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ABSTRACT

Localizing text instances in natural scenes is regarded as a
fundamental challenge in computer vision. Nevertheless, ow-
ing to the extremely varied aspect ratios and scales of text in-
stances in real scenes, most conventional text detectors suffer
from the sub-text problem that only localizes the fragments
of text instance (i.e., sub-texts). In this work, we quantita-
tively analyze the sub-text problem and present a simple yet
effective design, COntrastive RElation (CORE) module, to
mitigate that issue. CORE first leverages a vanilla relation
block to model the relations among all text proposals (sub-
texts of multiple text instances) and further enhances rela-
tional reasoning via instance-level sub-text discrimination in a
contrastive manner. Such way naturally learns instance-aware
representations of text proposals and thus facilitates scene
text detection. We integrate the CORE module into a two-
stage text detector of Mask R-CNN and devise our text detec-
tor CORE-Text. Extensive experiments on four benchmarks
demonstrate the superiority of CORE-Text. Code is available:
https://github.com/jylins/CORE-Text.

Index Terms— Scene text detection, Relational reason-
ing, Contrastive learning

1. INTRODUCTION

Scene text detection, which is known as localizing text in-
stances in natural scene images, is a profound challenge in
both computer vision and deep learning communities. Practi-
cal automatic scene text detection systems have a great poten-
tial impact for numerous applications, e.g., document analy-
sis, industrial automatic, and autonomous driving. The re-
cent development of deep learning techniques for generic ob-
ject detection [1, 2] and segmentation [3, 4] has successfully
pushed the limits of scene text detection, leading to a surge of

This work was performed at JD AI Research, and was partially supported
by NSF of China under Grant 61672548, U1611461.

(a) Results of generic object detector (Mask R-CNN)

(b) Results of our CORE-Text
Fig. 1. Scene text detection on three images by (a) directly applying
generic object detector (Mask R-CNN) and (b) utilizing CORE-Text
in this work. Red box: sub-text detection that merely detects sub-
regions of full-text instance; Green box: full-text detection.

deep text detector [5, 6, 7, 8, 9] that follow the typical region
proposal-based detection paradigm. Nevertheless, consider-
ing that the aspect ratios and scales of text instances often
suffer from more variation than those of generic objects, di-
rectly applying generic object detectors will inevitably result
in broken detections of text instances [6, 7]. Taking the text
detection results in Figure 1 (a) as an example, the generic
object detector (Mask R-CNN [3]) fails to accurately localize
the whole text instances (i.e., full-text) and only detects them
as multiple text fragments (i.e., sub-text), especially when the
aspect ratios of text instances are large. These facts motivate
the exploration of contextual information among sub-texts to
alleviate this sub-text problem.

In the literature, there have been a series of innovations
being proposed to improve scene text detection through ex-
ploiting contextual information among sub-texts to associate
the sub-texts belonging to the same text instance, e.g., seg-
ment linking [6] or link merging over local graphs [8]. Nev-
ertheless, most of them solve the sub-text problem in a two-
phase manner, i.e., first localizing sub-texts of multiple text
instances in an image and then grouping the sub-texts of the
same instance. Such way may break the integration between
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localizing and associating sub-texts of the same text instance,
resulting in a sub-optimal solution. Moreover, though these
methods have demonstrated performance gains in detection
accuracy by addressing the sub-text problem, it is still unclear
to what extent the sub-text problem affects the overall perfor-
mance of text detector for scene text detection task.

In this work, we engage in solving the sub-text problem in
scene text detection. First, we quantitatively analyze the fre-
quency of the sub-text problem for a generic object detector
(Mask R-CNN) on the benchmark (e.g., ICDAR 2017 MLT)
and provide the performance upper-bound by fully eliminat-
ing the negative effect of sub-texts. Surprisingly, we find that
the sub-text problem accounts for a large proportion of bad
cases in existing benchmark, and a significant performance
boost (≥ 6% in Hmean metric) is attained when the sub-text
problem is fully addressed.

