
FACTORIAL USER MODELING WITH HIERARCHICAL GRAPH NEURAL NETWORK
FOR ENHANCED SEQUENTIAL RECOMMENDATION

Lyuxin Xue†, Deqing Yang† B and Yanghua Xiao‡

†School of Data Science, Fudan University, Shanghai, China. {lxxue19,yangdeqing}@fudan.edu.cn;
‡School of Computer Science, Fudan University, Shanghai, China. shawyh@fudan.edu.cn.

ABSTRACT
Most sequential recommendation (SR) systems employing
graph neural networks (GNNs) only model a user’s interac-
tion sequence as a flat graph without hierarchy, overlooking
diverse factors in the user’s preference. Moreover, the times-
pan between interacted items is not sufficiently utilized by
previous models, restricting SR performance gains. To ad-
dress these problems, we propose a novel SR system employ-
ing a hierarchical graph neural network (HGNN) to model
factorial user preferences. Specifically, a timespan-aware se-
quence graph (TSG) for the target user is first constructed
with the timespan among interacted items. Next, all original
nodes in TSG are softly clustered into factor nodes, each of
which represents a certain factor of the user’s preference. At
last, all factor nodes’ representations are used together to pre-
dict SR results. Our extensive experiments upon two datasets
justify that our HGNN-based factorial user modeling obtains
better SR performance than the state-of-the-art SR models.

Index Terms— Sequential recommendation, graph neu-
ral network, factorial preference, timespan

1. INTRODUCTION

Sequential recommendation (SR) aims to leverage users’ his-
torical behaviors to predict their next interaction. Many SR
systems were built with sequential models including Markov-
based models [1] and recurrent neural network (RNN) based
models [2, 3], where a user’s preference is generally repre-
sented with his/her interaction sequence. Recently, some re-
searchers employ graph neural networks (GNNs) [4, 5] to
achieve SR and session-based recommendation [6, 7, 8, 9],
given that a user’s historical interactions can be modeled into
a sequence graph. Accordingly, the user’s dynamic pref-
erence is learned through capturing the complex transition
pattern in the graph by GNNs. Despite that these models
demonstrate good performance, there still exists some prob-
lems needing to be addressed.

First, the sequence graphs in most existing GNN-based
SR models are modeled as a flat graph without hierarchy, fail-
ing to represent the diverse factors of a user’s preference suffi-
ciently. It has been proven that the graph embedding without
hierarchy may be problematic to some downstream tasks [10].

Second, most of previous GNN-based models [6, 7] built
the sequence graph only with chronological order, neglecting
the concrete timespan between different items in a sequence
which is, however, crucial to precise SR. For example, in
movie recommendation task, a user’s preference on movies
may vary over time. It implies that in the user’s rated (or
watched) movie list, the smaller timespan between two rated
movies indicates potentially higher consistency and higher
transition probability between them. As a result, the times-
pans are significant to next interaction prediction for the user.

To address above problems, we propose a novel SR model
with a hierarchical graph neural network (HGNN), in which
the representation of a user’s sequence graph is learned in a
hierarchical fashion instead of flat fashion. Specifically, all
(item) nodes in the graph are first clustered into several fac-
tor nodes (super nodes) softly by the HGNN. Our empirical
studies found that each factor node represents a certain factor
of the user’s preference, which often corresponds to a genre
of items in the multimedia recommendation datasets (refer to
Fig. 3 in Subsec. 3.6). Then, all factor nodes’ embeddings,
named as factorial preference representations, are learned as
independent as possible through adding an entropy-based reg-
ularizer in the loss function. At the prediction layer, these
independent factorial preference representations are used to-
gether as the user’s disentangled representation, to predict the
interaction probability between the target user and the candi-
date item more precisely. Furthermore, the sequence graph in
our model is constructed as a timespan-aware sequence graph
(TSG), where each edge is weighted by the timespan between
two interacted items for SR performance gains.

In summary, our contributions in this paper include:
1. We propose HGNN to learn factorial preference repre-

sentations from a user’s interaction sequence graph, resulting
in better user modeling with fine granularity.

2. We design a method to incorporate timespan between
different interacted items into our HGNN, based on which the
SR model obtains performance gains.

3. Our extensive experiments compared with the state-
of-the-art (SOTA) SR models and ablated variants, not only
justify our SR model’s superior performance, but also demon-
strate HGNN’s advantages on differentiating the diverse fac-
tors of a user’s preference and interpretability.

ar
X

iv
:2

20
7.

