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ABSTRACT

Non-linear activation functions, e.g., Sigmoid, ReLU, and
Tanh, have achieved great success in neural networks (NNs).
Due to the complex non-linear characteristic of samples, the
objective of those activation functions is to project samples
from their original feature space to a linear separable fea-
ture space. This phenomenon ignites our interest in explor-
ing whether all features need to be transformed by all non-
linear functions in current typical NNs, i.e., whether there
exists a part of features arriving at the linear separable fea-
ture space in the intermediate layers, that does not require
further non-linear variation but an affine transformation in-
stead. To validate the above hypothesis, we explore the prob-
lem of linear feature disentanglement for neural networks in
this paper. Specifically, we devise a learnable mask module to
distinguish between linear and non-linear features. Through
our designed experiments we found that some features reach
the linearly separable space earlier than the others and can
be detached partly from the NNs. The explored method also
provides a readily feasible pruning strategy which barely af-
fects the performance of the original model. We conduct our
experiments on four datasets and present promising results.

Index Terms— Linear feature disentanglement, Neutral
networks, Network pruning

1. INTRODUCTION

Neutral networks (NNs) have achieved great success in a large
variety of fields, e.g., multi-media data processing, natural
language processing, and speech recognition [1]. Non-linear
activation functions, e.g., Sigmoid, ReLU [2], and Tanh, play
important roles in NNs. The accumulation of multiple activa-
tion functions enables the NN to fit any continuous function,
as well as projects samples with complex non-linear charac-
teristics from their original feature space to a linear separable
feature space [3].

In this study, we aim to explore that whether all features
need to be transformed by non-linear activation functions in
current typical NNs, i.e., whether there exists a part of fea-
tures have reached a linearly separable space earlier than the
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Fig. 1. Illustration of two samples.

others during the learning process. Accordingly, such fea-
tures do not need to pass the non-linear transformation while
using an affine transformation instead. As illustrated in (a) of
Fig. 1, two samples are presented into three dimensions. It is
apparent that these two samples can be distinguished by their
features in z axis via a linear interface, but linearly indistin-
guishable in the x and y axes because they are projected to
the same point (see (b) in Fig. 1). In this case, we illustrate
that the features in the third dimension (z) are linear sepa-
rable, and features in the first two dimensions (x and y) are
required further non-linear variation. Note that, these linear
distinguishable features do not mean that samples can be clas-
sified based solely on them, it is a complex learning process.

To verify our hypothesis, we explore the problem of lin-
ear feature disentanglement in neural networks. Specifically,
we design a learnable mask module to distinguish between
linear features and non-linear features. The mask module
generates two complementary binary masks for disentangling
linear features. To overcome the non-differentiable problem
of the binary mask in the back-propagation, we adopt the
straight-through estimator [4] to estimate the gradient. From
the results of experiments, we discovered some phenomena
as we expect: there exist the linear features which appear in
the intermediate layers, and the proportions of them can con-
verge at the end of the training process. Moreover, our method
barely deteriorates the model performance.

Furthermore, we also explore the potential of the pro-
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posed network structure in network pruning. The intuition
behind this design is to leverage the linear property of fea-
tures to build a fast track, where linear features can be con-
nected to the last layer of neural networks directly. The main
contributions of this paper are summarized as follows:

• We provide the first attempt on distinguishing linear
features during the learning process of NNs. A module
using learnable masks is proposed according to disen-
tangle linear features.

• We include the binarization of the vector generated by
the mask module into the training, and use the straight-
through estimator [4] to alleviate the non-differentiable
problem of the binarization function.

• We conduct extensive experiments on convolutional
neural network (CNN). Experimental results confirm
that a part of features reached the linearly separable
space earlier than others. Accordingly using our dis-
entanglement strategy will barely affect the model per-
formance.

• We apply the proposed method in network pruning and
show some promising results.

2. RELATED WORK

In this section, we briefly review some related works on fea-
ture transformation in NNs. In the early studies, the Logistic
Sigmoid and Tanh have been widely used in the traditional
NNs. However, they suffer from vanishing gradient especially
when models go deeper. Hinton et al. [2] propose the Recti-
fied Linear Unit (ReLU), which makes the training of deep
NNs quicker and overcomes the problem of vanishing gradi-
ent. It is still one of the most popular activation functions
and is extensively applied in deep models due to its simplic-
ity, generality and effectiveness. Subsequently, various vari-
ants of ReLU have emerged, e.g., LeakyReLU [5], MTLU [6].
These variants make up for the dead neuron issue of ReLU.
Besides, some adaptive activation functions have been inves-
tigated recently. They contain some trainable parameters tun-
ing the non-linearity according to the data. For example, Ra-
machandran et al. [7] propose an adaptive function called
Swish. It introduces a learnable parameter which controls
the degree of interpolation between the linear function and
the ReLU function. The recently proposed general activation
function, ACON [8] is in fact an extension of Swish, whose
switch factor allows every neuron can be activated with dif-
ferent degrees. With the expansion of the non-linear search
space, these trainable activation functions also increase the
time and space complexity.