Moreover, by consolidating the idea of unifying both lo-
calization and association of text proposals (containing sub-
texts), we present a novel COntrastive RElation (CORE) mod-
ule to mitigate the sub-text problem in scene text detection
task. Technically, the multi-scale text proposals, i.e., a group
of sub-texts and full-texts derived from multiple text instances
in an input image, are first produced via Region Proposal Net-
works (RPN). Next, we leverage a vanilla relation block [10]
to perform relational reasoning among all text proposals. The
relational reasoning is further guided with instance-wise con-
trastive objective, that pursues instance-level sub-text dis-
crimination in a contrastive manner. This design pursues the
learning of instance-aware representations of text proposals
through jointly relational reasoning and text instance iden-
tification, and thus facilitates the localization and classifica-
tion of text proposals. Our CORE module could be regarded
as a general text proposal refiner and is readily pluggable to
any two-stage text detector. We name the whole architec-
ture of text detector (Mask R-CNN here) with CORE module
as CORE-Text, and empirically demonstrate that CORE-Text
could better mitigate the sub-text problem and obtain encour-
aging detection results as illustrated in Figure 1 (b).

2. RELATED WORK

Scene Text Detection. Recent progress on this task has
evolved through two paradigms: segmentation-based [11, 12]
and proposal-based methods [5, 6, 7, 8, 9]. The primary chal-
lenge of the former is to distinguish text instances from pixel
perspective. The latter may suffer from various aspect ratios
and scales of scene texts, and result in the sub-text problem.
Several existing works [5, 6, 7, 8] mitigate the sub-text prob-
lem in a two-phase way (i.e. localizing and grouping sub-
texts), which may break the interaction between localizing
and associating sub-text, and lead to a sub-optimal solution.
In contrast, we unify both localization and association of text
proposals, without any additional grouping post-process.

Relational Reasoning. There has been strong evidences

sub-text:

full-text: IoU!"# (full-text, target) ∈ (0.5, 1.0)

IoU!"#(sub-text, target) ∈ 0.1, 0.5
IoF!"# (sub-text, target) ∈ (0.7, 1.0)

(a) Sub-text & full-text definition
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(b) Performance upper-bound
Fig. 2. Quantitative analysis of sub-text problem: (a) the definition
of sub-text and full-text; (b) the performance upper-bound when sub-
text problem is fully addressed.

on the use of relational reasoning to support various tasks,
e.g., object detection [10, 13, 14, 15], feature learning [16],
vision-language [17, 18]. For example, [15] plugs non-local
operation into the conventional CNN to enable the pixel-level
relational interaction within feature maps, and [10] presents
an object relation module to model the relations of regions
via the interaction among appearance features and geometry.

The CORE module in our work is also a type of object-to-
object relational reasoning. Unlike [10] that is developed for
generic object detection, ours goes beyond the self-supervised
exploration of contextual information among proposals and
aims to additionally guide relational reasoning with instance-
wise contrastive objective to mitigate sub-text problem. Such
way naturally unifies both localization and association of text
proposals (consisting of sub-texts and full-texts), and thus fa-
cilitates scene text detection.

3. SUB-TEXT PROBLEM

The sub-text problem refers to the broken detection results in
scene text detection task, where a text instance is detected as
multiple text fragments (sub-texts). Though the unsatisfac-
tory results caused by sub-texts have been mentioned in sev-
eral existing works [6, 7], the problem of how the sub-texts
affect the overall performance of text detector is not yet fully
understood in the literature. In this section, we look into this
problem, and provide a detailed quantitative analysis of sub-
text problem, including the concrete definition of sub-text, the
frequency of sub-text problem in bad cases, and the perfor-
mance upper-bound if the sub-text problem is solved.

Sub-text Definition. To formalize this problem, we first
present the concrete definition of sub-text and full-text con-
ditioned on the relative position between the detection pro-
posal and ground truth (Figure 2(a)). Note that we lever-
age the commonly adopted metric of Intersection over Union
(IoU) and the Intersection over Foreground (IoF) (IoF =

Area of Overlap
Area of Foreground ) to measure the relative position. Specif-
ically, we define the detection proposal as sub-text if its
IoUmax ∈ (0.1, 0.5) (i.e., the sub-text only covers the frag-
ments of ground truth) and the IoFmax ∈ (β, 1.0) (i.e., most

The performances are reported on ICDAR 2017 MLT val set, and the
detail experiment setting can be referred in Section 5.3.
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parts of the sub-text are covered by the ground truth) simul-
taneously. The detection proposal is defined as full-text if
IoUmax ∈ (0.5, 1.0). Here we set β as 0.7, and will elab-
orate its impact in Section 5.3.

