost.
To aggregate global context across channels, the dimension
of the input feature maps are fused and reduced to 2C/r by
1×1 convolution layer, where C is the dimension of input
x ∈ RC×H×W , r is reduction rate. And then this block pro-
duces global channel-attention vector g(x) ∈ RC×1×1 via
another 1×1 convolution layer. Similarly, in local channel
attention block, we place two 1×1 convolution layers to ex-
tract local information across channels, which generate lo-

Fig. 4. The architecture of Spatial Pyramid Attention Mod-
ule (SPAM). Ds/4 refers to /4 downsampling operation. Us×4
refers to ×4 upsampling operation. Spatial attention blocks
learn the spatial attention map, these three maps form a pyra-
mid structure.

cal channel-attention map l(x) ∈ RC×H×W . Local channel-
attention map and global channel-attention vector are fused
to channel-attention map Ac(x) ∈ RC×H×W , before calibra-
tion (see Eq.(1)). Thus, we can effectively employ channel
attention information and avoid introducing interference. Fi-
nally, we calibrate the original channel-attention map to im-
prove feature representation, and new channel-attention map
Ãc(x) as shown in Eq.(2).

Ac(x) = l(x)⊗ g(x) (1)

Ãc(x) = h[f(x)⊗Ac(x)]⊕ x (2)

where f and h are 1×1 convolutional layers in recalibration
block. ⊕ denotes element-wise addition. And ⊗ denotes
element-wise multiplication. Note that each convolutional
layer is followed by an activation function ReLU.



3.3. Spatial Pyramid Attention Module

The high-level feature maps always processed by channel at-
tention module, since it can capture channel’s dependency.
However, this ignores structural information of the feature
maps. To extract more local detailed information from the
low-level feature maps, we proposed the spatial pyramid at-
tention module, which utilizes the spatial pyramid structure.
Fig.4 depicts the paradigm of SPAM. This module contains
downsampling operation, spatial attention block and upsam-
pling operation. Suppose the input low-level features y ∈
RC×H×W via down-sampling operation, get down-sampling
feature maps yi (i=1, 2, 3), the resolution is 1, 1/2, 1/4 of
the input, respectively. Then spatial attention block learns the
spatial attention map s(yi) ∈ RC×H×W , as shown in Eq. (3),
these three blocks form a pyramid structure. Finally, through
upsampling operation, we fuse the multi-scale spatial atten-
tion map. The output of SPAM As(y) can be presented as Eq.
(4).

s(yi) = σ(Conv2(δ(Conv1(yi)))) (3)

As(y) = σ[s(y1)⊕ s(y2)⊕ s(y3)]⊗ y (4)

where Conv1 and Conv2 refer to convolutional layers in spa-
tial attention block. δ refers to ReLU function, σ refers to
Sigmoid function.

3.4. Training Loss

The loss function to constraint our network contains two
terms, i.e., scale-invariant loss (in log space) Ld and scale-
invariant gradient loss Ls. We describe in detail each loss
item as follows.

Scale-invariant loss. Scale invariant loss is proposed in
[1] by Eigen et al., as shown in Eq. (5).

Ld(e) =
1

T

∑
i

e2i −
λ

T 2
(
∑
i

ei)
2 (5)

where ei = log(d̃i) − log(di). d̃i denotes ground truth of
depth. di denotes predicted depth. λ = 0.5. T refers to
the number of pixels with valid ground truth depth value. By
rewritig Eq. (5):

Ld(e) =
1

T

∑
i

e2i −
1

T 2
(
∑
i

ei)
2 +

(1− λ)

T 2
(
∑
i

ei)
2 (6)

we can think of Eq. (6) as the sum of variances and weighted
mean square error in log space. Setting λ = 0 is L2-norm,
and setting λ = 1 is scale invariant error. Inspired by [3],
we set λ = 0.85 in this work to accelerate minimizing the
variance of error.

Scale-invariant gradient loss. Scale-invariant gradient
loss (see Eq. (7)) is defined by [11] by Ummenhofer et al.,
which based on gradient loss. This loss function emphasizes
sharpness at object boundaries and increases smoothness with

Fig. 5. Visualization of the different methods and our pro-
posed method on KITTI dataset.

in similar fields. To cover gradients at multi-scale, we utilize
5 different spacings s ∈ {1, 2, 4, 8, 16}.

Lg(g) =
1

T

∑
s∈{1,2,4,8,16}

∑
i,j

∥g̃s(i, j)− gs(i, j)∥2 (7)

gs(i, j) = (
di+s,j − di,j
|di+s,j + di,j |

,
di,j+s − di,j
|di,j+s + di,j |

)T (8)

where g̃s and gs refer to gradient pixel (i,j) in predicted depth
map and ground truth respectively. di,j is the depth value of
pixel (i,j).

Total loss. We find that appropriately scaling the range
of loss function can accelerate convergence and improve the
final predicted result. Our total loss function is defined as
follows:

Ltotal = α
√
Ld + β

√
Lg (9)

where α and β are constants we set to 10 and 2 for all experi-
ments.

4. EXPERIMENTS

4.1. KITTI Dataset

The KITTI dataset [20] consists of 61 outdoor scene images,
each with a resolution of 375×1241. Since previous work is



Table 1. Quantitative results on KITTI using Eigen split.

