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ABSTRACT

Recent learning-based video quality assessment (VQA)
algorithms are expensive to implement due to the cost of
data collection of human quality opinions, and are less ro-
bust across various scenarios due to the biases of these opin-
ions. This motivates our exploration on opinion-unaware
(a.k.a zero-shot) VQA approaches. Existing approaches only
considers low-level naturalness in spatial or temporal do-
main, without considering impacts from high-level seman-
tics. In this work, we introduce an explicit semantic affin-
ity index for opinion-unaware VQA using text-prompts in
the contrastive language-image pre-training (CLIP) model.
We also aggregate it with different traditional low-level nat-
uralness indexes through gaussian normalization and sig-
moid rescaling strategies. Composed of aggregated semantic
and technical metrics, the proposed Blind Unified Opinion-
Unaware Video Quality Index via Semantic and Technical
Metric Aggregation (BUONA-VISTA) outperforms existing
opinion-unaware VQA methods by at least 20% improve-
ments, and is more robust than opinion-aware approaches.

1. INTRODUCTION

With the rapid growth in the number of online videos, ob-
jective Video quality assessment (VQA) is gaining a great
deal of interest from researchers. In recent years, although
opinion-aware VQA approaches [1–4] have been extensively
explored, they rely on large amounts of training data with ex-
pensive human subjective scores [5–8] and are typically not
easily adaptable to new datasets. How to alleviate the bur-
den of costly training data and build a robust VQA capable of
evaluating any given video is the issue that urgent to study.

In recent years, few studies have been conducted in
opinion-unaware VQA [9–12], which typically rely on em-
pirical criteria for VQA instead of regression on opinion data.
For example, NIQE [9] measures spatial naturalness of im-
ages by comparing them with distributions of pristine natural
contents (Fig. 1(a)). TPQI [12], inspired by knowledge on
human visual system, measures the temporal naturalness of
videos through the inter-frame curvature on perceptual do-
mains [13, 14]. These opinion-unaware VQA methods are
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Fig. 1: Visualization on criteria of the three independent met-
rics in BUONA-VISTA. The pipeline in shown in Fig. 2.

based on low-level criteria, ignoring the human perceptions
of video semantics. Moreover, many existing studies have
noticed that natural authentic distortions [15–17] or aesthetic-
related issues [3, 18] commonly occur on in-the-wild videos
and impact human quality perception. These issues are hardly
captured with these low-level criteria, but could be better ex-
tracted with semantic-aware deep neural features [4, 19–23].

In this paper, we propose a semantic-aware criterion to
tackle with these high-level quality issues in an unsupervised
manner. With the Contrastive Language-image Pre-training
(CLIP) [24], we are able to calculate the affinity between vi-
sual features and any given texts. Based on CLIP, we measure
whether visual features of a video are more similar to text
features for positive (e.g. high quality), or negative (e.g. low
quality) text descriptions (Fig. 1(c)), which acts as semantic-
aware quality criterion mostly focusing on aesthetic-related
quality issues and high-level human quality perception. With
the new criteria, we design the Semantic Affinity Index as
a semantic-aware zero-shot VQA index to assess authentic
distortions and aesthetic issues. Furthermore, we design the
gaussian normalization followed by sigmoid rescaling [25], to
aggregate the Semantic Affinity Index with low-level spatial
and temporal naturalness metrics, composing into the overall
Blind Unified Opinion-Unaware Video Quality Index via Se-
mantic and Technical Metric Aggregation (BUONA-VISTA).

In general, our contributions are three-fold:
1) We introduce a novel text-prompted Semantic Affin-

ity Index for opinion-unaware VQA. It incorporates
acronym-differential affinity and multi-prompt aggre-
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Fig. 2: The overall pipeline of BUONA-VISTA, including (a) Semantic Affinity Index, (b) Spatial Naturalness index, and (c)
Temporal Naturalness Index. The three indexes are remapped and aggregated to the final BUONA-VISTA index.

gation to accurately match human quality perception.
2) We introduce gaussian normalization and sigmoid

rescaling strategies to align and aggregate the Semantic
Affinity Index with low-level spatial and temporal tech-
nical metrics into the BUONA-VISTA quality index.