Frequency. To measure the frequency of sub-text prob-
lem, we collect all the bad cases based on ICDAR 2017 MLT
val set. Under a moderate evaluation setting (IoU ≥ 0.5), the
proportion of sub-text problem in bad cases is 24.2%. In ad-
dition, we find that more strict evaluation setting will result in
more sub-texts, e.g. the ratio of sub-text is increased to 49.1%
under IoU ≥ 0.8.

Performance Upper-bound. Since the sub-text problem
accounts for a large proportion of bad cases in existing bench-
mark, here we investigate the performance upper-bound by
fully eliminating sub-texts. Specifically, for each detected
sub-text, we first measure its IoUs against all ground truths.
Next, the detected sub-text is replaced by the ground truth
with the largest IoU for evaluation and the obtained perfor-
mance is thus treated as the upper-bound. As shown in Fig-
ure 2(b), after fully eliminating sub-texts, the Hmean of our
base model (Mask R-CNN) is increased by 6% under mod-
erate evaluation setting (IoU ≥ 0.5). Furthermore, under a
higher IoU threshold, the larger performance improvement is
attained. The results show that there is still much room for
improvement in scene text detection, especially for address-
ing the sub-text problem under more strict evaluation.

4. APPROACH

We design a universal module, named COntrastive RElation
(CORE), that mitigates the sub-text problem by jointly per-
forming relational reasoning and instance-level sub-text dis-
crimination. The CORE module can be further integrated into
any two-stage text detector (e.g., Mask R-CNN here) to im-
prove scene text detection. We name the whole text detector
as CORE-Text, and Figure 3 depicts the detailed architecture.

4.1. Vanilla Relation Block

We first provide a brief review of vanilla relation block [10],
which is commonly adopted in generic object detection for
relational reasoning among region proposals. Formally, given
the input N proposals {fAi , fGi }Ni=1 (fA: appearance feature;
fG: geometric feature), vanilla relation block achieves the
relation-augmented representation of each proposal by refin-
ing appearance feature fAi with Nr learnt relation features as

fAi = fAi + Concat[{fRm
i }Nr

m=1]. (1)

Here the m-th relation feature fRm
i of the i-th proposal is

calculated as the weighted sum of appearance features from
other proposals:

fRm
i =

∑
j

wm
ij · (WVm · fAi ), (2)

where the relation weight wm
ij represents the pairwise relation

between two proposals based on their appearance and geo-
metric features, and WVm indicates the transformation ma-
trix. Accordingly, vanilla relation block strengthens proposal
representations via relational reasoning that exploits the con-
textual information among region proposals.

4.2. Contrastive Relation Module

The vanilla relation block constructs fully-connected relations
among all region proposals and performs relational reasoning
in a self-attention manner. This way apparently leaves the
contextual information at instance-level not fully explored, in
view that the text proposals (both sub-text and full-text) be-
longing to the same text instance should share the inherently
similar semantics. Therefore, we devise the COntrastive RE-
lation (CORE) module by remolding the vanilla relation block
with an additional instance-wise contrastive objective. The
spirit behind is to guide the relational reasoning with instance-
level sub-text discrimination in a contrastive manner, and thus
learn the instance-aware representations of text proposals to
mitigate the sub-text problem. Technically, given the text pro-
posals produced by RPN, CORE module first utilizes vanilla
relation block to trigger the relational reasoning that learns
relation features of text proposals. The learning of relation
features is further guided with instance-wise contrastive ob-
jective to enrich relation features with instance-level informa-
tion. After that, the learnt instance-aware relation features
are aggregated with the primary input proposal features via a
shortcut connection, leading to the instance-aware features of
all text proposals. The instance-aware proposal features are
finally fed into the classification and regression modules for
text instance localization.
Instance-wise Contrastive Objective. Traditional con-
trastive learning [19, 20, 21] targets for learning feature em-
bedding by attracting positives (semantically similar samples)
while repelling negatives (semantically dissimilar samples).
The common contrastive objective is InfoNCE [22], which
frames contrastive learning as a classification problem:

