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ABSTRACT

Video anomaly detection is recently formulated as a multi-
ple instance learning task under weak supervision, in which
each video is treated as a bag of snippets to be determined
whether contains anomalies. Previous efforts mainly focus
on the discrimination of the snippet itself without model-
ing the temporal dynamics, which refers to the variation of
adjacent snippets. Therefore, we propose a Discriminative
Dynamics Learning (DDL) method with two objective func-
tions, i.e., dynamics ranking loss and dynamics alignment
loss. The former aims to enlarge the score dynamics gap
between positive and negative bags while the latter performs
temporal alignment of the feature dynamics and score dynam-
ics within the bag. Moreover, a Locality-aware Attention Net-
work (LA-Net) is constructed to capture global correlations
and re-calibrate the location preference across snippets, fol-
lowed by a multilayer perceptron with causal convolution to
obtain anomaly scores. Experimental results show that our
method achieves significant improvements on two challeng-
ing benchmarks, i.e., UCF-Crime and XD-Violence.

Index Terms— Video anomaly detection, weak supervi-
sion, multiple instance learning, temporal dynamics learning

1. INTRODUCTION

In recent years, the popularity of surveillance equipment has
played an important role in preventing criminal behavior and
maintaining public security. Relying on manual efforts to
monitor these videos can no longer meet the urgent practi-
cal needs. Therefore, autonomous anomaly detection has re-
ceived high attention due to its wide range of promising appli-
cations, including violence detection, traffic monitoring, con-
tent assessment, etc.

Given that anomalies are relatively scarce in real-life oc-
casions, most previous work focuses on unsupervised algo-
rithms [1–4], which learn the frequently occurring events as
normal using one-class classifiers. Anomalies are then iden-
tified as outliers according to their departure from the learned
representations of the normal class [5–8]. However, it is in-
feasible to collect all kinds of normal scenarios in real cases,

Fig. 1. Temporal consistency of feature dynamics and score
dynamics. The peak of score dynamics caused by feature dy-
namics generally indicates a sharp difference in the current
frame, i.e., a sudden intrusion, which further suggests a po-
tential abnormal event.

and there is a huge intraclass diversity among normal classes,
which may lead to incorrect detection of emerging normal cat-
egories.

Another widely used paradigm for anomaly detection is
weakly supervised learning [9–11]. In this case, all events in
a normal video are marked as normal while those in abnormal
videos are treated as anomalous, even if some events are ac-
tually normal. Such methods reduce the cost of annotations,
but these noisy labels present a new challenge for anomaly de-
tection. Sultani et al. [9] propose a multiple instance learning
approach to detect anomalies, where each video is regarded as
a bag consisting of consecutive snippets. Anomaly videos are
treated as positive bags, and normal ones are seen as negative
bags. A multiple ranking loss with two constraints is intro-
duced to distinguish positive and negative bags. In [12], Wan
et al. construct a center regression loss to smooth anomaly
scores while aggregating the activation of normal samples.
Wu et al. [13] develop an HL-Net to capture both long-range
dependencies and local distance relations with auxiliary au-
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dio information. A MIST framework is built in [14] to gener-
ate pseudo labels for anomalous samples and employ a self-
guided attention module to encode anomalous regions.

However, the above methods specialize in the discrimina-
tion of the snippets themselves without delving into the vari-
ation of adjacent snippets, which we call temporal dynamics.
We observe that most anomalies typically occur at locations
where the temporal dynamics changes dramatically, and such
changes include both feature dynamics and score dynamics.
As shown in Fig. 1, if abnormal behavior suddenly appears
in the current frame, its corresponding feature dynamics usu-
ally change sharply, further leading to a large difference in
the anomaly scores. The score dynamics in the positive bag
should be greater than that in the negative bag, and the two
types of temporal dynamics are shown to be causally consis-
tent over the temporal dimension.

