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ABSTRACT

In recent years, deep neural networks (DNNs) based ap-
proaches have achieved the start-of-the-art performance for
music source separation (MSS). Although previous methods
have addressed the large receptive field modeling using vari-
ous methods, the temporal and frequency correlations of the
music spectrogram with repeated patterns have not been ex-
plicitly explored for the MSS task. In this paper, a temporal-
frequency attention module is proposed to model the spectro-
gram correlations along both temporal and frequency dimen-
sions. Moreover, a multi-scale attention is proposed to effec-
tively capture the correlations for music signal. The experi-
mental results on MUSDB18 dataset show that the proposed
method outperforms the existing state-of-the-art systems with
9.51 dB signal-to-distortion ratio (SDR) on separating the vo-
cal stems, which is the primary practical application of MSS.

Index Terms— Music source separation, deep neural net-
work, attention, multi-scale

1. INTRODUCTION

During music production, recordings of vocals and individ-
ual instruments called stems are mixed together into the final
song. Music source separation (MSS) is designed to separate
the mixed signal into the individual stems. Since the separated
stems can be used in various application such as Karaoke sys-
tems [1] or music up-mixing [2], MSS has received increasing
interest in recent years. As a subtask of the Signal Separation
Evaluation Campaign (SiSEC), the separated stems of MSS
were categorized into vocals, bass, drums and other [3].

While traditional approaches have been proposed in [4, 5],
methods based on deep neural networks (DNNs) have out-
performed these traditional approaches in recent years. In
[6, 7], neural network with several fully connected layers was
utilized to separate the audio sources. To capture the tem-
poral context, features of multiple frames were concatenated
as the input of network. In [8, 9, 10], recurrent neural net-
works were used to capture the longer temporal contexts. In
most of recent works [11, 12, 13, 14, 15], Convolutional Neu-
ral Network (CNN) based encoder-decoder architecture were
employed and have achieved the state-of-the-art performance.

By stacking several 2-dimensional CNN layers, the model can
capture both temporal and frequency context. To obtain large
temporal-frequency receptive field with high efficiency, one
of the popular operations is repeatedly resampling the feature
maps [16, 17, 18]. More specifically, the feature maps are
downsampled repeatedly in the encoder, so that the CNN lay-
ers in lower resolution representation can obtain larger recep-
tive field. Then these low resolution feature maps are upsam-
pled repeatedly in the decoder to obtain the same resolution
of input feature.

Besides, several additional modules are proposed to fur-
ther capture the temporal and frequency context for the
encoder-decoder architecture. In [11, 13], LSTM layers
were added between the encoder and the decoder to effi-
ciently model long-term musical structures. In [19], a time-
distributed fully-connected network was proposed to extract
the long-range correlations existed along the frequency axis.
In [12], multi-dilated convolution with different dilation fac-
tors is utilized to model different resolution and obtain larger
temporal and frequency receptive field. In [15], sufficiently
large receptive field was obtained by a residual UNet archi-
tecture with up to 143 layers, and the system achieves the
state-of-the-art MSS performance.

While most of the existing MSS systems can model large
receptive field, the correlation along temporal or frequency
dimension has not been explicitly exploited. This is espe-
cially crucial for the MSS task [20], for example, the temporal
correlation in beat and downbeat patterns, and the frequency
correlation in chorus, harmony and chords. In [21, 22] self-
attention was used to exploit long-term dependency of music
signal, but they only considered the attention along the tempo-
ral dimension. Motivated by the success of temporal and fre-
quency self-attention mechanism in speech enhancement task
[23], a new separation module with temporal and frequency
self-attention layers is proposed to capture the spectrogram
correlations within the encoder-decoder based MSS architec-
ture. Moreover, considering the different frequency ranges
of various instruments and rapid changes of music content, a
multi-scale mechanism is introduced to capture the correla-
tions, improving the robustness of proposed method on vari-
ous music styles. Compared to the mainstream MSS systems,
the proposed method also provides a new way to obtain large
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Fig. 1. (a) The proposed system architecture.(Separator* is shown in Fig.2 and Fig.3) (b) The structure of a DenseNet Block.
(c) The structure of a Conv2D Block. (d) The structure of a Gated Block in the decoder.

receptive field without may repeated resample layers or other
additional modules.