13
26

2v
1

 [
cs

.I
R

]
 2

7
Ju

l 2
02

2

2. METHODOLOGY

2.1. Task Formalization

Our task in this paper can be formalized as follows. Given a
user u and his/her interaction sequence Q = {< v1, t1 >,<
v2, t2 >, ..., < vN , tN >} where each interaction < vi, ti >
(1 ≤ i ≤ N) indicates that user u interacted with item vi
at timestamp ti, the proposed model aims to predict u’s in-
teracted item at the next timestamp. In general, this task
is achieved through computing u’s probability of interacting
with each candidate item v given Q, i.e., ŷuv = P (v|Q).

2.2. Recommendation Pipeline

Our SR’s pipeline can be divided into the following three
steps as depicted in Fig. 1.

Step 1: A timespan-aware sequence graph (TSG), de-
noted as GT , is constructed with the input interaction se-
quence of the target user u.

Step 2: A node clustering layer is built to cluster the orig-
inal nodes in GT into several factor nodes and outputs the
factor nodes’ embeddings.

Step 3: At last, the factorial preference representations
output by Step 2 are used together as u’s disentangled repre-
sentation, based on which ŷuv is computed.

timespan-aware
sequence graph

𝒗

෥𝒖

ො𝑦𝑢𝑣

Node Clustering Layer

A

B

C

D

E

F

G

H

I

TSG
construction

Step 1 Step 2 Step 3

interaction
sequence Q

candidate item

…
A B … I

𝒄1

𝒄2

𝒄3

factor
graph

disentangled
representation

Prediction Layer

Fig. 1. Our SR model’s framework.

2.3. Timespan-aware Sequence Graph

The GT built in our model is an undirected graph, given
that the dependence pattern among the items in an interac-
tion sequence is often bi-directional rather than unidirectional
[6, 11]. Specifically, each node inGT corresponds to an inter-
acted item i inQ. The timespan between two items i, j inQ is
denoted as ∆tij . We issue an edge (i, j) if ∆tij ≤ T where T
is the timespan’s upper bound. Suppose A is GT ’s weighted
adjacency matrix, then Aij is the weight of edge (i, j), which
is inversely proportional to the timespan and quantified as

Aij =

{
µ

∆tij
= µ
|tj−ti| , if µ

∆tij
≤ 1;

1, otherwise.

Here µ is the timespan unit such as one day or one hour. Dur-
ing the information propagation and aggregation in HGNN,

less information would pass between two item nodes if they
are connected by an edge with big timespan or less weight.

2.4. Node Clustering Layer through HGNN

In this step, all nodes in GT are clustered softly into several
factor nodes based on the correlations among them. Specif-
ically, an item (node) i in GT is initially represented by em-
bedding xi ∈ Rd which is node i’s feature embedding. xi
can be obtained through item ID projecting, if we have no
item feature. Then, we encode GT ’s structural information
into node embeddings with the similar operations in graph
attention network (GAT) [12], since GAT differentiates the
neighbors of a node based on the attentions between them.

The concrete operations are presented as follows. At first,
xi is linearly transformed into an embedding of d′ dimension
as x̃i = W hxi where W h ∈ Rd′×d are a trainable weight
matrix. Then, suppose j is one neighbor of node i, we in-
corporate timespan ∆tij when computing the correlation be-
tween i and j. To this end, we define

aij = γx̃ix̃j
> + (1− γ)Aij (1)

where γ ∈ (0, 1) is a control parameter. Accordingly, aij
consists of two factors: the feature correlation and timespan
between i and j. γ is used to decide how much aij’s compu-
tation relies on either of these two factors. Then,

αij = softmaxj

(
LeakyReLu(aij)

)
=

exp
(

LeakyReLu(aij)
)∑

k∈Ni
exp

(
LeakyReLu(aik)

) (2)

where Ni is i’s neighbor set. According to Eq. 1 and 2, node
j is more correlated to node i if they have similar features or
smaller timespan, which conforms to SR’s primary principle.