To address the above issues, we propose a novel Dis-
criminative Dynamics Learning (DDL) method including two
loss functions, of which the dynamics ranking loss captures
the variation magnitude of anomalies by enlarging the accu-
mulated score dynamics between positive and negative bags
while the dynamics alignment loss achieves implicit order-
ing by aligning feature dynamics with score dynamics over
the temporal dimension. Besides, a Locality-aware Attention
Network (LA-Net) is built to model the long-range dependen-
cies and re-calibrate the locality preference of adjacent snip-
pets. Extensive experiments on two challenging benchmark
demonstrate the superiority of our proposed framework over
the current state-of-the-art methods.

2. PROPOSED METHOD

2.1. Formulation

In this paper, we consider video anomaly detection as a mul-
tiple instance learning task under weak supervision. Specifi-
cally, a video snippet bag X = {xi}Ti=1 and its correspond-
ing video-level label y ∈ {0, 1} are given, where y = 0
indicates that the current video is normal otherwise y = 1
means that there exists anomalies in the video. In the test
stage, the predicted anomaly score of the video is expressed as
S = {sj}Tj=1, where sj is the anomaly score of the jth snip-
pet. The goal of anomaly detection is to determine whether
the video contains anomalies based on the predicted anomaly
score while pinpointing the interval.

The overall structure of our method is shown in Fig. 2(a).
Formally, a long untrimmed video is first divided into non-
overlapping snippets through a sliding window of 16 frames.
Then, we use a pre-trained I3D network [15] to extract snippet
features and concatenate them over the temporal dimension
to obtain video feature X ∈ RT×D, where T is the number
of snippets and D is the feature dimension. Subsequently,
the LA-Net is used to model the global dependencies and re-
calibrate the local preference. The calibrated feature X̃ is then

fed into a Multilayer Perceptron (MLP) to capture robust snip-
pet representationXF , followed by a causal convolution layer
to obtain the anomaly score S. A Multiple Instance Learning
(MIL) loss is used to monitor the discrimination of the snip-
pets. The robust representation and the anomaly scores are
further utilized in DDL for auxiliary optimization.

2.2. Locality-aware Attention Network

The Locality-aware Attention Network (LA-Net) aims to
model the long-range dependencies across snippets while re-
calibrate the contextual relations of local distance, as shown
in Fig. 2(b). Following the self-attention mechanism [16], we
construct the global attention map as

Aij =
exp{Rk(xi, xj)}∑T

n=1 exp{Rk(xi, xn)}
, (1)

where Rk = φ(xi)
Tψ(xj) is a multi-head kernel function

to capture diversity semantic patterns, φ(·) and ψ(·) are two
linear functions applied on input snippets, and k is the head
numbers.

The generated global attention map develops the long-
distance relation across snippets but ignores the inherent loca-
tion preference of the video sequence. Thus, a Gaussian-like
location prior is introduced to re-calibrate the local contextual
correlations, which can be expressed as

Gij = exp(−|i− j|
2

2σ
), (2)

Ã = A+ G, (3)

where i and j are the relative positions of the snippets, and σ
is a hyperparamter controlling the deviation of the center lo-
cation. Generally, a higher Gij indicates a higher prior prob-
ability of the ith snippet to the jth snippet. By adding G as
a bias term to the global attention map, the representation of
the current snippet can be explicitly enhanced while suppress-
ing the interference of long-distance. Correspondingly, our
Locality-aware Attention Network is formulated as

X̃ = Norm(stack(ÃXWk)Wh +X), (4)

where Wk ∈ RD×Dh
k and Wh ∈ RDh×D are two linear pro-

jection layers, and Norm(·) denotes the layer normalization.

2.3. Multiple Instance Learning

Subsequently, a two-layered MLP FΘ with GELU activation
and dropout operation is followed to obtain robust snippet
representation XF , as shown in Fig. 2(c). To acquire reliable
anomaly scores, we use a 1 × 1 causal convolution layer to
capture historical observations. The process is expressed as

S = σ(WFΘ(X̃) + b), (5)



Fig. 2. Overview of the proposed video anomaly detection framework. It comprises a Locality-aware Attention Network
(LA-Net), a Multilayer Perceptron (MLP) and Discriminative Dynamics Learning (DDL).

where W is a 1× 1 convolution with kernel size K and b is a
bias term. σ(·) denotes a sigmoid function and S ∈ R1×T is
the temporal anomaly scores of the video bag.