The contributions of this paper can be summarized as fol-
lows: 1). We propose a temporal-frequency attention layers
in encoder-decoder based architecture to capture the spectrum
correlations for MSS. 2). We further introduce a multi-scale
mechanism to effectively model spectrum correlations for dif-
ferent temporal and frequency ranges. 3). We experimen-
tally show the effectiveness of the proposed systems, which
achieves start-of-the-art results on MUSDB18 dataset [3].

2. PROPOSED SYSTEM

2.1. Overview

As shown in Fig.1(a), the neural network consists of an en-
coder, a separator and a decoder. It takes a discrete stereo
signal with N samples for each channel y ∈ RN×2 as the
input. The input signal is then transformed into a time-
frequency domain representation YC ∈ CT×F×2 via STFT,
where T is the number of frames and F is the number of
frequency bins of the complex spectrogram; 2 refers to the
two-channel stereo input. To form the input of the neural net-
work, the real and imaginary components are concatenated as
YR = [real(YC); imag(YC)] ∈ RT×F×4.

To reduce the computational cost for high-resolution in-
put, following the subband mechanism proposed in [24], the
fullband spectrogram is sliced into K subbands to form the
channel-wise subband signal Y ′R ∈ RT×(F/K)×(4×K) served
as the encoder input, whereK is set to 4 according to our pre-
liminary results. The neural network estimates a channel-wise
subband mask M ′R ∈ RT×(F/K)×(4×K) and then reshaped to
the fullband mask MC ∈ CT×F×2 for the stereo complex
spectrogram. Finally, the target signal is estimated by mul-
tiplying the mixture signal YC with the estimated mask MC .
The time-domain target signal ŝ can be obtained via iSTFT.

2.2. Encoder and Decoder

As shown in Fig.1(a), the encoder has three encoder blocks
(EBs), each consists of a DenseNet block (detailed in
Fig.1(b)) and a Conv2D block (detailed in Fig.1(c)). The
DenseNet block consists of four Conv2D blocks (detailed in
Fig.1(c)) with concatenation operations. The DenseNet block
can learn explicit cross-layer interactions and reuses features
computed in preceding layers, which yields efficient parame-
ter utilization and suits for the MSS problems as discussed in
[18]. The Conv2D block consists of a Conv2D layer, a Batch
Normalization layer and an ELU activation layer.

The decoder consists of three decoder blocks (DBs) fol-
lowed by a Conv2D block and a Dense layer. Each decoder
block consists of a gated block [23] and a DenseNet block.
The gated block consists of a Conv2DTanspose layer and two
Conv2D blocks (detailed in Fig.1(c)) as shown in Fig.1(d),
which learns a multiplicative mask for the feature from the
encoder and suppress its undesired part. The structure of the
Dense block in decoder is identical to the one used in encoder.
After a Conv2D block, a Dense layer with tanh activation is
utilized to generate the real and imaginary components of the
complex ideal ratio mask (cIRM) with boundary of [-1, 1].
The cIRM is further extended to [-2, 2] by multiplying a ex-
panding factor of 2 to increase the upper bound of the oracle
SDR as discussed in [15]. The expanding factor is chosen to
maximize the separation SDR according to our preliminary
experiments. The detailed hyper-parameters of the encoder
and decoder is listed in Table 1.

2.3. Temporal-Frequency Attention based Separator

As shown in Fig.2(a), the temporal-frequency attention based
separator consists of four residual attention (RA) blocks (de-
tailed in Fig.2(b)). The input feature map of the RA block is
FIn ∈ RT ′×F ′×C generated from encoder or previous RA
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Fig. 2. (a) Separator with temporal-frequency attention. (b) The structure of the residual attention (RA) block. (c) The structure
of temporal self-attention and frequency self-attention.

