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Abstract—Recent researches indicate that utilizing the fre-
quency information of input data can enhance the performance of
networks. However, the existing popular convolutional structure
is not designed specifically for utilizing the frequency information
contained in datasets. In this paper, we propose a novel and effec-
tive module, named FreConv (frequency branch-and-integration
convolution), to replace the vanilla convolution. FreConv adopts
a dual-branch architecture to extract and integrate high- and
low-frequency information. In the high-frequency branch, a
derivative-filter-like architecture is designed to extract the high-
frequency information while a light extractor is employed in the
low-frequency branch because the low-frequency information is
usually redundant. FreConv is able to exploit the frequency infor-
mation of input data in a more reasonable way to enhance feature
representation ability and reduce the memory and computational
cost significantly. Without any bells and whistles, experimental
results on various tasks demonstrate that FreConv-equipped
networks consistently outperform state-of-the-art baselines.

Index Terms—Convolutional structure, image classification,
object detection, instance segmentation

I. INTRODUCTION

Deep learning has shown excellent performance on various
computer vision tasks [1]–[5]. Recently, some researchers [6]–
[9] have indicated that utilizing the frequency information
of input data can improve the performance of networks.
The research community has devoted significant efforts to

∗These authors contributed to the work equllly and should be regarded as
co-first authors.

introducing frequency information into CNNs to acquire better
fitting. For exploiting frequency information, the prior work
[6], [8]–[10] integrated the classic low-pass filter with the
downing-sampling in CNNs to obtain low-frequency features.
These methods demonstrated the performance superior to the
baselines’ [2] because their replacement of pooling layers
conforms to the Nyquist Theorem [11]. Nevertheless, their
networks focus only on low-frequency information and are not
able to exploit the information of whole frequencies contained
in datasets. If high-frequency information is crucial for some
tasks, these methods may not be effective. Morover, OctConv
[7] argued that the output features of a convolutional layer
can be decomposed into features of different frequencies and
took into account the high-frequency information. To extract
multi-frequency features, OctConv designed an architecture to
store and process high- and low-frequency features. However,
OctConv did not specifically design convolutional structure for
utilizing the frequency information contained in datasets.

In order to overcome the above drawback, in this paper,
we propose the frequency branch-and-integration convolution
module (FreConv) to extract and integrate high- and low-
frequency features effectively and efficiently to exploit the
whole frequency information. FreConv is able to adaptively
exploit frequency information of input data in a more reason-
able way, enhancing the feature representation ability notably
with significantly reducing of computational and memory
costs. FreConv mainly consists of three modules, feature
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(b) Low-frequency Features

(c) High-frequency Features

(a) Original Image (d) Integrated Features

Fre-High-Frequency Fre-Low-Frequency

(e) Frequency Analysis on Spectrum Maps

Oct-Low-Frequency

Baseline

Oct-High-Frequency

Fig. 1: (a) Original input image. (b) Low-frequency output
feature maps. (c) High-frequency output feature maps. (d)
Integrated output feature maps. (e) Frequency analysis on
spectrum maps. 1000 images are sampled randomly from
ImageNet [1] and input to OctConv [7] and our FreConv-
ResNet50, respectively. The spectrum maps of features of
1000 images from the first 3 × 3 convolutional layer of
vanilla ResNet50 [2], OctConv-ResNet50, and our FreConv-
ResNet50, respectively, are averaged and shown. “Baseline”
refers to the first 3 × 3 convolutional layer of vanilla
ResNet50 [2]. See the text for details.

split, feature extraction, and feature integration. In the feature
split module, a dual-branch attention module is designed to
adaptively adjust the activation value of input features to
make the activation features suitable for dual-branch high- and
low-frequency feature extraction and fuse the inter-channel
information. To extract features of different frequencies, we
utilize a dual-branch architecture to extract high- and low-
frequency features through learning in the feature extraction
component. In the high-frequency branch of this module,
a derivative-filter-like architecture is designed to extract the
high-frequency information. In essential, such architecture will
produce a series of derivative filters after learning, extracting
the information of various high-frequencies. In addition, it
is known that the low-frequency information describes a
smoothly changing structure [12] and carries less information
according to Shannon Information Theory [13], [14]. Hence, in
the low-frequency branch of feature extraction, the point-wise
convolution [15] is adopted to avoid redundant parameters and
calculations. In the feature integration module, we integrate the
extracted frequency features with the point-wise summation to
avoid losing crucial information.