LCL(q, k) = −log
exp(q · k+/τ)

exp(q · k+/τ) +
∑K

j=1 exp(q · k−j /τ)
, (3)

where {q, k+} is a positive pair, {q, k−j } is a negative pair,
K is the number of negative samples, and τ is temperature
parameter. Taking the inspiration from contrastive learning,
we derive a particular form of loss, i.e., instance-wise con-
trastive objective, to penalize incompatibility of each text pro-
posal pair. That is to maximize the agreement of different
proposals of same text instance, while minimize the agree-
ment of proposals derived from different instances. Formally,
conditioned on all the input text proposals from RPN, we
first take the N relation features of ground truth proposals as
{qi}Ni=1. For each query qi, the corresponding positive sam-
ples {k+i,m}Mm=1 are thus defined as the relation features of
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Fig. 3. An overview of CORE-Text framework that integrates Mask R-CNN with our CORE module. The input image is first fed into the
Feature Pyramid Network (FPN) backbone, and a set of text proposals are produced by Region Proposal Networks (RPN). Then, CORE
module performs relational reasoning among all text proposal features. The process of relational reasoning is further guided with instance-
wise contrastive objective, that encourages instance-level sub-text discrimination. In this way, CORE module learns instance-aware proposal
features, which are leveraged to facilitate the classification and regression of text proposals in box branch of Mask R-CNN. For scene text
with arbitrary shape, the mask branch in Mask R-CNN is additionally utilized to achieve the final segmentation results.

both sub-text and full-text proposals belonging to the same
text instance of qi. Instead, all the relation features of sub-
text, full-text, and ground truth proposals belonging to differ-
ent text instances are taken as the negative samples {k−i,j}Kj=1.
Note that we additionally involve a 2-layer MLP plus ReLU
(hidden layer size: 1,024) to transform relation features into
a 128-dimensional embedding space in contrastive learning.
These output vectors are normalized via a L2-norm layer.
Therefore, the instance-wise contrastive loss is calculated as

LInsCL(q, k) = −
1

NM

N∑
i=1

M∑
m=1

LCL(qi, {k+i,m, k
−
i }). (4)

4.3. Overall Objective

Recall that our CORE module is a unified text proposal re-
finer, it is feasible to plug CORE module into any two-stage
text detector for scene text detection. We next present the
overall objective of our CORE-Text by integrating CORE
module into Mask R-CNN [3], which consists of RPN for
producing proposal features, box branch for classification and
regression task, and mask branch for binary segmentation.

Following the multi-task learning paradigm in Mask R-
CNN, the overall objective of our CORE-Text is calculated
as the integration of RPN loss Lrpn, classification loss Lcls,
regression loss Lreg, binary segmentation loss Lmask, and
instance-wise contrastive loss LInsCL:

L = Lrpn + Lcls + Lreg + Lmask + λLInsCL, (5)

where the weight λ is set as 0.01 in out experiments. Note
that we adopt two-phase strategy for training CORE-Text. At
the first phase, we pretrain CORE-Text with RPN loss and
instance-wise contrastive loss. In the second phase, the whole
architecture is finetuned with the overall objective L.

5. EXPERIMENTS

We empirically evaluate our CORE-Text on four scene text
detection benchmarks: ICDAR 2017 MLT [23], ICDAR
2015 [24], CTW1500 [25], and Total-Text [26].