Table 1. The configurations of encoder and decoder
Layer Channel Kernel Stride

EB1 DenseNet 32 (3, 3) (1, 1)
Conv2D 32 (3, 3) (1, 1)

EB2 DenseNet 64 (3, 3) (1, 1)
Conv2D 64 (3, 3) (2, 2)

EB3 DenseNet 64 (3, 3) (1, 1)
Conv2D 64 (3, 3) (1, 2)

DB1 Conv2DTranspose 64 (3, 3) (1, 2)
Conv2D 64 (1, 1) (1, 1)
DenseNet 64 (3, 3) (1, 1)

DB2 Conv2DTranspose 64 (3, 3) (2, 2)
Conv2D 64 (1, 1) (1, 1)
DenseNet 64 (3, 3) (1, 1)

DB3 Conv2DTranspose 32 (3, 3) (1, 1)
Conv2D 32 (1, 1) (1, 1)
DenseNet 32 (3, 3) (1, 1)

Conv2D 4×K (1, 1) (1, 1)

block. T ′ is the time steps. F ′ is the feature dimension. C
is equal to 64. The input feature map is fed into two residual
blocks. Each residual block consists of two Conv2D blocks
with a kernel size of (3,3) and a stride of (1,1). The output
of the residual block FRes ∈ RT ′×F ′×C is then fed parallel
into the temporal self-attention (TSA) and the frequency self-
attention (FSA) blocks to capture the global dependencies
along temporal and frequency dimensions, respectively. The
outputs of the two self-attention blocks FTemp ∈ RT ′×F ′×C

and FFreq ∈ RT ′×F ′×C are concatenated with FRes to fed
into a Conv2D block to generate the output of the RA block
FRA ∈ RT ′×F ′×C , the kernel size and stride of the output
Conv2D are all (1,1).

The TSA and FSA blocks share the same structure with
different reshape operations as shown in Fig.2(c). The in-
put FRes ∈ RT ′×F ′×C is fed parallel into Conv2D blocks.
The kernel size and stride of the Conv2D blocks are all

(1,1), the channel number is reduced by half to C
2 for less

computational complexity. The output feature maps of the
Conv2D blocks in RT ′×F ′×C

2 are then reshaped to the Fk
t ∈

RT ′×(C
2 ×F

′) for TSA or Fk
f ∈ RF ′×(C

2 ×T
′) for FSA, respec-

tively, where k ∈ [K,Q, V ]. K,Q, V indicates the key, query
and value in the scaled dot-product self-attention [25]. For
TSA, the self-attention is formulated as:

SAt = Softmax(FQ
t · (FK

t )H/

√
C

2
× F ′) · FV

t (1)

where SAt ∈ RT ′×(C
2 ×F

′), ()H denotes matrix transpose and
· denotes matrix multiplication. For FSA, the self-attention is
formulated as:

SAf = Softmax(FQ
f · (F

K
f )H/

√
C

2
× T ′) · FV

f (2)

where SAf ∈ RF ′×(C
2 ×T

′). The SAt and SAf are further
reshaped to RT ′×F ′×C

2 and then fed into a Conv2D block
with channel numberC, kernel size (1,1) and stride (1,1). The
input FRes is added to the output of the Conv2D block to
get the final temporal self-attention FTemp or frequency self-
attention FFreq.

2.4. Multi-scale Temporal-Frequency Attention

In section 2.3, the temporal attention is calculated based on all
frequency bins. The frequency attention is calculated based
on all input time steps. However, considering the different
frequency ranges of various instruments and rapid changes of
music content, using all frequency or temporal features might
not be the optimal way for attention calculation. Therefore,
multi-scale segment-wise attention is proposed to calculate
attention based on different frequency or temporal ranges.
More specifically, the input of TSA and FSA is first sliced
into P segments along the frequency and temporal dimension
respectively. The attentions are then calculated for each seg-
ment individually and combined into the final output. The
segment-wise TSA is formulated as:
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Fig. 3. Separator with multi-scale temporal-frequency atten-
tion.

FTemp = Concat(FTemp
FP (1), ...,FTemp

FP (P )) (3)

FTemp
FP (i) = TSA(FRes

FP (i))) (4)

where the {FTemp
FP (i),FRes

FP (i)} ∈ RT ′×F ′
P ×C is the i-th

segment of FTemp
FP and FRes

FP respectively. The subscript
FP indicates that the FTemp or FRes is sliced into P seg-
ments along frequency dimension. TSA() is the temporal
self-attention module as shown in Fig.2(c). The segment-wise
FSA is formulated as:

FFreq = Concat(FFreq
TP (1), ...,FFreq

TP (P )) (5)

FFreq
TP (i) = FSA(FRes

TP (i))) (6)

where the {FFreq
TP (i),FRes

TP (i)} ∈ RT ′
P ×F

′×C is the i-th seg-
ment of FFreq

TP and FRes
TP respectively. The subscript TP

indicates that the FFreq or FRes is sliced into P segments
along temporal dimension.