In prior applications of activation functions, all features
are fed to the non-linear activation functions. To our best
knowledge, there is limited work on investigating whether it

Fig. 2. Overall pipeline of our method. In the mask module,
we set the threshold τ to 0 in our implementation.

is necessary to pass all of features through non-linear activa-
tion functions. This paper provides the first attempt on the
linear feature disentanglement problem during the NN learn-
ing process.

3. PROPOSED METHOD

In this section, we provide a feasible scheme to identify the
non-linear and linear features. We present the linear feature
disentanglement for CNN models in the paper.

Overall Structure. The overall structure of our method
is illustrated in Fig. 2. The mask module in it generates two
complementary binary masks for selecting the linear and non-
linear features from the output features of a layer. The mask
modules divide the features into linear and non-linear part.
While the linear features no longer undergo any non-linear
transformation because they have been mapped into the lin-
early separable space well, and just need some appropriate
affine transformations. Finally, the two types of features are
concatenated as the final features as the input of the final de-
cision layer.

Mask Module. Specifically, the mask module as shown
in the green box of Figure 2 learns a function as below:

z = Tanh(G(m)) ∈ Rc. (1)

Here, m ∈ Rc is a randomly initialized vector, where c



is the channel number of the input features for the mask
module in CNN. G is a function defined as G : m →
g,g ∈ Rc. It consists of two fully-connected layers, g =
FC2(ReLU(FC1(m))), where FC1 and FC2 are two linear
transformations, ReLU [2] is the non-linear activation func-
tion. And there is another non-linear activation function Tanh,
which normalizes the output of the function G to [-1, 1] for
stabilizing the training process of the whole network.

Notice that z is a real-valued vector, we need to transform
it to a binary vector to indicate which feature is linearly sepa-
rable. The final two masks are expressed as below:

mask1[i] =

{
1, z[i] > 0

0, z[i] ≤ 0, i ∈ [1, c],
(2)

mask2 = 1−mask1, (3)

where mask1 and mask2 correspond to the non-linear fea-
tures and linear features respectively. The purpose of mask1

and mask2 is to distinguish which channels (or convolution
kernels) in CNN models can be recognized as the linear chan-
nels. Given a input image x, we define the non-linear feature
and linear feature as: Fnonlinear(x) = mask1 � F l(x) and
Flinear(x) = mask2�F l(x), where F l(x) denotes the out-
put feature of the l-th convolutional layer and � denotes that
each element of mask1 (or mask2) is multiplied by the cor-
responding channel of feature Fnonlinear(x) (or Flinear(x)).
And the non-zero channels in Flinear(x) correspond exactly
to the linear kernels in the l-th convolutional layer, while the
rest correspond to the non-linear kernels. Obviously, Eq.(2)
and Eq.(3) are non-differentiable. In this paper, we leverage
the method of straight-through estimator [4] and define the
gradients of both mask1 w.r.t z and mask2 w.r.t z to 1. So
the well-defined ∂Fnonlinear(x)

∂mask1
and ∂Flinear(x)

∂mask2
can be used

as approximations for ∂Fnonlinear(x)
∂z and ∂Flinear(x)

∂z , respec-
tively.

We set every element in z > 0 in the network initializa-
tion, because we suppose all features need to undergo non-
linear transformations at first and then observe changes in the
proportion of non-linear and linear features. The initializa-
tion conduces to optimize better the network at the beginning
of the training process. And as the training phase progresses,
the mask modules will be able to map the corresponding fea-
tures well to the linearly separable space.

The mask module is a relatively straightforward compo-
nent, so it is easy to be plugged into various CNN architec-
tures, as well as MLPs and RNNs without special design. And
the whole network can be trained in an end-to-end manner via
back-propagation thanks to the straight-through estimator.

4. EXPERIMENTS

In this section, the proposed method is empirically inves-
tigated on seven common benchmark datasets relevant to

(a) (b)

Fig. 3. (a) The schema of the residual module in ResNet-
56 M. (b) The convolutional block in VGG-16 M.

classification tasks, CIFAR-10, CIFAR-100 [9], SVHN [10],
STL-10 [11]. And we study the performance of our method
on two typical CNN models (ResNet-56 [12] and VGG-16
described in [13]) with the above four datasets. Finally, we
combine our method with network pruning and conduct rele-
vant exploratory experiments.

