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ABSTRACT

The Alberta Infant Motor Scale (AIMS) is a well-known
assessment scheme that evaluates the gross motor develop-
ment of infants by recording the number of specific poses
achieved. With the aid of the image-based pose recognition
model, the AIMS evaluation procedure can be shortened and
automated, providing early diagnosis or indicator of potential
developmental disorder. Due to limited public infant-related
datasets, many works use the SMIL-based method to gener-
ate synthetic infant images for training. However, this domain
mismatch between real and synthetic training samples often
leads to performance degradation during inference. In this
paper, we present a CNN-based model which takes any in-
fant image as input and predicts the coarse and fine-level pose
labels. The model consists of an image branch and a pose
branch, which respectively generates the coarse-level logits
facilitated by the unsupervised domain adaptation and the 3D
keypoints using the HRNet with SMPLify optimization. Then
the outputs of these branches will be sent into the hierarchical
pose recognition module to estimate the fine-level pose labels.
We also collect and label a new AIMS dataset, which con-
tains 750 real and 4000 synthetic infants images with AIMS
pose labels. Our experimental results show that the proposed
method can significantly align the distribution of synthetic
and real-world datasets, thus achieving accurate performance
on fine-grained infant pose recognition.

Index Terms— Infant Pose Recognition, Infant Pose Es-
timation, Unsupervised Domain Adaptation

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a developmental disabil-
ity that can cause significant social, communication, and be-
havioral challenges. Recent medical research suggests that
early signs of ASDs may first manifest within the motor con-
trol system and present as a motor delay. According to the
studies [1, 2, 3], infants who have delays in acquiring motor
skills are at higher risk of developing ASD and may serve as
an early indicator of neuro-developmental disorder. To bet-
ter measure or quantify the level of motor development , Al-
berta Infants Motor Scale (AIMS) [4] is introduced as a scale

Fig. 1. Unsupervised domain adaptation can exploit the lo-
cal affinity to capture the fine-grained information and align
the distribution accordingly, which can significantly boost the
performance of systematic AIMS assessment of real infant
images using synthetic infant training data.
assessment procedure to evaluate and track infant motor mile-
stones based on counting the number of gross motor skills that
the target can achieve. However, traditional AIMS assessment
requires trained professionals to conduct, which are consid-
ered time-consuming and inefficient. Moreover, the collec-
tion of enough and diversified infant pose images for algorith-
mic development is challenging due to privacy concerns and
institutional Review Board (IRB) regulations. To overcome
these issues, a systematic AIMS assessment system, which
incorporates the deep learning based 3D infant pose estima-
tion trained by synthetic infant pose data and unsupervised
domain adaptation technologies, is proposed to show promis-
ing performance for effective AIMS assessment of real-world
infant in this paper.

Due to the difficulty in collecting and annotating such
fine-grained poses, many datasets collect long untrimmed se-
quences that lack several distinct poses. Moreover, real-
world infant-related data are extremely limited because of
privacy concerns and institutional Review Board (IRB) reg-
ulations, resulting in most related research on infants using
the synthetic datasets for model training. However, one of
the problems of training using synthetic data is the domain
shift between the synthetic data and real-world data, which
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often leads to performance degradation and poor generaliza-
tion ability of the trained model. One attempt to solve such
a problem is transferring a model learned on a labeled source
domain to an unlabeled target domain, known as Unsuper-
vised Domain Adaptation (UDA). Specifically, we have syn-
thetic infant images with pose labels as the source domain and
real-world infant images without labels as the target domain.
By using UDA, our final goal is to align the source and target
domains in the feature space for further applications.

Our contributions are in two-folds: (1) Present a new in-
fant pose dataset with both synthetic and real-world images
with fine-level annotation labels, that allow us to evaluate the
cross-dataset generalization ability of the model, and (2) In-
tegrate an unsupervised domain adaptation (UDA) algorithm
into the hierarchical pose recognition framework to enable
transfer learning across domains for better feature extractions
of the existing CNN framework.

The paper is organized in the following: We review some
related works to our research in Sec. 2. Then we describe our
AIMS infant pose dataset synthesizing process in Section 3.
In Sections 4 and 5, the methods and experimental results of
the infant pose recognition will be presented, followed by the
conclusion in Section 6.

2. RELATED WORKS

2.1. Human Pose Estimation & Recognition

Pose Estimation In general, 2D human pose estimation
methods can be classified into bottom-up and top-down ap-
proaches. Top-down approaches [5, 6, 7] first detect hu-
man bounding boxes and then perform human keypoint detec-
tion within every bounding box’s region. On the other hand,
bottom-up approaches [8, 9, 10] first detect all keypoints on
all humans in the image and then assign keypoints belonging
to the same person of their owner.

