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ABSTRACT

The transductive inference is an effective technique in the
few-shot learning task, where query sets update prototypes
to improve themselves. However, these methods optimize
the model by considering only the classification scores of
the query instances as confidence while ignoring the uncer-
tainty of these classification scores. In this paper, we propose
a novel method called Uncertainty-Based Network, which
models the uncertainty of classification results with the help
of mutual information. Specifically, we first data augment
and classify the query instance and calculate the mutual infor-
mation of these classification scores. Then, mutual informa-
tion is used as uncertainty to assign weights to classification
scores, and the iterative update strategy based on classifica-
tion scores and uncertainties assigns the optimal weights to
query instances in prototype optimization. Extensive results
on four benchmarks show that Uncertainty-Based Network
achieves comparable performance in classification accuracy
compared to state-of-the-art methods.

Index Terms— Few-shot learning, Uncertainty, Mutual
information

1. INTRODUCTION

Few-shot image classification aims to learn knowledge with a
few labeled samples quickly. Recent few-shot image classifi-
cation methods can be divided into two types. The first type of
method [1, 2, 3] is called inductive inference, where each un-
labeled instance is predicted independently. Although these
methods perform well, they ignore the information of unla-
beled query instances. Thus, another type of method called
transductive inference [4, 5] is proposed to explore the in-
formation of the unlabeled instances. Since transduction in-
ference methods need to use pseudo-labels of unlabeled in-
stances in the query set during the training phase, they of-
ten use few-shot learning models to obtain pseudo-labels and
adopt classification scores as confidence.

This work is supported by the Natural Science Foundation of China un-
der Grant 61672273 and Grant 61832008, and Scientific Foundation of State
Grid Corporation of China (Research on Ice-wind Disaster Feature Recogni-
tion and Prediction by Few-shot Machine Learning in Transmission Lines).
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Fig. 1. Examples of classification scores and uncertainty.
Two query instances in 3-way 1-shot transductive FSL, the
smaller the uncertainty, the higher the confidence of the clas-
sification result.

Although these transduction inference methods usually
have better performance than inductive methods, due to the
lack of sufficient data to enhance the generalization ability
of the model, the models trained with few samples often ob-
tain classification scores with high uncertainty. This limita-
tion can affect the effectiveness of the transductive FSL meth-
ods, which only use classification scores to refine prototypes.
Fig. 1 shows that a high classification score may have high un-
certainty. If only classification results are considered, query
instance 1 will be used to optimize class 3, misleading the
model. Hence, the uncertainty information of the classifi-
cation score is especially crucial for the performance of the
transductive FSL but still under-explored.

In this paper, we propose a novel uncertainty-based
method for few-shot learning. It can model the uncertainty
of classification results for each query instance and perform
uncertainty-aware transductive few-shot learning. Specifi-
cally, we first augment each query instance with multiple
data augmentation methods and classify these augmented in-
stances. Then, we compute the mutual information (MI) to
measure the uncertainty of the classification scores and calcu-
late the average classification scores for each query instance.
Next, a weight generator with learnable parameters is used to
generate the weights of the average classification scores based
on the MI. These weights and the average classification scores
are then used to calculate the weights of the query instances.
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The weights of the query instances are used to update the pro-
totype by the weighted average of the query instances and
the corresponding support instances. The refined prototype
is affected by the pseudo-classification scores of all query in-
stances and their uncertainty.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to mea-
sure the uncertainty of the classification result of each
query instance by calculating its mutual information
from various augmentation algorithms in the transduc-
tion few-shot image classification.

2. We propose a novel method called Uncertainty-Based
Network (UCN), which refines prototypes by itera-
tively performing transduction inference based on the
pseudo classification results and corresponding mutual
information.

3. The proposed method has been validated on four
datasets, and the classification accuracy outperforms
other methods by 1%-18%. It also achieves state-of-
the-art performance in the semi-supervised setting.