Following [12,13,17], we use the k-max approach to cal-
culate multiple instance learning (MIL) loss. Specifically,
if the video is abnormal, the average of the top-k predic-
tion results in S is used as the video anomaly score, where
k = b T16 + 1c. If the video is normal then the highest pre-
diction score is selected, i.e., k = 1. Accordingly, our MIL-
based loss function is formulated as

LMIL =
1

N

N∑
i=1

−yilog(pi), (6)

where {pi}Ni=1 is the video anomaly score and {yi}Ni=1 is the
binary video-level ground truth.

2.4. Discriminative Dynamics Learning

Since the anomaly score in the negative bag is usually close
to the positive one at the early stage of training, direct score
ranking patterns [9, 10, 18] are likely to produce incorrect de-
cision boundaries, which may lead to further deviations from
the ground truth. To alleviate this problem, we design a dy-
namics ranking loss that amplifies the magnitude of abnormal
score changes while suppressing score fluctuations.

Specifically, the anomaly score of a video bag is denoted
as S = {s1, s2, . . . , st} and its corresponding score dynamics
is expressed as ∆S = {δs1, δs2, . . . , δst−1}, where δst = |st −
st+1|. Then, we use the top-k dynamics in the bag to calculate
the accumulation of score dynamics, which is expressed as

E∆S =
1

k

k∑
t=1

| δst |2, (7)

where k = b T16 +1c if the video is abnormal otherwise k = 1.
Considering that the dynamics accumulation of a positive bag

should be remarkably larger than that of a negative bag, the
dynamics ranking (DR) loss is naturally formulated as

LDR = max(0, ζ − Ea∆S + En∆S), (8)

where Ea∆S and En∆S are dynamics accumulation of positive
and negative bags, respectively, and ζ is a margin hyperpa-
rameter. This loss function enlarges the dynamics gap be-
tween positive and negative bags, further leading to a sup-
pression of dynamics accumulation in the negative bag while
increasing that of the positive bag.

Besides, snippets at abnormal boundaries are more vari-
able, resulting in a sharp jittering at the junction. This jit-
tering is reflected in the change of anomaly scores after for-
ward discrimination, that is, the score dynamics and fea-
ture dynamics have a causal consistency over the temporal
dimension. To this end, we introduce a dynamics align-
ment strategy to model this tendency. Given the robust snip-
pet representation after two-layered MLP denoted as XF =
{xF1 , xF2 , . . . , xFt }, its corresponding feature dynamics can be
expressed as ∆X = {δf1 , δ

f
2 , . . . , δ

f
t−1}, in which the δft is

calculated as

δft = 1−
xFt x

F
t+1∥∥xFt ∥∥∥∥xFt+1

∥∥ , (9)

Considering that the feature dynamics and the score dy-
namics are in two different semantic spaces, we use Kullback-
Leibler (KL) divergence rather than mean square error to
learn this property. Thus, our dynamics alignment (DA) loss
is formulated as follows:

LDA =
1

N × (T − 1)

N∑
i=1

(

T−1∑
t=1

−δst log(δft + ε))i, (10)

where {δst }T−1
t=1 and {δft }T−1

t=1 are score dynamics and fea-
ture dynamics in the same video bag, respectively, and ε is a



very small scalar to prevent feature dynamics from being zero.
This loss makes the feature dynamics distribution consistent
with the score dynamics over temporal dimension, while im-
plicitly increasing the discriminability of normal and abnor-
mal snippets within the video bag.

Combined with the MIL-based loss, the overall objective
function of our model is formulated as

L = LMIL + λ1LDR + λ2LDA, (11)

where λ1 and λ2 are pre-defined weights for dynamics rank-
ing loss and dynamics alignment loss, respectively.

3. EXPERIMENTS

In this section, we evaluate our approach on two benchmark
datasets (UCF-Crime and XD-Violence). First, we present the
two datasets and their corresponding evaluation metrics in de-
tail. The implementation details of the experiments are then
given. Finally, we compare our results with several state-of-
the-art methods, a series of quantitative and qualitative exper-
imental results elucidating the effectiveness of our method.