Most recent 3D human pose estimation works take 2D
skeletons as input. Bogo et al.[11] adopt the Skinned Multi-
Person Linear (SMPL) [12], a statistical body shape model,
as an initial human skeleton and optimize the skeleton by
minimizing the reprojection error to get the final 3D human
pose. Zhao et al.[13] adopt a Graph Convolutional Network
(GCN) to process the features of 2D joints as node features
to generate 3D joint predictions. Pavllo et al.[14] propose
the most well-known temporal-based 3D solutions, the Video-
Pose3D, which adopt 2D joints of hundreds of frames as in-
put to predict a single 3D skeleton. We take advantage of
Skinned Multi-Infant Linear (SMIL)[15], which is an infant
version of SMPL, to generate our synthetic dataset, resulting
in an image-based infant pose recognition task. SMPLify[11],
which minimizes the error between the 3D model joints and
detected 2D joints, is adopted for our 3D infant pose estima-
tion.
Pose Recognition Vision-based human pose recognition aims

to obtain posture and predict the corresponding action from
input images or video sequences. Most pose or action recog-
nition works are developed closely with pose estimation
by leveraging the skeleton-based approaches for prediction
[16, 17]. Current publicly available human pose or action
datasets are predominantly from scenes such as sports and
daily activities performed by adult humans [18, 19] which
differ dramatically from the infant motions in terms of achiev-
able poses.

2.2. Unsupervised Domain Adaptation

Various works have been targeting domain adaptation to over-
come the domain shift problems. Sener et al. [20] propose to
use clustering techniques and pseudo-labels to obtain discrim-
inative features. Taigman et al. [21] propose cross-domain
image translation methods. Ganin et al. [22] propose a repre-
sentative method of distribution matching involving training
a domain classifier using the intermediate features and gen-
erating the features that deceive the domain classifier. This
method utilizes the similar techniques used in generative ad-
versarial networks (GANs). The category classifier is trained
to predict the task-specific category labels. And the domain
classifier is trained to predict the domain of each input. The
two classifiers share feature extraction layers that are trained
to predict the label of source samples correctly and deceive
the domain classifier. Thus, the distributions of the interme-
diate features of the target and source samples are made sim-
ilar. However, an issue of unsupervised domain adaptation
by back-propagation is that the target features can be near a
task-specific classifier’s boundary, which will cause the tar-
get samples far from source ones (ambiguous features) to be
likely misclassified after alignment.

2.3. Infant Dataset

Privacy remains one of the issues for infant-related dataset
collection process. Therefore, the majority of the existing in-
fant datasets are synthetic images. Currently, there are only
limited infant-related datasets: MINI-RGBD [23], SyRIP
[24], and Zhou et al. [25]. MINI-RGBD mapped real infant
movements to the SMIL model, generating RGB and depth
video sequences with 2D and 3D joint coordinates. However,
these data are synthesized from infants under seven months
old and thus present simple poses with small changes over
samples. SyRIP is composed of two portions, real and syn-
thetic. The real part consists of 700 infant images collected
from public sources like Youtube and Google, while the syn-
thetic part consists of 1000 images rendered using the SMIL
model. The 2D joint coordinates are fully annotated in COCO
format [26] for these images, which is a huge contribution to-
ward the infant pose estimation research but lack labels for
the pose classification task. Zhou’s dataset contains 5500 syn-
thetic images with 11 classes selected from AIMS, but the in-



Table 1. The selected infant poses in AIMS [4] in our work
with 4 coarse-level and 12 fine-level labels.

Coarse-Level Fine-Level

Prone

Prone Lying
Forearm Support
Reciprocal Crawling
Four-Point Kneeing

Supine
Supine Lying
Hands to Knee/Feet
Rolling

Sitting
Sitting w/ Support
Sitting w/ Arm Support
Sitting w/o Support

Standing Four-Point Standing
Standing

sufficient corresponding real-world evaluation portion makes
it difficult to justify the model’s generalization ability.

3. AIMS DATASET

To provide an evaluation of the generalization ability of the
models, we need a dataset that includes pose labels of the
real-world infant image. We start from a small number of
real-world infant samples and use the SMIL-based model to
enlarge our real-world infant dataset with labeled synthetic
data.

3.1. Skinned Multi-Infant Linear (SMIL) Model

Skinned Multi-Person Linear Body (SMPL) [12] is a skinned
vertex-based model that is able to represent different human
body shapes and poses with the parameters learned from data.
Skinned Multi-Infant Linear body model (SMIL) [15] is a
derived version of the SMPL learned from the sequences
of freely moving infants in [23]. Some pose coefficients
θ ∈ R3×Nj and the shape coefficients β ∈ RNs serve as in-
put, and the output is a mesh consisting ofNv = 6890 vertices
with Nj = 24 joints defined in SMPL.