5.1. Dataset and Experimental Settings

Dataset. ICDAR 2017 MLT is a popular benchmark with
multi-oriented, multi-scripting and multi-lingual scene texts,
containing 7,200 train images, 1,800 val images, and 9,000
test images with word-level annotations. ICDAR 2015 is an-
other multi-oriented scene text detection benchmark that fo-
cuses on English texts, and consists of 1,000 train images and
500 test images with annotations labeled as word-level quad-
rangles. CTW1500 contains curved texts in natural scenes,
and includes 1,000 train images and 500 test images with text-
line level annotations. Total-Text consists of 1,255 train im-
ages and 300 test images with horizontal, multi-oriented and
curved texts. The text instances are annotated at word level.
Network Setups. We adopt the ImageNet [27] pretrained
ResNet-50 [28] with 5-level Feature Pyramid Network [1] as
the backbone. For prior anchor setting, we set anchor scale
and aspect ratio to 4.82 and {0.57, 1.10, 1.82, 2.81, 5.54} by
running k-means clustering on train set bounding boxes. Two
stacked CORE modules are utilized to generate the 1,024-d
final features for proposal classification and bounding box re-
gression in box head. Following the default setting of Re-
lation Networks [10], we set the number of relation features
as Nr = 16 and the dimension of each relation feature is
64. The mask head contains a four-layer FCN to produce the
28× 28× 256 feature map for instance segmentation.
Training Details. Our model is trained using SGD with 0.9
momentum and 0.0001 weight decay. The batch size is 16. To
avoid overfitting, our data augmentation contains: 1) Random
horizontal flipping with a probability of 0.5; 2) Random crop-
ping and then resizing to the fixed size 640×640; 3) Random
rotation with an angle range of (−10◦, 10◦).
Inference Details. At inference, we achieve 1,000 proposals
by RPN for each testing image. Next, we run the two stacked
CORE modules and box branch on these proposals, followed
by Non-Maximum Suppression (NMS) with IoU = 0.5. The
mask branch is then applied to the detection boxes, targeting
for localizing the scene texts with arbitrary orientations and
shapes. Finally, we adopt a mask level NMS with IoU = 0.2
to further remove duplicates.
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Table 1. Performance comparisons on four standard benchmark test sets. H, P, and R are short for Hmean, Precision, and Recall, respectively.
Method ICDAR 2017 MLT ICDAR 2015 CTW1500 Total-Text

H P R H P R H P R H P R
CTPN [5] - - - 61.0 74.0 52.0 - - - - - -
SegLink [6] - - - 75.0 73.1 76.8 - - - - - -
Xue et al. [7] 66.6 73.9 60.6 - - - - - - - - -
DRRG [8] 67.3 75.0 61.0 86.6 88.5 84.7 84.5 85.9 83.0 85.7 86.5 84.9
PSENet [11] 70.8 73.7 68.2 85.7 86.9 84.5 82.2 84.8 79.7 80.9 84.0 78.0
DB [12] 74.7 83.1 67.9 87.3 91.8 83.2 83.4 86.9 80.2 84.7 87.1 82.5
PMTD [9] 78.5 85.2 72.8 89.3 91.3 87.4 - - - - - -

Base 77.2 82.7 72.5 88.2 90.1 86.4 84.9 86.3 83.6 85.3 87.4 83.3
Core-Text 78.7 85.3 73.0 89.3 91.1 87.5 85.7 87.8 83.7 86.3 87.7 85.0

Table 2. Ablation study of CORE module on ICDAR 2017 MLT
val set. VRM: Vanilla Relation Module.

Method Hmean Precision Recall sub-text number
Base 80.0 82.7 77.4 1190
Base + VRM 81.1 85.2 77.4 923
Base + CORE 82.1 87.1 77.7 754

5.2. Comparisons with State-of-the-Art

Table 1 summarizes the quantitative results of our CORE-Text
on four benchmarks. We compare CORE-Text with several
existing state-of-the-art scene text detection techniques. It is
worth noting that we additionally include a degraded version
of our CORE-Text (named as Base), which is implemented
as the basic Mask R-CNN without CORE module. Overall,
the results across different datasets consistently show that our
CORE-Text exhibits better performances than other text de-
tectors over the most metrics. This basically highlights the
advantage of performing relational reasoning and instance-
level sub-text discrimination for scene text detection.
ICDAR 2017 MLT. At the first training phase, we pretrain
our CORE modules with instance-wise contrastive objective
for 40 epoch, with the initial learning rate 0.02 annealed by
the cosine decay rule. Following the commonly adopted set-
ting in [9], we train CORE-Text on both ICDAR 2017 MLT
train and val set for 160 epochs at the second training phase.
The learning rate is set to 0.04, which is decreased by one-
tenth at 80-th and 128-th epoch respectively. During infer-
ence, we adopt the single scale testing strategy and resize the
long side of each image to 1,920. Our CORE-Text achieves
78.7% Hmean, which makes the absolute improvement over
the Base model by 1.5%.
ICDAR 2015. As in [9], we initialize CORE-Text with the
ICDAR 2017 MLT pretrained model and further finetune the
model with 40 epochs over ICDAR 2015 train set. The learn-
ing rate is set to 0.002 and decays one-tenth at 20-th epoch. At
inference, the long side of images is resized to 1,920. Finally,
CORE-Text achieves 1.1% higher Hmean than Base model.
CTW1500 & Total-Text. To fully verify the generalizability
of our CORE-Text, we further evaluate CORE-Text on two
challenging benchmarks with curved and multi-oriented texts
(i.e., CTW1500 and Total-Text). As in the training settings
on ICDAR 2015, we finetune CORE-Text with 40 epochs on