2. RELATED WORK
2.1. Transductive few-shot learning

Compared with inductive few-shot learning methods, trans-
ductive few-shot learning methods aim to explore how to uti-
lize the query set to help improve the performance of im-
age classification. The first type is GNN-based methods
that enhance classification performance by exploiting Graph
Neural Networks (GNN) in the transductive few-shot learn-
ing task. Typical works include TPN [4], EGNN [6] and
DPGN [7]. Some other methods that use query instances to
refine prototypes seem more straightforward. For example,
CAN [8] adopts an iterative process during transductive in-
ference. Specifically, in each iteration, the top-k confident
query instances are chosen and used to update the prototypes.
The uncertainty confidence for each query instance equals the
cosine similarity between itself and the prototype. MCT [9]
also adopts the iterative process, but it attempts to adapt the
confidence to a specific task by adding an extra learnable tem-
perature to the Euclidean distance metric.

2.2. Uncertainty-based learning method

Facts show that uncertainty-based methods have made good
progress in the practice of various downstream tasks. For ex-
ample, Yarin et al. [10] were the first to explore the nature of
uncertainty in regression and classification tasks extensively,
expounded that uncertainty is indispensable, and developed
the necessary tools. In semi-supervised learning, UPS [11]
proposes an uncertainty-aware pseudo-label selection frame-
work to increase the accuracy of pseudo-labeling by reduc-
ing the noise during training. UAFS [12] proposes a frame-
work based on few-shot image classification, which converts

the observed similarity of query-support pairs into proba-
bilistic representations and uses graph convolutional networks
(GCN) to take advantage of this uncertainty to achieve more
effective optimization results. TIM [13] introduces the con-
cept of mutual information to measure the uncertainty of
model prediction results and optimize the model based on the
uncertainty of similarity.

3. APPROACH

For different input instances, the output of the neural network
has different uncertainties, while the observation noise also
has an impact on the uncertainty [14]. Thus, we propose an
Uncertainty-Based Network (UCN), which models the uncer-
tainty of model classification results and optimizes the pro-
totype by considering the uncertainty of model classification
results and classification results.

3.1. Problem Definition

To present UCN well, we first introduce some notations about
few-shot learning in this section. The training set, validation
set and test set are denoted as Dtrain , Dval and Dtest respec-
tively. The Few-shot learning method aims to learn a model
from the support set S and use the model to identify sample
categories in the query set Q. Most few-shot learning meth-
ods adopt a special paradigm named N -way K-shot classifi-
cation to evaluate their performance. To build a N -way K-
shot classification task, we first need to randomly sample N
classes from the training set. After that, we not only need
to sample K labeled instances to make up the support set
S (i.e., S =

{
(xSi,j , y

S
i,j) | i = 1 : N, j = 1 : K

}
) for each

chosen class, but also need to sample some instances with-
out labels from these N classes to form the query set Q (i.e.,
Q =

{
xQi | i = 1 : q

}
, where q is the size of the query set).

In addition, there is no crossover between the samples of the
support set S and query setQ, but they share the label space.

3.2. Overall Pipeline

This section explains the overview of UCN. The framework
of UCN is in Fig. 2. First, m+ 1 different data augmentation
algorithms are applied to each support and query instance as
perturbations, leading to m+ 1 different variants for each in-
stance. For convenience, we use Ak(·) (0 ≤ k ≤ m) to de-
note the data augmentation algorithms, where A0(·) presents
the identity function. After that, each augmented instance is
fed into a feature extractor fθ(·) to obtain their feature maps.
Next, the initial prototypes C(0) = {c(0)i }Ni=1 are computed
by averaging the feature map of these augmented support in-
stances, i indicates the i-th class in support set S . After ob-
taining the initial prototypes, we perform T consecutive iter-
ations to refine the prototypes. The t-th iteration updates the
prototypes based on the feature maps of the augmented in-
stances and the prototypes generated in the previous iteration.
The details of the t-th iteration are shown in the section 3.3.
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Fig. 2. The framework of the proposed UCN. We optimize the prototype using uncertain information iteratively. First, we
model the mutual information (MI) and average classification score for each query instance based on the classification score
obtained by applying various augmentations A(·) to support set S and query set Q. Then there is a process of T iterations
to optimize the prototype. For the t-th iteration, the MI is fed into a weight generator to calculate the weights of average
classification scores, combined with the average classification scores to update the weights of the query instances. The refined
prototype for a specific class can be obtained by weighted averaging all corresponding support and query instances.

