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ABSTRACT

Scene text removal (STR) is a challenging task due to the

complex text fonts, colors, sizes, and background textures in

scene images. However, most previous methods learn both

text location and background inpainting implicitly within a

single network, which weakens the text localization mecha-

nism and makes a lossy background. To tackle these prob-

lems, we propose a simple Progressive Segmentation-guided

Scene Text Removal Network(PSSTRNet) to remove the text

in the image iteratively. It contains two decoder branches,

a text segmentation branch, and a text removal branch, with

a shared encoder. The text segmentation branch generates

text mask maps as the guidance for the regional removal

branch. In each iteration, the original image, previous text

removal result, and text mask are input to the network to ex-

tract the rest part of the text segments and cleaner text re-

moval result. To get a more accurate text mask map, an

update module is developed to merge the mask map in the

current and previous stages. The final text removal result

is obtained by adaptive fusion of results from all previous

stages. A sufficient number of experiments and ablation

studies conducted on the real and synthetic public datasets

demonstrate our proposed method achieves state-of-the-art

performance. The source code of our work is available at:

https://github.com/GuangtaoLyu/PSSTRNet.

Index Terms— Scene text removal, segmentation, image

inpainting, progressive process

1. INTRODUCTION

Scene text contains quite a lot of sensitive and private in-

formation. To prevent the private information in images from

being used illegally, scene text removal(STR) is proposed to

address this issue.

The well-known Pix2Pix[1] which used patch-GAN for

image translation can be applied to the STR task. So, Scene

Text Eraser(STE)[2] adopted its idea and used a single-scaled

sliding window to remove the text in each patch indepen-

dently. This method processed STR locally without consid-

ering the global context information. EnsNet[3] developed
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several designed loss functions and a lateral connection to

further enhance the STR performance. However, these sin-

gle stage-based STR methods may modify non-text pixels

in images and result in excessive or inadequate inpainting

results. MTRNet[4] employed conditional GAN and used

the text segmentation results for inpainting region guidance.

EraseNet[5] used a text detection branch to locate text regions

and remove text from coarse to fine. However, the STR per-

formance of those methods relay heavily on only one-shot text

segmentation results. PERT[6] performed multi-stage text

erasure in a progressive way[7] with explicit text region guid-

ance. However, it could not get more accurate text regions in

iteration stages, and the network was difficult to train.

In this paper, we propose a Progressive Segmentation-

guided Scene Text Removal Network (PSSTRNet) with very

low computation costs. It is built on a very simple and small

network, which has one feature-sharing encoder and two de-

coders to generate text segmentation and removal results in-

dividually. However, we find that single forward computing

generates very coarse STR results. So, we input the text re-

moval image to the network again to yield refined results pro-

gressively. A Mask Update module is added in the text seg-

mentation branch for generating more precise text segmen-

tation results. Additionally, we design an adaptive fusion

method to make full use of the results of different iterations.

We conducted sufficient experiments on two datasets:

SCUT-EnsText[5] and SCUT-syn[3]. Both the qualitative and

quantitative results indicate that PSSTRNet can outperform

previous state-of-the-art STR methods.

We summarize the contributions of this work as follows:

• We propose a novel STR network termed PSSTRNet.

It decomposes the challenging STR task into two sim-

ple subtasks and processes text segmentation and back-

ground inpainting progressively.

• We design a Mask Update module and an adaptive fu-

sion strategy to make full use of results from different

iterations.

• Our proposed PSSTRNet is light-weighted and

achieves SOTA quantitative and qualitative results on

public synthetic and real scene datasets.

http://arxiv.org/abs/2306.07842v1
https://github.com/GuangtaoLyu/PSSTRNet


Fig. 1. The overall architecture of PSSTRNet. TSB is the text segmentation branch that outputs a mask with 1

4
size of input

text image Iin. The mask is further corrected in the Mask-Update block. TRB is the text removal branch, and it outputs the

temporary text removed result Itemp. Then, Itemp and Iin are merged in the Merge block to get correct text removed result Iiout
in current iteration. The final result is the adaptive fusion of results from all iterations.

2. PROPOSED METHOD

2.1. Overall pipeline

As shown in Fig.1, the pipeline of our model consists of

two branches: the text segmentation branch and the text re-

moval branch. They share a lightweight encoder with 5 resid-

ual convolutional layers. PSSTRNet implements text segmen-

tation and erasing process on the previous results iteratively,

and merges all the results in each iteration as final output

adaptively.