In order to obtain realistic pose and shape parameters for
infants, we take advantage of SMPLify [27] to better fit any
given infant image by minimizing the overall loss function:

L(θ, β) = LJ2D + Lθ + Lβ , (1)

where LJ2D denotes the distance between estimated 2D joints
and the 2D projection of the 3D joints. Lθ andLβ respectively
denotes the simple L2 prior for body pose and body shape.

3.2. Rendering

After fitting SMIL model for each infant instance in the im-
age, we can then render synthetic images using different tex-

ture of the infant model, different backgrounds, and reason-
able translation operations. The ground-truth 3D keypoint co-
ordinates X3d can be obtained directly from the fitted SMIL
model, where all 3D keypoints will be normalized with re-
spect to the distance from nose to pelvis to ensure the scaling
consistency.

Fig. 2. Sample images from our collected AIMS dataset. The
first row is from the real portion and the second row is the
synthetic portion.

As for 2D keypoint coordinates, we need to reproject the
3D keypoints in the world coordinates to the image coordi-
nates based on the camera parameters used to render each syn-
thetic sample. The ground-truth 2D keypoint coordinates x2d
can thus be obtained by:

x2d = K · [R|T] · X3d, (2)

where K and [R|T] are the pre-defined camera intrinsic and
extrinsic parameters.

We extend the real portion of the SyRIP dataset [24] by
annotating and categorizing the real infant portion into 12
selected fine-level gross motor poses, a very small portion
(≈ 5%) of samples are withdrawn due to the poses not falling
into any of defined fine-level poses. We randomly assign dif-
ferent camera parameters and remove those unnatural samples
after syntheses. In addition, we also collect 200 background
images from Google, and select 1000 scenes from INDOOR
dataset [28] under the labels like bedroom, children room, and
nursery, to mimic the real-world data and prevent overfitting
on the synthetic images.

In total, the entire synthetic portion consists of around
4000 samples, while the real portion consists of 750 samples
with ground-truth 2D keypoints (image coordinate), 3D key-
points (world coordinate), coarse-level and fine-level AIMS
labels.

4. METHODOLOGY

4.1. Image Branch: Domain Adaptation Network

For image-level classification, the gap between real-world in-
fant samples and synthetic infant samples often causes per-
formance degradation and leads to inaccurate predictions. We
can formulate the infant pose recognition task as an unsuper-
vised domain adaptation scenario. More specifically, given a
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Fig. 3. The overview of pipeline of our proposed infant action recognition with unsupervised domain adaptation learning.

source domain Ds = {(xs, ys)} and an unlabeled target do-
main Dt = {xt}, which are sampled from different distribu-
tions s and t, respectively. The goal of unsupervised domain
adaption (UDA) is to train the CNN classifier that reduces the
discrepancy of the two distributions. Specifically, we adopt
Local Maximum Mean Discrepancy (LMMD) to aid our UDA
on aligning the relevant subdomain distributions of domain
specific layer activation across different domains.

The unbiased estimator of LMMD can be expressed as:

dH(s, t) =
1

nc

∑
c∈C

∣∣∣∣∣∣ ∑
xs∈Ds

wscφ(x
s)−

∑
xt∈Dt

wtcφ(x
t)
∣∣∣∣∣∣2
H
,

(3)
where H is the reproducing kernel Hillbert space (RKHS)
[29] with kernel k. The kernel l representsk(xs, xt) =
〈φ(xs), φ(xt)〉, which is the inner product of two vectors of
some feature mapping operation φ(·).

The important characteristic of LMMD is the wsc and wtc,
which denote the weights of x belonging to a given class c in
the source and target domains, respectively. The weights for
source domainwsc w

s
ccan be easily computed using the ground

truth label as an one-hot vector wsc = ysci /
∑
i 6=j y

sc
j . How-

ever for the unlabeled target domain, the weights wtc have to
be adaptively estimated using the output z of each activation
layer l ∈ L in order to compute Eq. 3 .

Finally, the adaptation loss will be multiplied by a coeffi-
cient λ and added to the classification loss, which is the naive
cross-entropy loss. The overall loss to be minimized becomes:

Loverall = Lclassify + λ · Ladapt. (4)

4.2. Pose Branch: 2D/3D Pose Estimation

We adopt HRNet[7] and SMPLify[11] for our 2D and 3D pose
estimation. For 2D Pose Estimation, HRNet takes a single

Fig. 4. An example of different poses that result in the same
2D keypoints in different view angle and the detailed archi-
tecture of HIPC aiming to alleviate such problem by using the
logits from the image branch.

image I as input, and generates heatmaps H for all the key-
points. The coordinates x2d can be obtained by finding points
with the highest values in H . After getting x2d, SMPLify[11]
is used to optimize the SMIL model iteratively by minimizing
the reprojection error of projected X3d with x2d.