The RA blocks with different value of P can be combined
together to form a multi-scale mechanism. Fig.2(a) shows the
single-scale attention consists of four RA blocks with P = 1.
Fig.3 shows the separator with multi-scale attention, which
consists of RA blocks with P = 1, 2, 4, 8. To obtain both
small and large scale attention at the same layer, a two-branch
structure with parallel RA blocks is introduced, where one
branch contains RA blocks with increasing P value while the
other contains RA blocks with decreasing P value.

2.5. Loss Function

A joint loss function with combining time domain and fre-
quency domain losses is employed to train the network. The
time domain loss is defined as mean absolute error (MAE)
between target signal s and estimated signal ŝ,

Ltime = ||s− ŝ||1 (7)

Where ||·| |1 denotes L1-Norm. The frequency domain loss
is defined as MAE between target complex spectrum S and
estimated complex spectrum Ŝ,

Lfreq = ||real(S − Ŝ)||1 + ||imag(S − Ŝ)||1 (8)

The overall loss is defined as,

L = Ltime + α · Lfreq (9)

where α is set to 0.1 based on preliminary experiment results.

3. EXPERIMENTS

3.1. Dataset and setup

The proposed system is evaluated based on the MUSDB18
dataset [3], which consists of 150 songs with stereo format
and 44.1kHz sampling rate. For each song, the final mixture
signal is provided with its four audio stems, namely, vocals,
bass, drums and other. We adopted the official split of 86, 14
and 50 songs for train, development, and evaluation respec-
tively. The audio recordings are split into around 5.6 seconds
(240 frames) segments with 2 seconds (86 frames) shift. The
time domain segments are transformed to the time-frequency
domain using an 8192 samples STFT with 1024 samples hop
size. The complex spectrum YC ∈ CT×F of mixture clip is
used as the input of system, where T = 240 and F = 4096.
Data augmentation with channel swapping and remixing [26]
is employed on the fly during model training.

For each audio source, we train a dedicated model indi-
vidually. The Adam optimizer is employed. The initial learn-
ing rate is set to 0.001. It will decay by a factor of 0.8 when
the validation loss does not decrease for 10 epochs. All the
models are trained for 300 epochs.

3.2. Comparison with the existing systems

We compare the proposed Multi-scale Temporal-Frequency
Attention Network (MTFAttNet) with other existing start-
of-the-art systems on MUSDB18 dataset in Table 2. The
signal-to-distortion ratio (SDR) [27] computed by the mu-
seval toolbox[3] is used as evaluation metric. In the upper
half of Table 2, the SDR results of the existing single domain
systems including Spleeter[14], D3Net[12], Demucs [13] and
ResUNetDecouple+ [15] are compared with the proposed
MTFAttNet system. TheW and S indicates the waveform do-
main and spectrogram domain respectively. In the bottom half
of Table 2, we also listed the results of the top-ranked hybrid
domain systems in the Music Demixing (MDX) challenge
at ISMIR 2021 [28], namely, KUIELab-MDX-Net [29] and
Hybrid Demucs[30]. W + S indicates the method is working
on hybrid domain.

As shown in Table 2, compared to the existing single
domain methods, the proposed MTFAttNet method achieves
significant improvement in separating vocals, drums and
other stems. The bass SDR of the waveform domain method
Demucs is higher than all the spectrogram domain methods,
which might be caused by the limited frequency resolution
of spectrum for bass. The overall SDR of the proposed sys-
tem is 7.26 dB, which outperforms the best existing single
domain method (ResUNetDecouple+ with SDR of 6.73 dB).
Although the overall SDR is lower than the start-of-the-art hy-
brid domain systems, the proposed method still achieves the
best vocal separation performance with the SDR of 9.51 dB,
which outperforms the best existing hybrid domain method
(KUIELab-MDX-Net with vocal SDR of 9.00 dB).