Moreover, we adopt multi-head attention mechanism to
aggregate the information (embeddings) of i’s neighbors as

z̃i =
H

‖
h=1

σ

∑
j∈Ni

αhijx̃j
h

 , zi = W zz̃i (3)

where H is the head number and ‖ is concatenation. W z ∈
Rd×Hd′ is also a trainable weight matrix of linear transfor-
mation. Above equations show that αij indicates the extent
of information propagation from node j to node i. At last,
zi ∈ Rd is i’s updated embedding that is refined with GT ’s
structural information. In short, the operations from Eq. 1 to
Eq. 3 are denoted as Z = GAT(A,X) where X ∈ RN×d
and Z ∈ RN×d are the initial node embedding matrix and
refined node embedding matrix, respectively.

In addition, we need to identify how to assign each node
to different factor nodes, each of which is in fact a cluster
(super node). To this end, we adopt another GAT to compute
the assignment distribution of all nodes. Suppose S ∈ RN×K
is the assignment matrix in which entry Sij is the probability

of node i belonging to the j-th factor of u’s preference, and
K is the factor number. Specifically, we obtain S by

S = softmax
(

GAT(A,Z)W s
)

(4)

where W s ∈ Rd×K is a trainable weight matrix. Note that
this clustering is indeed a soft clustering, since each row in S
is a probability distribution vector instead of a one-hot vector.
But the entropy-based loss of our model introduced in Eq. 12
ensures that each node belongs to only one factor node as far
as possible, resulting in distinct preference factors and bet-
ter interpretability. With S, we can obtain the embeddings
of all K factor nodes to constitute a factor embedding ma-
trix C ∈ RK×d, which is in fact the output of the HGNN in
this clustering layer, denoted as C = HGNN(A,X). Specif-
ically, the j-th (1 ≤ j ≤ K) row in C is the j-th factor node’s
representation and computed as

cj =
N∑
i=1

Sijzi. (5)

According to our model’s design principle, each factor
node in the clustered GT is as distinct (independent) as possi-
ble to each other. Thus, we can directly use all factor nodes’
embeddings, i.e., factorial preference representations, to con-
stitute u’s disentangled representation as

u =
K

‖
j=1

cj = [c1, c2, ..., cK]. (6)

2.5. Model Prediction
In this step, we compute ŷuv with u’s disentangled represen-
tation and the candidate item v’s embedding v ∈ Rd together
with relevant timespan. Given that different factors represent
u’s preference to different extents, we first refine u’s represen-
tation in Eq. 6 into an attentive disentangled representation as

ũ = [c̃1, c̃2, ..., c̃K] = [β1c1, β2c2, ..., βKcK] (7)

where weight βj(1 ≤ j ≤ K) is computed based on the
embedding and timestamp correlations between factor node
j and candidate item v. The timestamp of factor node j is
identified as

tj =

N∑
i=1

Sijti

S
, S =

N∑
i=1

Sij (8)

where i is an item node. Then,

βj = softmaxj(cjv
> +

µ

|tv − tj |
). (9)

Suppose ṽ ∈ RKd is the concatenation of K vs, u’s proba-
bility of interacting with v is finally computed as

ŷuv = σ(ũṽ>) = σ

(K∑
j=1

c̃jv
>
)
. (10)

The computation of ŷuv implies that, the matching degree
between u and v is determined by aggregating v’s matching
to each factor of u’s preference.

2.6. Model Optimization
We adopt Bayesian personalized ranking (BPR) [13] as the
optimization algorithm to train our SR model. Specifically,
supposeNu is u’s interaction sequence fetched from the train-
ing set, the BPR loss of u’s training samples is computed by

LBPR = −
∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj). (11)

According to the primary principle of disentangled rep-
resentation, each unit of the representation should be as in-
dependent as possible [14, 15]. It is required that all prefer-
ence factors learned by the HGNN should be differentiable.
According to this principle, node i’s assignment distribution
vector Si should be learned approximate to one-hot vector.
In other words, node i should be clustered into a factor node
as rigidly as possible. To this end, we add an entropy-based
regularizer as follows:

LEnt =
1

N

N∑
i=1

Entropy(Si) = − 1

N

N∑
i=1

K∑
j=1

Sij logSij .

(12)
Finally, we have the following comprehensive loss func-

tion added with L2 regularization ‖Θ‖22, in which Θ =
{X l,W l}(1 ≤ l ≤ L) and M is the total number of users
(sequences) in the training set,

L =

M∑
u=1

(
LBPR + λ1LEnt

)
+ λ2‖Θ‖22. (13)

3. EVALUATION

3.1. Datasets and Sample Collection
In our experiments, we evaluated all compared models on
the following two multimedia recommendation datasets, of
which the statistics are listed in Table 1.