3.3. Refining the Prototypes in Iteration t

As the T iterations are the core part of UCN, we introduce the
details of the t-th iteration in this section.

Classify the Augmented Instances. To capture the un-
certainty of the model prediction results, we employ different
data augmentation methods to perturb the prediction results
of the model and then calculate the uncertainty of the classi-
fication results.

At the beginning of the t-th iteration, m data augmenta-
tion methods are applied on each instance in the query set Q.
All the augmented query instances are then classified using a
metric-based approach, which is shown as:

P (t)(y = i|xQj , Ak) =
exp(−dφ(fθ(Ak(xQj )), c

(t−1)
i ))∑N

i=1 exp(−dφ(fθ(Ak(xQj )), c
(t−1)
i ))

, (1)

where xQj denotes j-th instance of the query set Q, c(t−1)
i

is the i-th prototype in the (t − 1)-th iteration, and dφ(·, ·)
indicates the Euclidean distance metric with a learnable pa-
rameter φ, which is formulated as:

dφ(x1,x2) =

∣∣∣∣∣∣∣∣ x1

||x1||2 gφ(x1)
−

x2

||x2||2 gφ(x2)

∣∣∣∣∣∣∣∣
2

, (2)

where x1,x2 represent two different sample, ||.||2 is the Eu-
clidean norm, and gφ(·) is a temperature generator with learn-
able parameters. In this paper, we use instance-specific tem-
peratures because, as demonstrated in [15, 16], the scaling
temperature in a softmax operation can significantly affect
the performance of a few learning models. Therefore, an
instance-specific temperature adapts the metric to a specific
task.

Calculate the Average and MI of the Classification
Scores. The average classification scores P̄ (t) of m+ 1 aug-
mented instances for each query sample is first calculated, as:

P̄ (t)(y = i|xQj ) =
1

m+ 1

m∑
k=0

P (t)(y = i|xQj , Ak), (3)

where i is the possible classes of xQj , j indicates the j-th
element in the query set.

We draw on the tractable approach proposed by [17]
to compute mutual information, which approximates the in-
ferred mutual information by adjusting the parameters of the
model to obtain multiple predictions. In this paper, we pro-
pose to calculate the uncertainty of the model prediction re-
sults with the help of several data augmentation methods.
Specifically, MI I(t)[y | xQj ] is calculated based on the clas-
sification scores of m + 1 augmented instances via Shannon
entropy H(·), which is shown as:

I(t) = H(P̄ (t))−
1

m+ 1

m∑
k=0

H(P (t)). (4)

Infer Weights for Query Instances. This paper pro-
poses an uncertainty-aware few-shot learning method, which
considers uncertainty information and instance classification
scores to select appropriate query instances. All the uncer-
tainty information of query instances is first fed to a weight
generator hψ(·), which is a multi-head attention module in
this paper. Then, the outputs are applied on the average clas-
sification scores to get the weight matrix W(t) of query in-
stances, as Eq. 5, to update the prototypes. The weight matrix
W(t) integrates mutual information and probability distribu-
tions through multi-head attention mechanism and provides a
hint on the uncertainty of different query instances since the
learned weights W(t) reflect the impact of uncertainty on the
query instances.

W(t) =
[
hψ

(
I(t)
)
� P̄ (t)

]
=
[
w

(t)
i,j

]
, (5)

where � represents element-wise product. The weight gen-
erator hψ(·) is constructed by one multi-head attention mod-



ule, as the multi-head attention can discover the relationship
among elements of the input sequence.