2.2. Text Segmentation Branch

The text segmentation branch contains a Text Region Po-

sitioning module (i.e., TRPM), an upsampling process, and

a Mask Updating module(i.e. MUM). To reduce the compu-

tational cost, TRPM is designed to locate the unremoved text

regions in text removal images from the output of the previous

iteration. It outputs the expansion text mask with 1/4 size of

the original image. Then, this mask goes through the upsam-

pling process by two bilinear interpolations to get the mask

owning the same size as the origin image. The size recovered

expansion text mask is denoted as M i
temp (M i

temp ∈ [0, 1],
1 for text region and 0 for non-text region). With the input

of the previous text mask M i−1 and M i
temp, MUM updates

M i−1 and outputs the final text mask map(M i) in ith itera-

tion. It includes a Merging block and a Correcting block. The

Merging block merges M i
temp and M i−1 through Eq.(1) to

get a more complete text mask map M i
comp.

M i
comp = max(M i

temp,M
i−1) (1)

In Correcting block[8], M i
comp is first multiplied with the ori-

gin text image Iin, to generate the text-attentive features It
and the background-attentive features Ib, respectively. Then,

we feed these two types of features into two parallel context

exploration (CE) blocks to perform contextual reasoning for

discovering the false-positive distractions Ifp and the false-

negative distractions Ifn, respectively. The CE block consists

of four dilation convolutions with different dilation rates of 1,

2, 3, 5. The outputs of all the four dilation convolutions are

concatenated and then fused via a 1×1 convolution. Using

such a design, the CE block gets the capability of exploring

abundant context over a wide range of scales and thus can be

used for context reasoning.

After context reasoning, we can correct the mask in the

following way:

Iin = NR(Iin − αIfp),

Iin = NR(Iin + βIfn)),

M i = σ(Iin).

(2)

where α and β are the learnable parameters that are initialized

as 1. NR is batch normalization and ReLU operation. σ is the

sigmoid function.

We use the element-wise subtraction operation to restrain

the ambiguous backgrounds (i.e., false-positive distractions)



and the element-wise addition operation to enhance the miss-

ing text regions (i.e., false-negative distractions). Then, we

apply a sigmoid function to get a more precise text mask map

M i.

2.3. Text Removal Branch

Similarly, the text removal branch and the shared encoder

are built on a simplified residual U-Net structure. The encoder

has five convolution layers with kernel size k×k (k=7,5,3,3,3

in each layer in order). Each layer contains a batch normal-

ization, a ReLU, and a residual block after convolution oper-

ation. With inputting the previous result Ii−1

out in ith iteration,

the output is defined as Iiout.

The goal of STR is to remove the text areas while keep-

ing the background areas unchanged. So, we merge the text

regions of Iiout, and non-text regions of Iin as the final output

Iiout of ith iteration as in Eq.(3).

Iiout = Iiin ∗ (1−M i) + Iout ∗M
i, (3)

Where Iin is the original text image.

Finally, after a specific number of iterations, the text re-

gions can be extracted more accurately and the text erased

cleaner. However, since the process of mapping RGB im-

ages to the latent features and mapping them back to the RGB

space occurs in each iteration, it results in information distor-

tion in every recurrence. To solve these problems, we merge

the intermediate iteration outputs in an adaptive merging way

as formulated in Eq.(4). The final output is Iout.

M
′

=

∑n

1
M i

n

I
′

out =

∑n

1
Iiout ∗M

i

n

I
′

out = (I
′

out + ǫ)/(M
′

+ ǫ)

Iout = I
′

in ∗ (1−M
′

) + Iout ∗M
′

(4)

where ǫ is a smoothing factor and is set to be 1e−8

2.4. Loss Functions

We introduce several loss functions for PSSTRNet learn-

ing, including region content loss Lrc, perceptual loss Lp,

style loss Ls and segmentation loss Lseg . Given the origin

text image Iin, text-removed ground truth (gt) Igt and the bi-

nary text gt mask Mgt, the text removal output of PSSTRNet

in each iteration ith is denoted as Iiout and text segmentation

result as M i.

Region content Loss. We use L1 loss as the region con-

tent loss for text and non-text region reconstruction:

Lrc = γ1 ∗
∑

i

||Mgt ⊙ (Iiout − Igt)||1+

γ2 ∗
∑

i

||(1−Mgt)⊙ (Iiout − Igt)||1.
(5)

where γ1γ2 is set to be 50,10.