3.1. Datasets

UCF-Crime [9] is a large-scale dataset collected from
surveillance with a total duration of 128 hours, containing
1900 long untrimmed videos. The dataset covers 13 types of
anomalies in 1610 training videos and 290 test videos, where
the training videos have only video-level labels while the test
provides frame-level annotations. Following [9, 12, 14, 19],
we use the area under the frame-level ROC curve (AUC) to
evaluate the performance of the proposed method.
XD-Violence [13] is a newly released anomaly detection
dataset that covers 6 types of violence events. The dataset
consists of 4754 untrimmed videos including video-level la-
beled training set and frame-level labeled test set, with a total
duration of 217 hours. Unlike UCF-Crime, the dataset is col-
lected from various scenes including movies, sports, surveil-
lance footage, CCTV, etc. As in [13, 20], we use frame-level
average precision (AP) to evaluate the proposed method.

3.2. Implementation Details

The head number k of LA-Net is set to 4, and the hidden di-
mension Dh for UCF-Crime is set to 512, which is adopted
as 128 for XD-Violence. The location prior value σ is em-
pirically set to 16 and 6 for UCF-Crime and XD-Violence,
respectively. The two Conv1D layers in MLP have 512 nodes
and 128 nodes, regularized by dropout with a probability of
0.1 between each layer. The kernel sizes of the 1 × 1 causal
convolution are set to 10 and 5 for UCF-Crime and XD-
violence, respectively. Limited by computational resources,

we use a uniform sampling strategy as in [13, 18] to obtain a
fixed length of 200 snippets in the training phase.

For a balanced purpose, the weights λ1 for UCF-Crime
and XD-violence are set to 1 and 2, respectively, while λ2 is
adopted as 1. The positive scalar ε is set to 10−7, and the
margin ζ is set to 0. We use the Adam optimizer with a 128
mini-batch size to train the model for 50 epochs, and the ini-
tial learning rate is set to 5× 10−4 with a cosine decay strat-
egy. All experiments are conducted on an NVIDIA Tesla A40
GPU based on PyTorch.

3.3. Quantitative Comparison with existing Methods

We first compare our approach against several state-of-the-
art methods under weak supervision. Table 1 presents the
frame-level AUC values on the UCF-Crime dataset. Notably,
our method surpasses the previous state-of-the-art MIL-based
methods, Sultani et al. [9] by 7.2%, Zhong et al. [11] by 3%,
Wu et al. [13] by 2.68%. Even when compared to the latest
RTFM [20], our result is also ahead by 0.82%.

Table 2 shows the frame-level AP values on the XD-
Violence dataset. Remarkably, our approach substantially
outperforms other methods, including both unsupervised and
weakly supervised methods. Our result is 5.31% higher than
Wu et al. [13] and exceeds RTFM [20] by 2.91%, reaching
a new state-of-the-art frame-level AP of 80.72%. Moreover,
our method is the only one exceeding 80% in terms of AP on
XD-Violence with only RGB features. The superior results
on both datasets demonstrate the effectiveness and capacity
of the proposed method.

Compared with previous approaches, our LA-Net intro-
duces explicit location prior to model local contextual re-
lations, which suppresses long-distance redundancies and
strengthens the local representation of adjacent snippets.
Moreover, the proposed DDL method effectively captures the
temporal dynamics of the video bag. The accumulation of
score dynamics is ranked to increase the discriminability be-
tween positive and negative bags, while the feature dynamics
are aligned with score dynamics within the bag to achieve
causal consistency over the temporal dimension.