4.1. Experiments setting

Datasets. CIFAR-10 and CIFAR-100 consist of 50k training
images and 10k testing images in 10 and 100 classes respec-
tively. For these two datasets, we hold out 5k images from
training images for validation. The SVHN dataset has 73,257
images for training and 26,032 images for testing from 10 cat-
egories. In addition, there are 531,131 additional images in
SVHN, but we did not use the images due to restricted com-
putational resources. STL-10 contains 96×96 natural images
belonging to 10 classes. And most of the images in the dataset
are unlabeled, so we use only the labeled images. There are
5k training and 8k testing labeled images.

Architecture setting. We use ResNet-56 and VGG-16
which are widely used for image classification as the back-
bone networks. Fig. 3 depicts the structures of ResNet-56 M
and VGG-16 M. Indeed, we add a mask module before the
non-linear activation function at the end of each residual
block on ResNet-56. while on VGG-16, we do the same
before each max-pooling layer. According to the actual sit-
uation, the number and location of mask modules can be
changed flexibly. Note that, ResNet-56 has three stages of
residual block, so we add the mask modules to all three stages
on ResNet-56 M A, last two stages on ResNet-56 M B and
last stage on ResNet-56 M D. And VGG-16 M has five mask
modules.

Training setting. To get the baseline accuracies for
ResNet-56 and VGG-16, we follow the same training sched-
ule as [12]. For a fair comparison, we train our models with
mask modules utilizing the same training scheme as baseline
models, except that we optimize the mask modules via Adam
with an initial learning rate of 0.001 and a weight decay of
0.0001.
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Fig. 4. Proportion curves of some non-linear features for
ResNet-56 M D on CIFAR-10. The four subfigures above
show the results of non-linear features extracted by the first
two and the last two mask modules.

4.2. Results and Analysis

The purpose of the experiments is finding a part of the features
that have been mapped to the linearly separable space early.
And then we can verify the rationality of our method by top-1
accuracy and the trend of the proportion of features requiring
non-linear activation functions. The proportion of the non-
linear features in the l-th mask module could be formulated
as Pnonlinear =

∑c
i=1 mask1

l(i)

c , where mask1
l(i) denotes

the i-th element of the mask corresponding to the non-linear
features in the l-th layer.

We analyse the performance on CIFAR-10/100, SVHN,
STL-10, comparing against two popular CNNs, including
ResNet-56 and VGG-16. Firstly, as shown in Fig. 4, the pro-
portions of non-linear features have converged eventually in
all layers. The phenomenon proves that some intermediate
layers in the network already have the ability to map the cor-
responding features to the linearly separable space. And in
terms of the change curves from different layers, we find that
if the proportion of non-linear features extracted in the first

(a) (b)

(c) (d)

Fig. 5. Proportion curves of some non-linear features for
VGG-16 M on CIFAR-10. The four subfigures above show
the results of non-linear features extracted by the first two and
the last two mask modules.

few layers are low, the proportion in the last few layers tends
to be higher. After linear features are extracted in the first few
layers, in order to maintain the performance of the network,
more non-linear features need non-linear transformations. On
the other hand, we observe the contrary phenomenon from
Fig. 5. When few or even no linear features are extracted,
the representation power of layers closer to the output are rel-
atively stronger during training. So the proportion of non-
linear features of last few layers can decrease and finally con-
verge. The difference between ResNet-56 M D and VGG-
16 M might be caused by the depth of models. In particu-
lar, ResNet-56 M D is deeper then VGG-16 M. Moreover,
the mask modules of ResNet-56 M D are equipped in the last
stage, and the network parameters in the stage have greater
ability to map corresponding features to the linear separable
space. So the first mask module of ResNet-56 M D can ex-
tract more than 20% linear features at last. These observations
firmly support our proposed assumption.

The experiment results are reported in Table 1. For the
CIFAR-10 dataset, it is evident that our models ResNet-



Fig. 6. Removing linear feature maps results in pruning of corresponding filters.

56 M D and VGG-16 M are performing better than the base-
line models. It seems that the number and location of mask
modules can affect the final performance. And for the CIFAR-
100 dataset, the performance of our models is somewhat in-
ferior to the baseline models, but the gap between them is
marginal. For the SVHN and STL-10 datasets, our models
based on ResNet-56 (ResNet-56 M B on SVHN and ResNet-
56 M A on STL-10) outperform the baseline models, while
two models with VGG-16 M achieve worse performance than
original VGG-16, especially on SVHN. From the results of
experiments, our method is not perfect in terms of accuracy.
Nonetheless, we provide some insights on the evolution of
linear/non-linear features and the disentanglement problem.