4.3. HIPC: Hierarchical Infant Pose Classifier

For infant pose recognition, to overcome the confusion caused
by the viewing perspectives, 3D skeletons should be used for
better recognition performance. However, as Fig 5, unlike
adult human pose recognition, the view angles of infant im-
ages are more flexible, and two similar 3D skeletons may
lead to two completely different fine level poses. As a re-
sult, we take advantage of a Hierarchical Infant Pose Classifier
(HIPC)[25], which takes the 3D keypoints X3d and coarse-
level recognition logits as input, for getting better fine level
recognition result.



Table 2. Experimental results of our proposed method for
coarse-level and fine-level classification. The bold text de-
notes the highest top-1 accuracy achieved under the same ex-
periment setting.

Task Method Top-1 Accurcay

Coarse-Level
Classification

Image Branch 75.5%
Image Branch (w/ LMMD) 85.3%
Pose Branch 83.3%

Fine-Level
Classification

Image Branch 40.4%
Image Branch (w/ LMMD) 50.5%
Pose Branch 68.0%
Ours 76.8%

Table 3. Effect of domain adaptation loss when using differ-
ent training dataset (i.e., different source domain distribution).

Source
Domain

Method
Top-1 Accuracy
(Coarse-Level)

Synthetic
Image Branch 45.3%
Image Branch (w/ LMMD) 60.3%

Synthetic+Real
Image Branch 75.5%
Image Branch (w/ LMMD) 85.3%

5. EXPERIMENTAL RESULTS

To evaluate the performance of both coarse-level and fine-
level infant pose recognition tasks, we train the model using
all of the synthetic dataset along with a subset of the ground
truth labelled real dataset, where 4 coarse labels and 12 fine
sub-labels with a total of 4000 samples are used. We evaluate
our model using the test subset of the real data with a total of
198 images and record the Top-1 accuracies. The codes are
implemented in Pytorch and we conduct the experiments on
one Nvidia GeForce GTX Titan XP card.

5.1. Performance of Infant Pose Recognition

The experimental results are shown in Table 2, which shows
the top-1 accuracies for coarse-level pose classification (4
classes) and fine-level pose classification (12 classes) based
on the same algorithmic configurations. With the help of
adding LMMD loss and a λ of 0.5, the domain adaptation
module introduced to the naive ResNet-50 is able to improve
the performance of our image-branch coarse-level classifica-
tion from 75.5% to 85.3% (using Syn+Real). Moreover, the
fine-level classification results can be improved from 68.0%
to 76.8% after using the logits from the image-branch to guide
the prediction from pose branch. In Fig. 5, we can clearly
see that most of those misclassified samples across coarse-
levels (i.e., outside of the gray bounding boxes) had been cor-
rected with the aid of logits from image-branch in our pro-
posed method.

Our best model leverages both unsupervised domain adap-
tation for coarse-level classification and hierarchical pose

Fig. 5. A comparison of the confusion matrices for fine-level
classification results from baseline (left) and our purposed
method (right). The gray boxes represent the fine-level labels
with the same coarse-level label.

recognition framework and can truly overcome the source-
target domain distribution mismatch, as we achieved a 76.8%
accuracy on fine-level classification.

5.2. Ablation Study

We now analyze the effect of domain adaptation on differ-
ent training dataset. The source domain denotes the dataset
used during training is denoted as Synthetic, which repre-
sents the entire synthetic portion from AIMS dataset and Syn-
thetic+Real represents the setting of adding a small number of
real-world infant samples into the source domain. As shown
in Table 5, LMMD loss can significantly improve the perfor-
mance of classification without any major modification being
made to the CNN-based backbone, since the adaptation loss is
computed using the activation outputs and pseudo-labels only
(i.e., from 45.3% to 60.3% Top-1 accuracies on Synthetic and
from 75.5% to 85.3% Top-1 accuracies on Synthetic+Real).

6. CONCLUSION

Fine-level infant pose recognition may help doctors or parents
determine infants’ motor skill development. In this paper,
we proposed a new AIMS Dataset for fine-level infant pose
recognition, with both synthetic and real-world data. With
this dataset, we integrated an unsupervised domain adapta-
tion algorithm into the hierarchical pose recognition frame-
work to enable transfer learning across domains for better
feature extractions of existing CNN framework, and finally,
we achieved 76.8% Top-1 accuracy with the domain-adopted
model on the AIMS test dataset.
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