To illustrate the effect of our FreConv on the extraction
of high- and low-frequency information, we replace all 3× 3
convolutions of ResNet50 by FreConvs which is denoted by

FreConv-ResNet50 in Fig. 1, and visualize the input image
and some output high- and low-frequency features of the first
FreConv. The results are shown in Fig. 1. It is seen from
Fig. 1(b)(c) that our FreConv extracts the high- and low-
frequency information of the input image, and Fig. 1(d) is
regarded as the feature with enhanced representation ability
(see Sec. III). To further demonstrate the effectiveness of
our FreConv, we adopt the Fourier transform to analyze the
average energy spectrum map of the 30k features. It is seen
from Fig. 1(e) that our FreConv is able to extract the low-
frequency information better and the information of much
richer high-frequencies than OctConv does.

To further validate the universality of our FreConv, we fur-
ther integrate FreConv into representative backbones, ResNet
[2], VGG [16], and DenseNet [17], and test their performance.
It is noted that our FreConv is a plug-and-play replacement
for the vanilla convolution. Experimental results show that
the backbones plus our module are superior to the state-of-
the-art methods at lower memory and computational costs. In
summary, our main contributions are as follows:
• We design a plug-and-play module, FreConv, that exploits

the frequency information of input data in a more reason-
able way with significant computational and memory cost
reduction for various tasks.

• We propose a dual-branch architecture to extract the fea-
tures of various frequencies, and integrate these features
by an efficient and effective approach.

• We integrate FreConv into various CNN backbones for
diverse tasks, and all integrations outperform the state-
of-the-art methods or baselines.

II. APPROACH

The pipeline of our proposed FreConv is shown in Fig. 2,
which mainly consists of three components: feature split,
feature extraction, and feature integration. In this section, we
first introduce the feature extraction module, and then explain
the rest of the modules. Finally, we analyze how to use this
module to build networks in detail.

A. High- and Low-frequency Feature Extraction

The high-frequency information describes the rapidly
changing fine details [12] and carries more quantities of infor-
mation [13]. The complex information is various and vanilla
learned convolution has difficulty autonomously extracting the
information without specific constraints or structures. Hence,
we propose a derivative-filter-like architecture, which consists
of different convolutions to extract high-frequency features
Xhigh through learning in the high-frequency extraction (HFE)
branch. Moreover, Ma et al. [18] proved that the Difference of
Exponential is a derivative filter, which has the attributes of the
high-pass filter. According to [18], the derivative filter obtained
by the equation is shown in Eq (1), where 0 ≤ u ≤ H ,
0 ≤ v ≤W , and σ is the scale factor, which is related to the
size of the convolution kernel. α(·) represents the weighting
coefficients of exponential filters, and they can be given with
Eq (2). From the Eq (1), we argue that exponential filters with



Fig. 2: The overview of our FreConv. The module has two
branches: the above branch extracts low-frequency informa-
tion, and the below branch extracts high-frequency informa-
tion. Finally, the extracted features from the two branches are
integrated in the end.

different sizes construct different derivative filters, which will
affect the performance of the network.

H(u, v) = α(σ0)e
−
√
u2+v2

σ20 − α(σ1)e
−
√
u2+v2

σ21 (1)

α(σ) =
1 + e−

1
σ

1− e− 1
σ

(2)

To make the network adaptively extract high-frequency
information that is useful for tasks, the multi-scale convolution
is leveraged as the first exponential filter while fixing the point-
wise convolution as the second in the right of Eq (1). As
shown in Fig. 2, FreConv makes the difference between the
multi-scale convolution and point-wise convolution construct
the derivative-filter-like architecture according to Eq (1). The
derivative-filter-like architecture is initialized with the param-
eters of the exponential filter.

Here, we design Multi-scale Conv (More details can refer to
Appendix), which combines the different sizes of convolution
to extract information. Input features Xbottom are completely
passed through each convolution and output features. Then,
these features are concatenated by channel. The Multi-scale
Conv is initialized with the parameters of the exponential filter
and combined with the point-wise convolution to construct the
derivative-filter-like architecture. This architecture can produce
a series of derivative filters through learning. The architecture
essentially differs from Inception [15].