4.3. Exploration on Network Pruning

Considering the linear features that have been mapped to the
linearly separable space, we could set up a fast track to export
the linear features which are disentangled by the first mask
module to the last decision layer of the network. As for the
linear features and non-linear features extracted from subse-
quent layers, we use only non-linear features, while ignore
the linear features. That is, we leave out the network param-
eters associated with the linear features, except for the linear
features extracted from the first mask module (see Fig. 6).
We conduct the experiments on CIFAR-10 and SVHN with
our pre-trained networks: ResNet-56 M and VGG-16 M. The
masks generated by the mask modules in above two models

Table 1. Classification accuracy on the CIFAR-10/100,
SVHN and STL-10 test sets. The best results are in bold.

Model CIFAR-10 CIFAR-100 SVHN STL-10
ResNet-56(base) 93.07 70.73 96.66 76.70
ResNet-56 M A 93.14 70.06 96.55 77.01
ResNet-56 M B 92.22 70.25 96.80 75.71
ResNet-56 M D 93.28 70.65 96.57 76.79
VGG-16(base) 93.04 72.54 96.53 80.64

VGG-16 M 93.40 71.92 96.41 79.69

are made use of to guide pruning. For retraining, we fine-tune
the networks for 40 epochs after pruning, with the learning
rate of 0.001 and divided by 10 at epochs 10 and 20.

We compare our pruning algorithm with some existing
frameworks, e.g., L1 [13], KSE [14], SFP [15], GAL [16],
HRank [17], Variational [18], FPGM [19]. Table 2 shows
the experimental results. The top-1 accuracy drop between
pruned model and the baseline model and the reduction ratios
of parameters are reported.

CIFAR-10. For the CIFAR-10 dataset, we prune the net-
work based on pre-trained ResNet-56 M D and VGG-16 M.
As shown in Table 2, we observe a gap between our method
and others in parameters reduction. But it is noteworthy that
the accuracies of our method significantly increase with pa-
rameters reduction compared to the original ResNet-56 and
VGG-16. The results suggest a great potential of the feature
disentanglement.

SVHN. For the SVHN dataset, we prune the network
based on pre-trained ResNet-56 M B. Compared with orig-
inal ResNet-56, our method achieves 18.7% parameters re-
duction with a 0.21% accuracy increase. Significantly, our
accuracy drop is the smallest, and the reduction of parameters
is more than the classic channel pruning method, L1 [13]. The
results show that our pruning algorithm achieves competitive
performance.

Although our pruning method is inferior to the others in
parameter reduction, it is simple yet effective, and the accu-
racy of ours is competitive. In short, our study shows the great
potential in feature disentanglement. This is a pioneering and
enlightening research, and provides a wholly new perspective
for network pruning.

5. CONCLUSION

In this paper, we make the first exploration to disentangle the
linear features from the output features of a network layer. We
devise a simple yet efficient module: the learnable mask mod-
ule that distinguishes between linear features and non-linear



Table 2. Comparison of the pruned ResNet-56 and VGG-16
on CIFAR-10 and SVHN. The ”Acc.↓” is the accuracy drop
between pruned model and the baseline model, the smaller,
the better. The best results are in bold and the second best are
underlined.

Model Method Acc.↓% Params.↓%

ResNet-56
(CIFAR-10)

Variational [18] 0.78 20.49
KSE [14] -0.20 54.73

HRank [17] 0.09 42.4
GAL-0.6 [16] 0.28 11.8

L1 [13] -0.06 9.4
Ours -0.11 5.4

VGG-16
(CIFAR-10)

L1 [13] 0.13 64.0
Variational [18] 0.07 73.34
GAL-0.05 [16] 0.19 77.6

Ours -0.11 11.6

ResNet-56
(SVHN)

L1 [13] -0.01 9.1
SFP [15] -0.12 25.6

FPGM [19] 0.20 38.8
Ours -0.21 18.7

features. We also overcome the non-differentiable problem
with the help of the straight-through estimator. Extensive ex-
periments on several datasets demonstrate that our method
has a great value in feature disentanglement and provides
some insights in the evolution of linear or non-linear features.
Besides, our exploration experiments in network pruning have
also achieved promising results. Our future work will be on
improving the feature disentanglement modules for better pa-
rameter efficiency.
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