Perceptual Loss. We employ the perceptual loss[9] in

Eq.(6). Φi is the activation map of the i-th layer of the VGG-

16 backbone. Hn, Wn, and Cn denotes the height, width and

channel numbers of feature maps outputted from nth layer of

VGG-16.

Lp =
∑

i

∑

n

1

HnWnCn

||Φi(I
i
out)− Φi(Igt)||1 (6)

Style Loss. We compute the style loss [10] as Eq.(7),

where Gn is the Gram matrix constructed from the selected

activation maps.

Ls =
∑

i

∑

n

1

HnWnCn

||Gn(I
i
out)T ·

Gn(I
i
out)−Gn(Igt)

T ·Gn(Igt)||1

(7)

Segmentation Loss. For learning of text segmentation

module, Lseg in Eq.8 is formulated as dice loss [11].

Lseg =
∑

i

1−
2
∑

x,y(M
i(x, y)×Mgt(x, y))∑

x,y(M
i(x, y)2 ×Mgt(x, y))

∗ γi (8)

where γi is set to be 1,2,3. (x, y) denotes each pixel coordi-

nate in the image.

In Summary, the total loss for training PSSTRNet is the

weighted combination of all the above loss functions.

Ltotal = 200 ∗ Ls + 0.1 ∗ Lp + Lrc + Lseg (9)

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Evaluation Metrics

SCUT-Syn. This synthetic dataset only includes English

text instances, including 8,000 images for training and 800

images for testing. More details can be found in [12].

SCUT-EnsText. It contains 2,749 training images and

813 test images which are collected in real scenes. More de-

scriptions refer to [5].

Evaluation Metrics: For detecting text on the output im-

ages, we employ a text detector CRAFT[13] to calculate re-

call and F-score. The lower, the better. Six alternative metrics

are adopted for measurement the equality of the output im-

ages, i.e, PSNR, MSE, MSSIM, AGE, pEPs, and pCEPS[3].

A higher MSSIM and PSNR, and a lower AGE, pEPs, pCEPS,

and MSE indicate better results.



Fig. 2. Comparison results with other SOTA methods on SCUT-EnsText and SCUT-Syn datasets.

Fig. 3. The results of different iterations on SCUT-EnsText and SCUT-Syn datasets. Iti is the Mtemp of ith iteration. Final

represents the final STR results and final fused mask.



Fig. 4. The results of ablation study on SCUT-EnsText dataset.

3.2. Implementation Details

We train PSSTRNet on the training set of SCUT-EnsText

and SCUT-Syn and evaluate them on their testing sets, respec-

tively. The masks are generated by subtraction from the input

images and the labels. We use dilated process for covering

as much of the text area as possible. We follow [5] to ap-

ply data augmentation during the training stage. The model is

optimized by adam optimizer. Experimentally, we set the iter-

ation number to be 3. The learning rate is set to be 0.001. The

learning rate decayed by 50% every 10 epochs. The PSSTR-

Net is trained by a single NVIDIA GPU with a batch size of

6 and input image size of 256×256.

Table 1. Ablation study results of different modules effect on

SCUT-Text.

Iterations PSNR MSSIM MSE AGE pEPs pCEPs

1It. 32.97 96.41 0.0017 2.0742 0.0180 0.0105

2It. 34.09 96.40 0.0014 1.7788 0.0144 0.0077

3It. 32.44 95.56 0.0028 2.4506 0.0209 0.0125

4It. 32.15 95.69 0.0020 2.1221 0.0184 0.0100

2It.+AF 34.13 96.42 0.0014 1.7388 0.0142 0.0075

3It.+AF 34.65 96.75 0.0014 1.7161 0.0135 0.0074

4It.+AF 33.02 96.46 0.0017 2.0084 0.0177 0.0098

3.3. Ablation Study

In this section, we study the effect of the number of it-

erations and the adaptive fusion method on the SCUT-Text

dataset. In total, we conduct seven experiments by designing

the network with 1) one iteration (1It.), 2) two iterations (2It.),

3) three iterations (3It.), 4) four iterations (4It.), 5) two iter-

ations with adaptive fusion(2It.+AF), 6) three iterations with

adaptive fusion(3It.+AF), 7) four iterations with adaptive fu-

sion(4It.+AF). All experiments use the same training and test

settings.