Steam1: This dataset is collected from Steam, which is
a video game distribution platform, and contains reviews,
timestamps and genres of massive games.

MovieLens2: This is a benchmark movie recommenda-
tion dataset collected from MovieLens website. We adopted
MovieLens-1M version in our experiments which contains
ratings, timestamps and genres of various movies.

To collect samples, we sorted user interactions according
to their timestamps to obtain an interaction sequence for each
user. As in [6], we first filtered out the sequences with less
than N + 1 interactions, and then prepared each sample by a

1http://cseweb.ucsd.edu/ jmcauley/datasets.html#steam data
2https://grouplens.org/datasets/movielens/

Table 1. Dataset statistics.
Dataset Sequence # Item # Interaction # Genre #
Steam 158,091 11,667 2,055,183 22

MovieLens 74,079 3,390 963,027 18

sliding-window. Concretely, we grouped the previous N in-
teractions as the input sequence, and took the last interaction
as the ground-truth of next interaction. We used the earlier
90% interactions as the training set, and the latter 10% inter-
actions as the test set. Then, the latter 10% interactions in
the training set were further used as the validation set. The
sample processing file and our model’s source-code are both
provided in https://github.com/xlx0010/HGNN.

3.2. Compared Models
Although some of following baselines were designed for
session-based recommendation, they were still compared
since a truncated interaction sequence can be regarded as a
session and there is limited work on GNN-based model spe-
cific to SR.
FPMC [1]: It is a representative sequential model for SR built
based on personalized Markov chain.
GRU4REC+ [16]: It is an improved versions of GRU4REC
[2] using BPR as the loss.
SASRec [17]: It is a representative SR model with self-
attentions.
SR-GNN [6]: It employs gated graph neural network
(GGNN) to capture the complex transition pattern in a ses-
sion’s interaction sequence.
GC-SAN [7]: It adopts self-attention mechanism to learn se-
quence representations, where sequence graph structure and
information propagation strategy are the same as SR-GNN.
FGNN [8]: GAT is employed in this SR model to capture
transition patterns in sequence graphs. Specifically, FGNN
assigns different weights to different neighbors, and uses
weighted sum to update the central node instead of a complex
gated mechanism.
RetaGNN [9]: It trains a relational attentive GNN on a User-
Item-Attribute tripartite graph and adopts unidirectional self-
attention to capture sequential characteristic in item sequence,
but ignores timespan between items. For fair comparison, we
removed its attribute nodes.

Our SR model is denoted as HGNN and further compared
with the following ablated variants.
HGNN-GAT1: The first GAT in HGNN is removed from this
variant, resulting in Z=X .
HGNN-GAT2: This variant was proposed by removing the
second GAT in HGNN, resulting in the absence of assignment
matrix S. Namely, there is no node clustering (C=Z).
HGNN-T: In this variant, timespan is not included in the se-
quence graph. Accordingly, the timespan ∆tij is removed
from relevant computations.
HGNN-Ent: It was proposed by removing the entropy-based
regularizer LEnt in our model’s loss Eq. 13. It was com-

pared to verify the effect of differentiating preference factors
on performance gains.

3.3. Experiment Settings

We used two typical SR metrics hit ratio (Hit) and reciprocal
rank (RR) to evaluate all compared models. For fair com-
parison, all baselines’ hyper-parameters were tuned to their
optimal values against the datasets. Due to space limitation,
we only display our model’s results of d = 64 and N = 12
in the subsequent figures and tables. The consistent conclu-
sions can still be drawn based on the results of other settings.
Note that all models can not model user preferences well if
N is too small, and are time-consuming if N is too large. In
addition, all embeddings were initialized by a Gaussian dis-
tribution with a mean of 0 and a standard deviation of 0.1.

In TSG construction, we set T=7 days (one week) for
Steam and T = 30 days (one month) for MovieLens, because
interactions in Steam are denser in time than in MovieLens.
We set µ=1 day for both datasets. In addition, we set K=5
and γ=0.8, according to our tuning results. The best setting
of K = 5 implies that the number of different preference fac-
tors of most users in the two datasets is within 5.