Optimize Prototypes. W(t) is used to update the proto-
types, which are linear combinations of the embedding of the
support instance and the query instance with a fixed weight of
1 for the support instances and a weight W(t) for the query
instances. The updated prototypes are in Eq. 6.

c
(t)
i =

∑K
j=1 1 · xSi,j +

∑q
j=1 w

(t)
i,j · x

Q
j

K +
∑q
j=1 w

(t)
i,j

. (6)

The prototype cti is updated with a weighted average using
the above weights w(t)

i,j combined with query instances and
support instances. When selecting a query sample for proto-
type optimization, we consider the uncertainty of the classifi-
cation result and the classification result for this query sample.

3.4. Loss Function

In this work, a joint loss function L is proposed to train UCN.
It combines a classification loss Lcls and a regularization loss
Lgen as Eq. 7.

L = Lcls + λLgen, (7)

where λ is the hyperparameter to balance two losses. We
empirically set it to 0.5 in the experiment.

The classification loss Lcls is the cross-entropy loss of the
classification scores of all non-augmented query instances,
and the goal of Lcls is to increase the classification accuracy
of the model. The regularization loss Lgen aims to regularize
the weight generator. The outputs of the support instances are
as close as possible to their one-hot labels since the labels of
support instances are already known. The regularization loss
Lgen is formulated as Eq. 8.

Lgen = −
1

NK

N∑
i=1

K∑
j=1

BCE
(
w

(T )
i,j , onehot(i, N)

)
, (8)

where BCE(·, ·) indicates the binary cross entropy loss, w(t)
i,j

denotes the weight of the j-th supported instance in the i-th
class inferred from the weight generator hψ(·). N is the class
number in support set,K is the instance number in each class,
and onehot(i,N) indicates the one-hot vector whose length
equals to N with its i-th position (starts from 1) being 1.

4. EXPERIMENTS

4.1. Datasets, Backbone and Implementation Details

To validate UCN, we conduct extensive experiments on four
public datasets: miniImageNet [2], tieredImageNet [18],
FC100 [15], and CIFAR-FS [19]. We choose different back-
bones (e.g., Conv-64/256, Resnet12/18 and WRN-28-10) for
evaluation. More implementation details and experimental re-
sults are shown in the supplemental material.
4.2. Comparison with State-of-the-art Methods

Quantitative Comparison. Table 1, 2 show that UCN sur-
passes most of the methods on all datasets and demonstrates
the effectiveness of UCN. It shows that the transductive FSL
learning methods work better than the inductive FSL learning

Table 1. Classification accuracy on miniImageNet and
tieredImageNet reported with 95% confidence intervals.
”FE” column describes the backbone, ”Tr” indicates whether
methods are transductive, and the partially transductive meth-
ods are marked as ”BN” because of using the mean and vari-
ance of query instance batches in BatchNorm layers [6, 7].
The superscript † indicates dense classification [20] is adopted
over feature maps. C64/256 is for Conv-64/256, R12/18 for
ResNet-12/18 and W28 for WRN-28-10.

Method FE Tr miniImageNet(%) tieredImageNet(%)
1-shot 5-shot 1-shot 5-shot

ProtoNet [1] C64 No 49.42±0.78 68.20±0.66 53.31±0.89 72.69±0.74
MatchNet [2] C64 No 43.56±0.84 55.31±0.73 - -
MAML [21] C64 BN 48.70±1.84 63.15±0.91 - -
RN [3] C64 BN 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78
TPN [4] C64 Yes 53.75 69.43 57.53 72.85
Ent [5] C64 Yes 50.46±0.62 66.68±0.52 58.05±0.68 74.24±0.56
UCN C64 Yes 57.97±0.66 73.01±0.75 58.95±1.13 75.82±0.79

EGNN [6] C256 Yes - 76.37 - 70.15
UCN C256 Yes 59.19±1.14 77.70±0.64 68.90±1.17 82.78±0.67