each benchmark. The long side of images is resized to 640
and 1,280 on CTW1500 and Total-Text, respectively. Simi-
lar to the observations on ICDAR 2015, our CORE-Text con-
sistently outperforms the Base model by 0.8% and 1.0% in
Hmean on CTW1500 and Total-Text.

5.3. Experimental Analysis

Then, we conduct ablation study to verify the effectiveness
of our CORE module, and further analyze the impact of sev-
eral hyper-parameters in CORE-Text. Note that all discus-
sions here are based on ICDAR 2017 MLT train and val set.
Specifically, we train CORE-Text on ICDAR 2017 MLT train
set with 40 epochs, and the initial learning rate is set as 0.04
(decreased by 10 at 20-th and 32-th epoch respectively). The
final results are reported over the 1,800 val images.
Ablation study. To examine the impact of each design in
CORE module, we conduct ablation study by comparing dif-
ferent variants of CORE-Text in Table 2. We start from the
Base model which is a degraded version of CORE-Text with-
out CORE module. Next, we extend Base model by in-
volving the Vanilla Relation Module (VRM) to trigger rela-
tional reasoning among proposals in a self-supervised man-
ner, which achieves better performances and meanwhile re-
duces the number of sub-text bad cases. The results basically
demonstrate the effectiveness of relational reasoning in VRM.
In addition, the integration of both relational reasoning and
instance-level sub-text discrimination, i.e., our CORE mod-
ule, obtains the highest performances in terms of all the three
metrics and further reduces the sub-text number. The per-
formance gains validate the merit of guiding relational with
instance-wise contrastive objective for scene text detection.
Impact of β in sub-text definition. Table 3 shows the results
by varying β in the range of [0.5, 0.9]. The Hmean scores
only change between 81.7% and 82.1%, which practically
eases the selection for the optimal β in sub-text definition.
Impact of temperature τ . The temperature τ controls the
flatness of softmax function in contrastive loss. As shown in
Table 4, the best performance is attained when τ is set as 0.2.
Note that the training loss fails to converge when τ = 0.01.
Impact of instance-wise contrastive loss weight λ. Figure 4
depicts the performance curve of Hmean when λ varies within
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Table 3. Impact of hyper-parameter β in sub-text definition on IC-
DAR 2017 MLT val set.

β 0.5 0.6 0.7 0.8 0.9
Hmean (%) 82.0 81.7 82.1 81.8 82.0

Table 4. Impact of temperature τ in contrastive loss on ICDAR
2017 MLT val set.

τ 0.01 0.05 0.1 0.2 0.3 0.4 0.5
Hmean (%) - 80.7 82.0 82.1 81.7 81.4 81.6

[0, 1]. In the extreme case of λ = 0, no instance-level sub-
text discrimination is performed and the CORE module de-
generates to vanilla relation module. The best Hmean score
is achieved when λ = 0.01. This again demonstrates that it is
reasonable to exploit both relational reasoning and instance-
level sub-text discrimination for boosting scene text detection.

6. CONCLUSIONS

In this paper, we investigate the sub-text problem in scene
text detection task and present a novel COntrastive RElation
(CORE) module to alleviate this issue. Particularly, unlike
existing methods that tackle sub-text problem in a two-phase
fashion, our CORE module jointly localizes and associate text
proposals (sub-texts and full-texts from multiple instances)
to boost scene text detection. To materialize our idea, we
remold the vanilla relation block by additionally involving
an instance-wise contrastive objective to guide the process
of relational reasoning among text proposals. Such design
naturally enables a joint learning of relational reasoning and
instance-level sub-text discrimination in a contrastive manner,
leading to instance-aware representations of text proposals.
Furthermore, we devise a novel text detector (i.e., CORE-
Text) that integrates CORE module into the generic object de-
tector (Mask R-CNN). Extensive experiments conducted on
four benchmarks demonstrate the efficacy of CORE-Text.
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