In addition, we used Adam [18] optimizer with the learn-
ing rate of 0.001 and batch size of 1024, which were consis-
tently used in all baselines. About the control parameter in
Eq. 13, we set λ1 and λ2 to 10−4 based on our tuning stud-
ies. All experiments were conducted on a workstation of dual
GeForce GTX 1080 Ti with 32G memory and the environ-
ment of Ubuntu16.04 and torch1.7.1.

3.4. Global Performance Comparisons

The comparison results of all models’ performance are listed
in Table 2, and HGNN’s performance improvements over the
strongest competitor (highlighted with underline) in the base-
line and ablated version group are also displayed. The listed
scores are the mean of five runnings for each model, veri-
fying HGNN’s remarkable superiority. Particularly, HGNNs
superiority over the GNN-based SR baselines shows that, the
hierarchical structure of sequence graphs is more beneficial
than flat structure to capture the complex pattern in historical
interactions. Although RetaGNN exhibits the SOTA baseline
performance, it does not incorporate timespan and thus is still
inferior to HGNN. In addition, GNN-based SR models exhibit
superior performance compared with the sequential models
(FPMC, GRU4REC+ and SASRec).

3.5. Ablation Study

According to the ablation study results in Table 2, HGNN’s
advantage over HGNN-GAT1 shows the necessity of atten-
tively aggregating neighbors’ information to refine a node’s
embedding by GAT, which is crucial to better preference cap-
ture. HGNN’s superiority over HGNN-GAT2 justifies the
advantage of building the hierarchical structure for sequence

https://github.com/xlx0010/HGNN

Table 2. Performance comparison of all models on accuracy.

Model
Dataset Steam MovieLens

Hit@5 RR@5 Hit@10 RR@10 Hit@5 RR@5 Hit@10 RR@10
FPMC 0.381 0.236 0.517 0.252 0.392 0.208 0.553 0.230

GRU4REC+ 0.391 0.253 0.530 0.272 0.462 0.274 0.629 0.303
SASRec 0.447 0.289 0.594 0.331 0.488 0.292 0.651 0.319
SR-GNN 0.561 0.314 0.705 0.338 0.459 0.241 0.628 0.280
GC-SAN 0.578 0.342 0.709 0.363 0.501 0.305 0.677 0.339

FGNN 0.602 0.385 0.725 0.392 0.538 0.324 0.701 0.354
RetaGNN 0.622 0.394 0.734 0.418 0.561 0.342 0.747 0.362

%improvement 3.70% 7.36% 3.01% 3.11% 4.46% 2.63% 2.95% 4.97%
HGNN-GAT1 0.615 0.389 0.731 0.417 0.543 0.325 0.746 0.351
HGNN-GAT2 0.569 0.355 0.705 0.378 0.531 0.312 0.733 0.339

HGNN-T 0.581 0.383 0.721 0.399 0.520 0.313 0.701 0.349
HGNN-Ent 0.545 0.358 0.699 0.358 0.493 0.296 0.668 0.325

%improvement 4.88% 8.74% 3.42% 3.36% 7.92% 8.01% 3.08% 8.26%
HGNN 0.645 0.423 0.756 0.431 0.586 0.351 0.769 0.380

graphs by node clustering. HGNN’s superiority over HGNN-
T verifies the significance of incorporating timespan into se-
quence graphs in terms of performance gains. In particular,
HGNN’s accuracy superiority in MovieLens is more appar-
ent than Steam, because the average interaction timespan in
MovieLens is bigger than Steam, making temporal informa-
tion more significant. HGNN-Ent is also inferior to HGNN,
because each factor is not distinguishable from others without
the effect of entropy-based regularizer in HGNN-Ent.

3.6. Case Study

We further visualize some recommendation cases to demon-
strate our model’s advantages. To justify HGNN’s advantage
on differentiable clustering for capturing user factorial prefer-
ences, we rigidly categorized each node in TSG to one factor
at first. Thus, the actual clusters may be less than 5 (we set
K=5). Fig. 2 displays the positions of the 12 interacted items
of one Stream user and one MovieLens user in 2D embedding
space, which were learned by HGNN-Ent (Subfig. (a/c)) and
HGNN (Subfig. (b/d)), respectively. In Fig. 2, the nodes of
each cluster are labeled with a certain color. We obviously
find that HGNN clusters all nodes more differentially with
the aid of entropy-based regularizer LEnt. Such results also
ensure the rationality using the factorial preference represen-
tations as a user’s disentangled representation.