TADAM [15] R12 No 58.5 ± 0.3 76.7 ± 0.3 - -
CAN [8] R12 No 63.85±0.48 79.44±0.34 69.89±0.51 84.23±0.37
DeepEMD [22] R12 No 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58
FEAT [23] R12 No 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16
CAN [8] R12 Yes 67.19±0.55 80.64±0.35 73.21±0.58 84.93±0.38
DPGN [7] R12 Yes 67.77±0.32 84.60±0.43 72.45±0.51 87.24±0.39
EPNet [24] R12 Yes 66.50±0.89 81.06±0.60 76.53±0.87 87.32±0.64
Ent [5] R12 Yes 62.35±0.66 74.53±0.54 68.41±0.73 83.41±0.52
IEPT[25] R12 Yes 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34
UAFS[12] R12 Yes 64.22±0.67 79.99±0.49 69.13±0.84 84.33±0.59
UCN R12 Yes 76.78±1.01 85.35±0.61 80.00±1.12 87.50±0.64

MCT† [9] R12 Yes 78.55±0.86 86.03±0.42 82.32±0.81 87.36±0.50

UCN† R12 Yes 86.40±0.46 87.22±0.43 82.02±1.01 90.83±0.39

CTM [26] R18 No 64.12±0.82 80.51±0.13 68.41±0.39 84.24±1.73
UCN R18 Yes 73.98±0.94 83.94±0.59 75.79±1.03 87.02±0.43

CC+rot [27] W28 Yes 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36
EPNet [24] W28 Yes 70.74±0.85 84.34±0.53 78.50±0.91 88.36±0.57
SIB [28] W28 Yes 70.0 ±0.6 79.2 ±0.4 - -
E3BM [29] W28 Yes 71.4 ±0.5 81.2 ±0.4 75.6 ±0.6 84.3 ±0.4
UCN W28 Yes 78.55±0.97 85.99±0.57 79.66±1.02 88.87±0.63

methods, indicating that query samples benefit prototype op-
timization. Note that the R12 backbone and pre-train strat-
egy of the proposed UNC are most similar to FEAT [23].
Compare to FEAT, UCN achieves significant improvement on
miniImageNet and tieredImageNet in 1-shot accuracy. Un-
like UAFS [12] which model uncertainty of the similarities
of query support pairs, we propose a new way of computing
uncertainty information of query instances by computing the
mutual information of the augmented query instances. More-
over, the obtained uncertainty information and the classifica-
tion results of the query instances are used to guide the trans-
ductive inference process. Relative to UAFS, our prediction
accuracy increased by a large margin on all metrics. In addi-
tion, we obtain competitive results in a semi-supervised set-
ting and present the results in supplementary materials.

Qualitative Comparison. To analyze the effectiveness of
UCN, we compare it with the previous state-of-the-art method
MCT [9] based on the prototype refining strategy. Figure 3 vi-
sualized ProtoNet-style [1] prototype (support instances), in-
stance feature maps (query instances), refined prototype gen-
erated by our method (UC prototype), MCT prototype, and
the oracle prototype. The arrows mark the changes made



Table 2. Classification accuracy on FC100 and CIFAR-FS
are reported with 95% confidence intervals.

Method FE Tr FC100(%) CIFAR-FS(%)
1-shot 5-shot 1-shot 5-shot

TADAM [15] R12 No 40.1 ±0.4 56.1 ±0.4 - -
DeepEMD [22] R12 No 46.47±0.48 63.22±0.71 - -
DPGN [7] R12 Yes - - 77.9 ±0.5 90.2 ±0.4
UAFS[12] R12 Yes 41.99±0.58 57.43±0.38 74.08±0.72 85.92±0.42
UCN R12 Yes 48.00±1.04 60.39±0.82 88.90±0.95 92.18±0.63