Method Accuracy Metric(higher is better) Error Metric(lower is better)
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE(log)

Saxena et al. [12] 0.601 0.820 0.926 0.280 3.012 8.734 0.361
Eigen et al. [1] 0.692 0.899 0.967 0.190 1.515 7.156 0.270

Eigen et al. [13] 0.769 0.950 0.988 0.158 1.210 6.410 0.214
Alhashim et al. [7] 0.886 0.965 0.986 0.093 0.589 4.170 0.171

Fu et al. [2] 0.932 0.984 0.994 0.072 0.307 2.727 0.120
Yin et al. [19] 0.938 0.990 0.998 0.072 - 3.258 0.117

Ours 0.957 0.994 0.999 0.061 0.236 2.699 0.096

Table 2. Experimental results using KITTI Eigen split with various backbone networks.

Variant #Params Accuracy Metric(higher is better) Error Metric(lower is better)
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE(log)

DenseNet-161 [5] 46.6M 0.955 0.993 0.998 0.065 0.251 2.788 0.096
ResNet-101 [4] 68.0M 0.956 0.993 0.999 0.063 0.242 2.721 0.097
ResNext-101 [6] 112.3M 0.957 0.994 0.999 0.061 0.236 2.699 0.096

based on the training set and test set divided by Eigen et al.
[1], we also follow it to compare with those works. The train-
ing set contains 23488 images from 32 different scenes, and
the test set contains 697 images from 29 scenes. The maxi-
mum depth of the image in the KITTI dataset is 80.

4.2. Implementation Details

We implement the proposed network based on public deep
learning framework PyTorch. In training phase, we use Adam
optimizer with β1 = 0.9, β2 = 0.999 and ε = 10−6. The
learning strategy applies polynomial decay with initial learn-
ing rate lr = 10−4 and power p = 0.9. We train our net-
work on two NVIDIA TITAN RTX GPU with 24GB mem-
ory. Epoch is set to 50 with batch size 32, which applies to all
experiments of this work. As the backbone network for en-
coder, we use ResNet [4], ResNext [6] and DenseNet [5] pre-
trained in ILSVRC dataset. Upconvolution in decoder uses
the bilinear neighbor upsampling followed by convolutional
layer. Downsampling operation and upsampling operation in
spatial pyramid attention module utilizes the nearest neighbor
method. We set reduction ration r is 16. To improve training
results, we augment images before input to the network using
random rotating, random horizontal flipping, random bright-
ness, contrast and color changing. We randomly crop the im-
age size 352×704 to train the network.

4.3. Evaluation Metrics

We quantitatively compare our network with state-of-the-art
methods both using the following commonly used metrics:
− Accuracy with Threshold t: δ = max(di

d̃i
, d̃i

di
) < t, for

t ∈
{
1.25, 1.252, 1.253

}
− Absolute Relative Error (Abs Rel): 1

N

∑N
i=1

|d̃i−di|
di

− Squared Relative Error (Sq Rel): 1
N

∑N
i=1

∥d̃i−di∥2

di

− Root Mean Squared Error (RMSE):

√
1
N

∑N
i=1

∥∥∥d̃i − di

∥∥∥2
− Root Mean Squared Error in log space (RMSElog):√

1
N

∑N
i=1

∥∥∥log(d̃i)− log(di)
∥∥∥2

where N is total number of pixels that the ground truth values
are available. d̃i and di are predicted depth values and ground
truth for pixel i.

4.4. Evaluation Results

Table 1 shows quantitative results compared with the state-
of-the-art methods. Our network far outperforms all existing
methods. As shown in Fig. 5, our method shows much more
precise object boundaries and much more continuous object
surfaces. To prove the effectiveness of our proposed method,
we utilize various backbone network as encoder, and keep
other settings. Table 2 provides experimental results. And the
results show that ResNext-101 achieve state-of-the-art result.

4.5. Ablation Study

To investigate the importance of different modules in our
method, we conduct the ablation study. It can be seen from
Table 3 that the proposed model contains all modules (i.e.
DCAM, SPAM, scale-invariant gradient loss) to achieve the
best performance, which demonstrates that all modules are
necessary to get the best monocular depth estimation result.

5. CONCLUSION

In this paper, we present a novel monocular depth estimation
network named Pyramid Feature Attention Network to ex-
ploit depth information from different levels and address am-



Table 3. Result from the ablation study using KITTI dataset. Baseline: a network composed of only encoder, Dense ASPP,
convolution layer and upconvolution layer; L: the network introduce scale-invariant gradient loss. All methods use DenseNet-
161 as encoder.

Method Accuracy Metric(higher is better) Error Metric(lower is better)
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE(log)

baseline 0.928 0.981 0.992 0.086 0.338 3.437 0.158
baseline + DCAM 0.942 0.989 0.996 0.070 0.293 3.015 0.112
baseline + SPAM 0.945 0.990 0.997 0.068 0.253 2.841 0.106

baseline + DCAM + SPAM 0.951 0.992 0.998 0.065 0.251 2.810 0.098
baseline + DCAM + SPAM + L 0.955 0.993 0.998 0.063 0.251 2.788 0.096

biguous object boundaries and discontinuous object surface
issues. This network includes two critical modules : Dual-
scale Channel Attention Module and Spatial Pyramid Atten-
tion Module, which are utilized to improve high-level context
features and low-level spatial features, respectively. We also
introduce scale-invariant gradient loss for better results. Ex-
tensive experimental results on KITTI dataset show that our
method outperforms state-of-the-art methods.
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