Table 1. Frame-level AUC performance on UCF-Crime.
Method Feature AUC(%)

Sultani et al. [9] C3D RGB 75.41
Zhang et al. [10] C3D RGB 78.66

Motion-Aware [21] PWC Flow 79.00
Zhong et al. [11] TSN RGB 82.12

Wu et al. [13] I3D RGB 82.44
MS-BSAD [18] I3D RGB 83.53

RTFM [20] I3D RGB 84.30
DDL (Ours) I3D RGB 85.12



Table 2. Frame-level AP performance on XD-Violence.
Method Feature AP(%)

SVM baseline - 50.78
OCSVM [22] - 27.25

Hasan et al. [23] - 30.77
Sultani et al. [9] C3D RGB 73.20
Wu et al. [13] I3D RGB 75.41
RTFM [20] I3D RGB 77.81

DDL (Ours) I3D RGB 80.72

3.4. Ablation Study

The location prior is a critical component of our LA-Net. Ta-
ble 3 shows that the introduction of the prior improves the
performance of the model on both datasets, with a 0.61%
improvement on UCF-Crime and a 0.77% increase on XD-
Violence. This indicates that video sequences have a certain
location preference, which can be enhanced by adding a spe-
cific location prior. Meanwhile, the location prior can further
suppresses the long-distance noise information and improve
the robustness of the current snippet, which has a positive im-
pact on modeling adjacent temporal dynamics.

We then compare the effect of different dynamics loss
functions, as shown in Table 4. Both LDR and LDA loss
have distinct improvements on the basis of LMIL. Notably,
the effect of LDA is better than that of LDR, which illustrates
the importance of maintaining causal consistency of temporal
dynamics within the bag. Moreover, the synergistic effect of
both is demonstrated when introduced simultaneously, which
are shown to be complementary with the MIL-based loss. In
addition, the feature dynamics produce an implicit ordering
in the process of alignment with the score dynamics, which
further enhances the discriminability of the video snippets.

Table 3. Ablation study of location prior.

Model UCF-Crime XD-Violence
AUC(%) AP(%)

LA-Net w/o prior G 83.06 78.41
LA-Net w/ prior G 83.67 79.18

Table 4. Ablation study of the DDL method.

LMIL LDR LDA
UCF-Crime XD-Violence

AUC(%) AP(%)
X 83.67 79.18
X X 84.04 80.15
X X 84.33 80.23
X X X 85.12 80.72

(a) LMIL (b) LMIL+LDR

(c) LMIL+LDA (d) LMIL+LDR+LDA

Fig. 3. Visualization results of our DDL method on UCF-
Crime. Orange windows indicate that the interval contains an
abnormal event.

3.5. Qualitative Analysis

Finally, we visualize the anomaly detection results before and
after discriminative dynamics learning. As shown in Fig. 3(a),
the anomaly score predicted with MIL-based loss fluctuates
widely before and after the ground truth boundary. With
dynamics ranking loss, the anomaly score roughly increases
over temporal dimension, as shown in Fig. 3(b), which is due
to the increase of score dynamics within the positive bag dur-
ing the pairwise ranking process. Besides, it smoothes out
the anomaly score within the ground truth interval. And after
the temporal dynamics alignment, the peaks of the anomaly
score in Fig. 3(c) is suppressed and the overall prediction
is in a lower range, thanks to the alignment implicitly im-
proving the discriminability of the snippets within the bag.
When both losses are added to the optimization, as Fig. 3(d)
shows, the predicted interval overlaps with the ground truth,
and the anomaly score outside the boundary is significantly
suppressed, which further improves the capacity to locate the
anomaly intervals.

4. CONCLUSION

In this paper, we propose a Discriminative Dynamics Learn-
ing (DDL) method containing dynamics ranking loss and dy-
namics alignment loss for weakly supervised video anomaly
detection. Dynamics ranking loss boosts the response magni-
tude of anomalous events by enlarging the anomaly score dy-
namics between positive and negative bags. Dynamics align-
ment loss explicitly aligns the two types of temporal dynamics
within the video bag, thus smoothing out the dynamic vari-
ation of the inner bag snippets. In addition, we construct
a prior-based Locality-aware Attention Network (LA-Net),



which captures the long-range temporal dependencies across
snippets while recalibrating the contextual correlations within
the neighborhood. Experimental results on two large anomaly
video datasets demonstrate the effectiveness of our approach.
In the future, online detection and multimodal information
will be further explored.
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