SIB [28] W28 Yes - - 80.0 ±0.6 85.3 ±0.4
UCN W28 Yes 47.61±0.99 59.74±0.78 85.64±0.93 88.90±0.58
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Fig. 3. t-SNE figures for the results produced by MCT [9]
and our UCN on 3-way 1-shot tasks. Classes are represented
by red, green, and blue, respectively. The closer to Oracles,
the better the prototype. The transparency of query instances
means the maximum weight it gets.

to the prototype by the MCT and UCN methods. The or-
acle prototype is obtained by averaging the features of all
samples of the same class in the dataset, which can rep-
resent the commonality of instances in a category because
the averaging operation neutralizes the random noise over a
wide range of instances. The RGB value of the points for
query instances xQj is determined by the proportion among

the weights w(T )
0,j , w(T )

1,j and w
(T )
2,j , and its transparency re-

flects the maximum weight of the corresponding query in-
stance, that is max(w

(T )
0,j , w

(T )
1,j , w

(T )
2,j ). In this way, we can

intuitively understand the contribution of each query instance
to the refined prototypes. In addition, Figure 3(a), 3(b) also
draw the approximate decision boundaries based UC proto-
types and MCT prototypes, respectively. All misclassified
query instances are also marked with ground truth labels.

From Fig. 3, we can see that compared with MCT, the pro-
totype generated by UCN is closer to the ideal state (i.e., the
oracle prototype). The query instances of the same category
have higher weights, while the misclassified instances often
have lower weights. This result reveals that UCN can make
the decision boundary more reasonable. These phenomena
are consistent with our hypothesis that using the uncertainty
information of classification score can improve the prototype
in transductive few-shot learning.

4.3. Ablation Study

We perform ablation experiments on several components of
UCN to study their effect, including the impact of uncertainty
information, the effect of T , the choice of augmentations, and
the structure of the weight generator hψ(·). Due to space lim-
itations, some of these ablation experiments are in the supple-

Table 3. Ablation study of uncertainty information (UI) and
regularization loss (Lgen) on miniImageNet, measured in %.

Method UI Lgen Tr 1-shot 5-shot

baseline % % % 65.13±0.80 82.29±0.53

UCN A % % 69.65±1.10 84.21±0.55

UCN B % 73.92±1.06 84.20±0.57

UCN 76.78±1.01 85.35±0.61

Fig. 4. Distributions of uncertainty information of classifica-
tion scores.

mental material.
In Table 3, we conduct an ablation study of the uncer-

tainty information (UI) and the proposed regularization loss
function (Lgen) in miniImageNet. The baseline represents
the model of ProtoNet-style [1], and it also takes the aver-
age of the corresponding augmented instances as the basis.
UCN A and UCN B have the same structure and parameters
as UCN, except for some differences in UI and loss functions,
where UCN A directly uses the classification score of query
instances as UI. Table 3 illustrates the effectiveness of the pro-
posed UI. It shows that with the help of UI, the accuracy of the
experiment increases by 4.27% for the 5-way 1-shot setting.
We argue that the uncertainty of the model prediction results
is high in the 5-way 1-shot setting. More beneficial instances
in the query set can be selected to optimize the prototypes
after taking the uncertainty information into account. Table
3 also demonstrates the effectiveness of Lgen, especially on
5-way 1-shot setting.

In Fig. 4, we conduct 3,000 5-way 1-shot episodes us-
ing the UCN A (made with w/o UI) and UCN B (marked
with w/UI) and collect the top three query instances in each
episode (ordered by their weights in class 0). The distribution
shows that samples with a lower uncertainty in classification
scores usually receive relatively higher weights when uncer-
tainty information is introduced into the prototype refinement.

5. CONCLUSION

In this paper, we propose an Uncertainty-based network for
few-shot learning, which utilizes the uncertainty information
of query instances to refine the prototypes through transduc-
tive inference. Notably, we compute the weights of all the
query instances based on both the classification scores and
the uncertainty information of these scores. Extensive exper-
iments on various benchmarks show that UCN outperforms
the state-of-the-arts significantly on both transductive few-
shot learning and semi-supervised few-shot learning tasks.
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