Meanwhile, the high-pass filter passes the high-frequency
information while suppressing the low-frequency information.
The low-frequency information needed by the task has to
pass through the low-frequency extraction (LFE) branch. It
is known that the low-frequency information describes the
smoothly changing structure [12] and carries fewer quantities
of information [13]. OctConv reduces the redundancy of low-
frequency information by reducing resolution. Different from
OctConv, we apply the point-wise convolution operation to ex-
tract low-frequency information in order to reduce redundancy
and obtain low-frequency features Xlow in the LFE branch. In
order to employ the larger convolution (compared with 3× 3
convolution) without increasing parameters and FLOPs in the
HFE branch, we adopt the dilated or group convolution and

propose two options: dilated convolution kernel (DCK), and
group convolution kernel(GCK).
Dilated Convolution Kernel. The dilated convolution can
make the 3×3 convolution acquire a larger receptive field with-
out changing the number of parameters and FLOPs. Hence, we
can obtain the receptive field of K ×K convolution kernels
corresponding to 3× 3 convolution kernels with a dilated rate
r ∈ {1, 2, 3, 4} as Eq (3), where K ∈ {3, 5, 7, 9} is the size
of convolution kernels. Unlike [19]–[21], where the dilated
convolution is only added to the end of the network structure,
and we adopt the dilated convolution from the beginning of
the network.

K = 3 + 2(r − 1) (3)

Group Convolution Kernel. The group convolution can make
the number of parameters and calculations of K×K convolu-
tion be basically the same as that of 3×3 vanilla convolution.
We can utilize the larger convolution kernel according to
Eq (4). From this equation, we can conveniently employ a
larger convolution kernel by setting the group as g2, where
g1, g2 ∈ {2, 4, 8, 16}.

g2 ≈
K2

2 × g1
K2

1

(4)

B. Attention-based Feature Split

To make the input activation features suitable for the dual-
branch high- and low-frequency feature extraction and fuse the
inter-channel information. In this paper, we propose a dual-
branch attention module, named the feature split module, to
dynamically adjust the activation value of input features to
make the input activation features suitable for dual-branch
high- and low-frequency feature extraction. Given an input
feature map: Xin ∈ RC×H×W , we use global average pooling
to generate channel-wise statistics S ∈ RC×1×1 as shown in
Eq (5).

S = Fgap (Xin) =
1

H ×W

H∑
i=1

W∑
j=1

Xin (i, j) (5)

Meanwhile, we adopt a dual-branch method to make a single
branch into two branches output. Where α, β ∈ RC×1×1

respectively represent the weights of the two branches, and
the whole process of acquiring them are expressed with Eq
(6), (7), η refers to the sigmoid function and δ is the ReLU
activation. Fconv1 1, Fconv1 2, Fconv2 1, and Fconv2 2 is 1× 1
convolution operations.

α = Ftotal1 (S) = η (Fconv1 2 (δ (Fconv1 1 (S)))) (6)

β = Ftotal2 (S) = η (Fconv2 2 (δ (Fconv2 1 (S)))) (7)

We multiply the input feature map by α and β to get the
weighted features Xα and Xβ , and they can be given with
Eq (8), (9).

Xα = α ∗X (8)

Xβ = β ∗X (9)



As the Fig. 2 shows, the top branch is treated as the
low-frequency branch, and the bottom branch is the high-
frequency branch. To take into account the correlation be-
tween feature channels, we split each branch into two parts
by channel by default. Note that, this way of splitting is
scalable. Here we divide the feature channel into N parts,
and N ∈ {2, 4, 8, 16}, each part of the same size, and get
Xα1, ..., XαN , Xβ1, ..., XβN ∈ RC/N×H×W . Then we add
these features along the channel to achieve the purpose of
fusing inter-channel information. Finally we obtain the split
features Xtop, Xbottom ∈ RC/N×H×W . The whole process
can be expressed with Eq (10), (11).

Xtop = Xα1 + ...+XαN (10)

Xbottom = Xβ1 + ...+XβN (11)

The attention mechanism can strengthen the features that are
suitable for extracting frequency information while weakening
the inappropriate features. Notably, the module is comple-
mentary to the SE module [22] and we prove this in the
Experiments (see Table I).