Table 2. SDR comparison for the proposed and existing MSS
systems.
Method Domain Vocals Bass Drums Other All

Spleeter S 6.86 5.51 6.71 4.55 5.91
D3Net S 7.24 5.25 7.01 4.53 6.01
Demucs W 6.84 7.01 6.86 4.42 6.28
ResUNetDecouple+ S 8.98 6.04 6.62 5.29 6.73
MTFAttNet (proposed) S 9.51 6.43 7.39 5.69 7.26

KUIELAB-MDX-Net W+S 9.00 7.86 7.33 5.95 7.54
Hybrid Demucs W+S 8.04 8.67 8.58 5.59 7.72

Table 3. SDR comparison for different attention mechanisms.

Method Vocals Bass Drums Other All

noAttNet 7.17 6.11 5.52 4.82 5.90
FAttNet 8.42 6.19 6.44 5.56 6.65
TAttNet 8.34 6.09 7.29 5.43 6.79
TFAttNet 9.23 6.31 7.34 5.49 7.09
MTFAttNet 9.51 6.43 7.39 5.69 7.26

3.3. Attention mechanism study

In this section, to better understand the benefit of the pro-
posed MTFAttNet for MSS task, we further evaluate the sys-
tems by replacing the separator of MTFAttNet with differ-
ent attention mechanisms in Table 3. Condition TFAttNet
employed the temporal-frequency attention with single scale
attention structure illustrated in Fig.2(a). FAttNet and TAt-
tNet are conditions only using the frequency attention mod-
ule (with temporal attention removed) and the temporal atten-
tion module (with frequency attention removed), respectively.
Condition noAttNet removed both temporal and frequency at-
tention modules from condition TFAttNet.

We first discuss the overall performances of different at-
tention systems. As shown in Table 3, noAttNet achieves
similar overall SDR (5.90 dB) to Spleeter (5.91 dB, listed in
Table 2) indicating the effectiveness of proposed generic net-
work structure without attention. With the frequency attention
FAttNet and temporal attention TAttNet, the overall SDR is
further improved to 6.65 dB and 6.79 dB respectively, which
indicates the effectiveness of attention on capturing both tem-
poral and frequency correlations. Combing both temporal and
frequency attention, TFAttNet achieves the SDR of 7.09 dB.
With multi-scale attention mechanism, MTFAttNet captures
the spectrogram correlations more effectively and achieves
the highest SDR of 7.26 dB.

The effects of attention mechanisms on different sources
is varied for different type of stems. For the bass stems, we
found that applying attention mechanisms introduced less im-
provements than other types of stems in Table 3. This is po-
tentially caused by the limited performance of the spectro-
gram domain method for the bass stems as shown in Table 2.

Based on noAttNet, the additional attention modules can not
effectively capture the spectrogram correlations for bass with
limited frequency resolution. For drums, FAttNet achieves
the SDR of 6.44 dB while TAttNet achieves the SDR of 7.29
dB. The temporal attention outperforms the frequency atten-
tion for drums, which might be due to the fact that drums
contain repeated beats in temporal domain. For vocals, com-
pared to condition noAttNet, both temporal and frequency at-
tention can significantly improve the performance. Combing
both temporal and frequency attention can increase SDR to
9.23 dB. With multi-scale attention, the SDR is further in-
creased to 9.51 dB. The success of attentions on vocals might
benefit from the relatively long duration of pitch and the har-
monic structure of vocals, which leads to the high correlations
in both temporal and frequency domain. The results show
such temporal and frequency correlations can be effectively
modeled by the proposed MTFAttNet system.

4. CONCLUSION

In this paper, we proposed a novel neural network architecture
called MTFAttNet for music source separation. MTFAttNet
employs a temporal-frequency attention module to exploit the
spectrogram correlations along temporal and frequency di-
mension. A multi-scale mechanism is also proposed for the
effectiveness of attention calculation. The experimental re-
sults show the proposed method achieves start-of-the art per-
formance on the MUSDB18 dataset. In future work, we will
explore the combination of waveform and spectrogram do-
main methods and further improve the separated results for
instruments.
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