To justify HGNN’s interpretability for recommendation
results, we compared the genres of historical interacted item
and the predicted item. It is inspired by our empirical finding
that item genres mostly match the factors of user preferences
in these two multimedia datasets. Fig. 3 displays the same
two cases in Fig. 2, where the 12 interacted items are listed
chronologically in the left column. We highlighted the item
genres that represent user preference factors mostly. The right
orange circle represents the next interacted item v predicted
by our model. The edge scores were computed in Eq. 10, in-
dicating the significance (correlation) of each preference fac-

(a) HGNN-Ent (b) HGNN

Steam

(c) HGNN-Ent (d) HGNN

MovieLens

Fig. 2. Node clustering results of (a/c) HGNN-Ent and (b/d)
HGNN for two toy users (better viewed in color).

tor to v. It shows that v has the same genres as those of his-
torical interacted items belonging to the same factor (factor 3
for User 7431 and factor 1 for User 1063). Such correlations
provide a persuasive reason for predicting v, demonstrating
our model’s interpretability.

4. RELATED WORK

Many traditional SR models adopt Markov chains to capture
sequential patterns between consecutive items in a sequence
[19]. Afterwards, FPMC [1] combines Matrix Factorization
(MF) and Markov Chain to model sequential behaviors, of
which a major problem is the static representations for user
intentions. Recently, some Deep Neural Networks (DNNs)
such as LSTM and GRU have been employed in SR models
to capture user preferences through encoding historical inter-
actions into a hidden state. Among them, GRU4REC [2] is
the pioneer work, which encodes items into one-hot embed-
dings and feeds them into GRUs to achieve recommendation.

0.217 Tree of Savior
RPG
Massively Multiplayer
Free to Play

Game name Game genre
Action
Action
Action, Indie
Action, RPG, Indie, Adventure
Action, Adventure
Simulation, Strategy
Adventure
RPG, Action, Adventure
RPG, Indie
Adventure, Action
Adventure, Action
RPG, Action

The Darkness II
Tom Clancy's Ghost Recon: Future Soldier™

Garshasp: The Monster Slayer
ORION: Prelude

Batman™: Arkham Origins
Stronghold Crusader 2

The Walking Dead: Season 2
Murdered: Soul Suspect

Pregnancy
Dead Rising 2: Off the Record

Assassin’s Creed® Liberation HD
DARK SOULS™ II: Scholar of the First Sin

0.323

0.695

User_7431

(a) One case in Steam

factor 3

factor 1

vfactor 2

Action, Sci-Fi, Adventure
Comedy, Crime, Drama
Action, Sci-Fi, Thriller, Drama
Comedy, Horror
Sci-Fi, Drama, Fantasy
Comedy
Comedy, Drama
Action, Sci-Fi, Thriller, Adventure
Comedy
Thriller
Comedy
Comedy

Star Wars: Episode I - The Phantom Menace
Dog Day Afternoon

Deep Impact
Ghostbusters

E.T. the Extra-Terrestrial
American Pie

American Beauty
Abyss, The

Austin Powers: The Spy Who Shagged Me
Bone Collector, The

Clerks
Detroit Rock City

User_1063

Movie title Movie genre

(b) One case in MovieLens

Deep Blue Sea
Action, Sci-Fi, Thriller

0.122

0.869

factor 1

factor 2

v

Fig. 3. The shared genres (red font) between the predicted
item v (orange circle) and the historical interacted items be-
longing to main contributing factor (red circle) demonstrate
HGNN’s interpretability for recommendation results.

Then, GRU4REC+ [16] was proposed as an advanced version
of GRU4REC.

Inspired by the power of GNNs [4, 12] on graph mod-
eling, some efforts employed GNNs to guide the learning
of user/item representations for CF-based performance gains.
For example, GC-MC [21] applies graph convolutional net-
work (GCN) [4] on user-item graph. For GNN-based SR
models, Wu et al. proposed SR-GNN [6] which uses gated
graph neural network (GGNN) [5] to model the sequence
graph, and thus the complex transition pattern rather than
the sequential transition pattern is captured. Besides SR-
GNN, GC-SAN [7] and MKM-SR [11] also employ GGNN
to capture the complex transition pattern in sequence graphs
to achieve enhanced SR. Similar to our model, FGNN [8] uti-
lizes GAT to capture the item transitions in sequence graph.
SURGE [22] constructs an interest graph for a given user also
through GNN-based clustering algorithm. We believe it is
inferior to our model since it excludes temporal information
during its graph construction, although we did not compare it
in our experiments due to the lack of source code.