C. Feature Integration

After we obtained the extracted high- and low-frequency
information through learning in Sec. II-A, we combine this
information to express the input information for the next stage.
Therefore, we integrate the extracted frequency features with
the point-wise summation to avoid losing crucial information
and enhance the feature representation ability. Finally, we get
output features Xout as Fig. 2.

D. FreConv-equipped Networks

The network employs a dual-branch to extract frequency
features, which requires the high integrity of the input fre-
quency information. However, max-pooling can easily lose
information [8]. Hence, without changing the basic structure
of the network, we replace the max-pooling operation with
the strided-convolution to ensure the relative integrity of the
information. In the first stage, the maximum size of con-
volution kernel used is 9 × 9. However, the resolution of
features decreases as the network deepens, and our FreConv-
equipped ResNet (FreConv-ResNet) network removes the pre-
vious largest convolution in the current stage compared to the
previous stage. This design can be extended to other network
models, such as VGG, and DenseNet.

III. EXPERIMENTS

A. Experimental Setups

Image Classification. For image classification, we use the
most popular dataset ImageNet [1] for all experiments. The
experimental settings are fully following [2].
Object Detection. We train our model on the COCO dataset.
For object detection, the setting of experiments strictly follows
Faster R-CNN [3].
Instance Segmentation. Mask R-CNN [23] is adopted as the
segmentation framework on COCO.

TABLE I: Validation accuracy rate, parameters, and calcula-
tions comparison results of FreConv on ImageNet with other
SOTAs.

Backbone Method Params ReducedFLOPsReducedTop-1

ResNet50

ResNet-Baseline [2] 25.56M - 4.14G - 75.89
SE-ResNet [22] 28.07M +9.82 4.15G +0.24 76.82
SE-ResNeXt [22], [24] 27.56M +7.82 4.32G +4.35 78.05
Anti-aliased-ResNet [8] 25.56M 0.00 5.16G +24.64 76.84
WResNet-Haar [9] 25.56M 0.00 5.16G +24.64 76.89
Adaptive-anti-ResNet [10] 25.56M 0.00 5.17G +24.88 77.01
OctConv-ResNet-α 1

2
[7] 25.56M 0.00 2.40G -42.00 76.80

ResNeXt50 [24] 25.03M -2.07 4.30G +3.87 77.22
PyConvResNet [25] 24.85M -2.78 3.88G -6.28 77.44
Ours-GCK-ResNet-N-4 16.56M -35.21 2.69G -35.02 77.13
Ours-DCK-ResNet50-N-2 18.50M -27.62 2.98G -28.02 77.53
Ours-GCK-ResNet-N-2 18.71M -26.80 3.07G -25.85 77.80
SE-Ours-GCK-ResNet-N-2 21.22M -16.98 3.08G -25.60 78.80

ResNet101ResNet-Baseline [2] 44.55M - 7.85G - 77.13
Ours-GCK-ResNet-N-2 31.94M -28.31 5.64G -28.15 78.75

ResNet152ResNet-Baseline [2] 60.19M - 11.58G - 77.90
Ours-GCK-ResNet-N-2 42.85M -28.81 8.22G -29.02 79.27

DenseNet DenseNet121-Baseline [17] 7.98M - 2.88G - 74.98
Ours-GCK-DenseNet-N-2 6.89M -13.66 2.33G -19.10 75.81

VGG VGG16-Baseline [16] 138.37M - 15.53G - 72.98
Ours-GCK-VGG-N-2 129.59M -6.35 7.67G -50.61 74.12

B. Comparing with SOTAs on ImageNet

To show the effectiveness of the proposed FreConv, in this
section, we replace the widely-used vanilla 3× 3 convolution
with the proposed FreConv. The upgraded networks have only
one global hyper-parameter N . Many methods use different
and complex training settings, for fair comparisons, we re-
implement these methods without tricks.