Qualitative and quantitative results are illustrated in Fig.4

and table1, respectively. We can see that the network gener-

ates the best STR results with two iterations if only consid-

ering iteration times (i.e., comparing results in the first four

experiments). This arises from that the information is lost in

increasing iterations using encoder-decoder architecture. By

adding an adaptive fusion strategy, the model with three itera-

tions (3It.+AF) gets the best results. It is because adaptive fu-

sion utilizes previous removal results and could also get more

erased regions on text when increasing iterations. As shown

in (b)(c)(d) of Fig.3, our method gets a roughly segmentation

result at 1st iteration and extracts the rest part of the text seg-

ments, and cleaner text removal results in the following iter-

ations. However, We find that the style of intermediate result

is distorted when increasing the iterative times to 4 or larger.

The decreasing qualitative results of 7th experiment 4It.+AF

in table1 reflect this point.

3.4. Comparison with State-of-the-Art Approaches

We compare our proposed PSSTRNet with five state-of-

the-art methods: Pix2pix[1], STE[2], EnsNet[3], EraseNet[5]

and PERT [6], on both SCUT-EnsText and SCUT-Syn

datasets. We retrain all the models with the setting as official

reported, but input the image of size 256×256. The source

code of PERT is not released currently, so we do not show its

qualitative results.

Qualitative Comparison. As shown in the 1st row of

Fig.2, our model can preserve more information in non-text

areas while erasing text regions cleaner. Compared with other

state-of-the-art methods, the results of our proposed PSSTR-

Net have significantly fewer color discrepancies and blurri-

ness, especially in 1st, 2nd, and 4th lines. It demonstrates

our model could generate more semantically elegant results

on text removal and background inpainting results.

Quantitative Comparison. As shown in Table 2 and 3,

our method produces the best scores on most text removal



Table 2. Comparison with SOTA methods and proposed method on SCUT-EnsText. R: Recall; P: Precision; F: F-score.

Method
Image-Eval Detection-Eval(%)

PSNR ↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ P↓ R↓ F↓
Original Images - - - - - - 79.8 69.7 74.4

Pix2pix 26.75 88.93 0.0033 5.842 0.048 0.0172 71.3 36.5 48.3

Scene Text Eraser 20.60 84.11 0.0233 14.4795 0.1304 0.0868 52.3 14.1 22.2

EnsNet 29.54 92.74 0.0024 4.1600 0.2121 0.0544 68.7 32.8 44.4

EraseNet 32.30 95.42 0.0015 3.0174 0.0160 0.0090 53.2 4.6 8.5

PERT(official) 33.25 96.95 0.0014 2.1833 0.0136 0.0088 52.7 2.9 5.4

PSSTRNet(Ours) 34.65 96.75 0.0014 1.7161 0.0135 0.0074 47.7 5.1 9.3

Table 3. Comparison with SOTA methods and proposed method on SCUT-Syn.

Method PSNR ↑ MSSIM↑ MSE↓ AGE↓ pEPs↓ pCEPs↓ Parameters↓ Inference Time↓
Pix2pix 25.16 87.63 0.0038 6.8725 0.0664 0.0300 54.4M 2.96ms

Scene Text Eraser 24.02 89.49 0.0123 10.0018 0.0728 0.0464 89.16M 18.45ms

EnsNet 37.36 96.44 0.0021 1.73 0.0276 0.0080 12.4M 5.1 ms

EraseNet 38.32 97.67 0.0002 1.5982 0.0048 0.0004 19.74M 8.67ms

PERT(official) 39.40 97.87 0.0002 1.4149 0.0045 0.0006 14.00M -

PSSTRNet(Ours) 39.25 98.15 0.0002 1.2035 0.0043 0.0008 4.88M 14.9ms

evaluation protocols for both SCUT-EnsText and SCUT-Syn

datasets. Furthermore, our model has the minimum number of

parameters, which only has about one-third of the parameters

of PERT that also implements STR in a progressive way.

4. LIMITATION

As shown in the 3rd row of Fig.2 and Fig.4, there are still

some texts that are not be removed. Besides, our model’s in-

ference time is longer than others since we apply iterative pro-

cesses. Hence, there is still some improvement space of our

method in terms of text detection and inference time. Com-

bining our work with a better scene text detector may lead to

better results.

5. CONCLUSION

In this paper, we present a light-weighted progressive net-

work PSSTRNet for scene text removal in images. It is based

on an encoder-decoder structure with a shared encoder and

two decoder branches for progressive text segmentation and

text removal respectively. A Mask Updated module is devel-

oped to gradually acquire more and more complete and accu-

rate text masks for better guidance. Instead of using the output

from the final iteration, we aggregate the results in each iter-

ation by adaptive fusion. Experimental results indicate that

the proposed method achieves state-of-the-art performance on

both synthetic and real-world datasets while maintaining low

complexity.
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