5. CONCLUSION

We propose a novel SR model in which the user’s sequence
graph is constructed into a TSG with the timespans between
interacted items. Our proposed HGNN is then applied on this
graph to capture the complex pattern and differentiable factors
in user preferences, resulting in enhanced SR performance.
Our extensive experiments not only justify our model’s per-
formance advantages over SOTA models but also verify the
necessity of our model’s components.

6. REFERENCES

[1] Steffen Rendle et al., “Factorizing personalized markov chains
for next-basket recommendation,” in Proc. of WWW, 2010.

[2] B. Hidasi et al., “Session-based recommendations with recur-
rent neural networks,” in Proc. of ICLR, 2016.

[3] Qiao Liu et al., “Stamp: Short-term attention/memory pri-
ority model for session-based recommendation,” in Proc. of
SIGKDD, 2018.

[4] T. N. Kipf and M. Welling, “Semisupervised classification with
graph convolutional networks,” in Porc. of ICLR, 2017.

[5] Yujia Li et al., “Gated graph sequence neural networks,” in
Proc. of ICLR, 2016.

[6] Shu Wu et al., “Session-based recommendation with graph
neural networks,” in Proc. of AAAI, 2019.

[7] Chengfeng Xu et al., “Graph contextualized self-attention net-
work for session-based recommendation,” in Proc. of AAAI,
2019.

[8] Ruihong Qiu et al., “Rethinking the item order in session-
based recommendation with graph neural networks,” in Proc.
of CIKM, 2019.

[9] Cheng Hsu and Cheng-Te Li, “Retagnn: Relational temporal
attentive graph neural networks for holistic sequential recom-
mendation,” in Proc. of WWW, 2021.

[10] Zhitao Ying et al., “Hierarchical graph representation learning
with differentiable pooling,” in Proc. of NeurIPS, 2018.

[11] Wenjing Meng et al., “Incorporating user micro-behaviors and
item knowledge into multi-task learning for session-based rec-
ommendation,” in Proc. of SIGIR, 2020.

[12] P. Velickovic and G. Cucurull et al., “Graph attention net-
works,” in Proc. of ICLR, 2018.

[13] Steffen Rendle et al., “Bpr: Bayesian personalized ranking
from implicit feedback,” pp. 452–461, 2012.

[14] Xiang Wang et al., “Disentangled graph collaborative filter-
ing,” in Proc. of SIGIR, 2020.

[15] Jianxin Ma et al., “Disentangled graph convolutional net-
works,” in Proc. of ICML, 2019.

[16] Balázs Hidasi and Alexandros Karatzoglou, “Recurrent neu-
ral networks with top-k gains for session-based recommenda-
tions,” in Proceedings of CIKM. ACM, 2018, pp. 843–852.

[17] Wang-Cheng Kang and Julian J. McAuley, “Self-attentive se-
quential recommendation,” in Proc. of ICDM, 2018.

[18] JDiederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proc. of ICLR, 2015.

[19] Yueh Min Huang et al., “A markov-based recommendation
model for exploring the transfer of learning on the web,” Jour-
nal of Educational Technology & Society, pp. 144–162, 2009.

[20] Kyunghyun Cho et al., “On the properties of neural machine
translation: Encoder-decoder approaches,” Computer Science,
2014.

[21] Rianne van den Berg et al., “Graph convolutional matrix com-
pletion,” in Proc. of KDD, 2018.

[22] Jianxin Chang et al., “Sequential recommendation with graph
neural networks,” in Proc. of SIGIR, 2021.

	1 Introduction
	2 Methodology
	2.1 Task Formalization
	2.2 Recommendation Pipeline
	2.3 Timespan-aware Sequence Graph
	2.4 Node Clustering Layer through HGNN
	2.5 Model Prediction
	2.6 Model Optimization

	3 Evaluation
	3.1 Datasets and Sample Collection
	3.2 Compared Models
	3.3 Experiment Settings
	3.4 Global Performance Comparisons
	3.5 Ablation Study
	3.6 Case Study

	4 Related Work
	5 Conclusion
	6 References