In Table I, it can be observed that most methods that
utilize frequency information have significantly increased cal-
culations. Moreover, none of these methods decrease the
parameters. The performance of FreConv-ResNet50 is bet-
ter than the baseline by 1.91% in terms of top-1 accuracy
with parameters and FLOPs reduced by 26.80% and 25.85%,
when we adopt the GCK method and set N to 2. We com-
pare FreConv-ResNet with a set of state-of-the-art methods:
OctConv-ResNet50 [7], anti-aliased-ResNet50 [8], WaveCNet
[9], adaptive-anti-aliased-ResNet50 [10], SE-ResNet [22], SE-
ResNeXt [24], PyConvResNet [25]. Experimental results show
that the backbones plus our module are superior to the state of
the art at lower memory and computational cost. Meanwhile,
FreConv is designed to replace the vanilla convolution. The
existing backbones often adopt SE module [22] to enhance the
performance of networks. Our FreConv is orthogonal to the
SE module, the combination of FreConv and the SE module
can further enhance the performance of the network (from
77.80 to 78.80), and the result outperforms the combination
of ResNeXt and the SE module by 0.7 (from 78.8 to 78.1)
with nearly 30% FLOPs and 30% parameters dropped. We
also migrate our method to other models, such as DenseNet
and VGG. Despite reducing the amount of FLOP by 50.61%,
our method shows superior performance to the VGG baseline
(from 72.98 to 74.12). DenseNet-121 contains only 7.98M
parameters, about 5.77% of VGG16, while it performs 2%
more accurately. Although it would be more challenging to
improve performance, FreConv-DenseNet121 still outperforms
the baseline (from 74.98 to 75.81).



TABLE II: Average Precision (AP ) and Average Recall (AR)
of object detection with different sizes on the MS COCO
dataset.

Object size
Small Medium Large All

ResNet50
AP (%)

21.1 39.2 45.8 35.8
FreConv-ResNet50 22.7 41.2 48.4 37.8
Improve. +1.6 +2.0 +2.6 +2.0
ResNet50

AR(%)
31.7 54.1 62.1 50.0

FreConv-ResNet50 33.6 55.3 64.2 51.5
Improve. +1.9 +1.2 +2.1 +1.5

TABLE III: Performance of instance segmentation on MS
COCO validation set using FreConv with different scales.

Backbone AP AP50 AP75 APS APM APL
ResNet50 33.7 54.4 35.6 17.5 36.7 45.7
FreConv-ResNet50 35.5 57.6 37.8 20.2 39.0 47.2

C. Object Detection

We further evaluate our FreConv’s generalizability on the
object detection task of the COCO dataset. The two-stage
Faster R-CNN is used as our framework. As shown in Table
II, FreConv-GCK-ResNet50-N-2 outperforms its counterparts
by 2.0% on mean average precision (mAP ) and 1.5% on
mean average recall (mAR) and has a large margin of im-
provement over its counterparts by 1.6%, 2.0%, and 2.6% on
AP for small, medium, and large objects, respectively. The
improvement of AR for small, medium, and large objects are
1.9%, 1.2%, and 2.1%, respectively. These results confirm the
effectiveness of the proposed FreConv method.

D. Instance Segmentation

Mask R-CNN [23] is adopted as the instance segmentation
method, and the performance of instance segmentation on
the COCO dataset is shown in Table III. The FreConv-GCK-
ResNet50-N-2 based method outperforms its counterparts by
1.8% on mask AP and 3.2% on mask AP50. The performance
gains on objects with different sizes are also demonstrated. The
improvement of AP for small, medium, and large objects are
2.7%, 2.3%, and 1.5%, respectively.

E. Ablation Study

In this section, we conduct an ablation study to investigate
the relative effectiveness of each part in FreConv. The baseline
methods (Table IV(a)) are conducted with ResNet50 on the
ImageNet dataset. The experimental results are shown in
Table IV. In Table IV, we use GCK methods to reduce the
computation complexity in all listed experiments and we set
N to 2 in the feature split module.
Feature Extraction Methods: In this part, the down-sampling
module, the feature split and feature integration method adopt
the same strategy. The network topology and parameters of
the LFE branch are consistent with those of the HFE branch
using 3× 3 convolution grouped 2 in method (g). Meanwhile,
the method (f) adopts 1×1 convolution in the LFE branch and
employs the 3 × 3 convolution grouped 2 adding point-wise
convolution in the HFE branch. However, method (f) outper-
forms method (g) (from 77.19 to 77.23) although method (g)
has more parameters and calculations than method (f) because
the low-frequency branch obtains more parameters, we argue
that allocating more parameters in the low-frequency branch

TABLE IV: Results of the ImageNet classification experi-
ments. Starting from our baseline, we gradually add feature
split, down-sampling, feature integration, and frequency fea-
ture extraction scheme in our FreConv-ResNet for ablation
studies. Where “3× 3” operation refers to the combination of
3×3 convolution and point-wise convolution,“Same” operation
refers to the LFE and HFE branch adopting the same op-
eration. LFE: low-frequency extraction, HFE: high-frequency
extraction. We report the Top-1 accuracy (%).

Method Split Sampling LFE HFE Integration Top-1DirectOurPoolStrided1 × 1Same3 ×3SameMultiSumAttention
(a) - - - - - - - - - - - 75.89
(b) X X X X X 75.82
(c) X X X X X 76.12
(d) X X X X X 76.91
(e) X X X X X 76.28
(f) X X X X X 77.23
(g) X X X X X 77.19
(h) X X X X X 77.80

would lead to over-fitting. The performance of method (f) is
much lower than that of method (h) (from 77.23 to 77.80).
The result shows that 3× 3 learned convolution is insufficient
in the extraction of various high-frequency information, and
the derivative-filter-like architecture can help the network
to better extract the high-frequency information useful for
tasks. Moreover, we try to fix the initialization parameters of
the derivative-filter-like architecture so that these parameters
do not participate in network training. However, although
the fixed-parameter network can work, the performance of
the learned-parameter network is much better than it. The
derivative-filter-like architecture that can be adjusted through
learning is better than the fixed coefficients.
Feature Split and Feature Integration Methods: In this
part, the down-sampling module and the frequency extraction
branch use the same strategy. For methods (c) and (e), we
adopt popular parameter-free soft-attention feature integration
module according to Transformer [26]. In (b), we fuse the
features by direct point-wise summation which is mentioned
in Section II-C. We find that the attention module outperforms
point-wise summation operation (c) while the feature split
module of methods (b) and (c) adopts the directly split feature
operation (from 76.12 to 75.82, the difference is 0.3). In
contrast, the performance of this module (e) is lower than
the point-wise summation operation (d) while the feature split
module of method (d) and (e) adopts our feature split operation
(from 76.28 to 76.91, the difference is 0.63). This module not
only has no effect on the feature integration part, but also
inhibits the performance of the network.

In fact, two conclusions can be drawn from this phe-
nomenon: 1) Without the operation of inter-channel informa-
tion fusion, it is difficult for the network to adaptively split
suitable features for the high- and low-frequency feature ex-
traction. 2) Considering that the network can extract the high-
and low-frequency information, the low-frequency information
and high-frequency information are complementary to each
other and usually do not appear in the same spatial position
of the features. The point-wise summation is conducive to the
integration of high- and low-frequency information. Besides
the above description, we observe that the combination of the



summation operation and our feature split module can acquire
better performance, and the validation result of method (b)
is significantly lower than that of method (d) (from 75.82 to
76.91). This suggests that the LFE and HFE branches are not
completely suitable for the input information. The attention-
based feature split module can strengthen the features that are
suitable for extracting frequency information while weakening
the inappropriate features.
Down-sampling Methods: We compare our strided-
convolution method with the max-pooling down-sampling
method, and can discover that the result of method (f) is
better than that of method (d) (from 77.23 to 76.91). This
means that the strided-convolution provides more complete
frequency information than max-pooling.

It is noted that we also visualize the spectrum maps and
feature maps of the input data in Appendix.

IV. CONCLUSION

In this work, we propose a dual-branch architecture, named
FreConv, to extract the features of various frequencies, and
integrate these features. A derivative-filter-like architecture
architecture is designed to extract the information of high-
frequency while a light extractor is employed. FreConv can
exploit frequency information in a more reasonable way to
enhance the representation ability of features and improve the
network’s efficiency. FreConv can replace vanilla convolution
operation in-place, and it can save a substantial amount of
parameters and FLOPS. Extensive experiments on various
datasets, tasks, and network architectures demonstrated our
FreConv’s effectiveness. The self-supervised learning with
network structure is currently a major focus in research society,
we will apply FreConv to the self-supervised learning [27]–
[29]. Finally, we hope our FreConv can inspire research that
exploits the information of whole frequencies.
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