3) The BUONA-VISTA significantly outperforms exist-
ing zero-shot VQA indexes (>20%), and proves supe-
rior robustness against opinion-aware VQA methods.

2. THE PROPOSED METHOD

In this section, we introduce the three metrics with different
criteria that make up the proposed video quality index, includ-
ing the CLIP-based Semantic Affinity Index (QA, Sec. 2.1),
and two technical naturalness metrics: the Spatial Naturalness
Index (QS , Sec. 2.2), and the Temporal Naturalness Index
(QT , Sec. 2.3). The three indexes are sigmoid-rescaled and
aggregated into the proposed BUONA-VISTA quality index.
The overall pipeline of the index is illustrated in Fig. 2.

2.1. The Semantic Affinity Index (QA)

To extract semantic-related quality issues in VQA, we utilize
CLIP to extract the Semantic Affinity Index (QA) as follows.
Aesthetic-specific Data Preparation. As the semantic
branch of BUONA-VISTA aim at authentic distortions and
aesthetic issues which are usually insensitive to resolutions or
frame rates, we follow the data preparation in DOVER [18] to
perform spatial down-sampling and temporal sparse frame
sampling on the original video. We denote the downsampled
aesthetic-specific view of the video as V = {Vi|Ni=0}, where
Vi is the i-th frame (in total N frames sampled) of the down-
sampled video, with spatial resolution 224×224, aligned with
the spatial scale during the pre-training of CLIP [24].
Affinity between Video and Texts. Given any text prompt
T , the visual (Ev) and textual (Et) encoders in CLIP extract
V and T into implicit visual (fv,i) and textual (ft) features:

fv,i = Ev(Vi)|N−1i=0 ; fTt = Et(T ) (1)

Then, the semantic affinity A(V, T ) between V (aesthetic
view of the video) and text T is defined as follows:

A(V, T ) = (

N−1∑
i=0

fv,i · fTt
‖fv,i‖‖fTt ‖

)/N (2)

where the · denotes the dot product of two vectors.
Acronym-Differential Affinity. In general, a video with
good quality should be with higher affinity to positive quality-
related descriptions or feelings (T+, e.g. “high quality”,
“a good photo”, “clear”), and lower affinity to negative
quality-related text descriptions (T−, e.g. “low quality”, ”a
bad photo”, ”unclear”, acronyms to T+). Therefore, we
introduce the Acronym-Differential affinity index (DA), i.e.
whether the video has higher affinity to positive or negative
texts (Fig. 1(c)), as the semantic criterion for zero-shot VQA:

DA(V, T+, T−) = A(V, T+)−A(V, T−) (3)

Multi-Prompt Aggregation. As we would like to extract
both authentic distortions (which can hardly be detected by
NIQE or other low-level indexes) and aesthetic-related issues
in the semantic quality index, we aggregate two different pairs
of acronyms: 1) high quality↔low quality (T+,0, T−,0); 2) a
good photo↔a bad photo (T+,1, T−,1). Following the advice
of VQEG [25], we conduct sigmoid remapping to map the
two scores into range [0, 1] (which is practically similar to
human perceptual scales) and sum the remapped scores into
the final Semantic Affinity Index (QA), formalized as follows:

QA =

1∑
i=0

1

1 + e−DA(V,T+,i,T−,i)
(4)

2.2. The Spatial Naturalness Index (QS)

Despite the powerful semantic affinity index, we also utilize
the NIQE [9] index, the first completely-blind quality index to
detect the traditional types of technical distortions, such as
Additive White Gaussian Noises (AWGN), JPEG compression



Table 1: Benchmark evaluation on the proposed BUONA-VISTA, compared with other Opinion-Unaware Quality Indexes.
Dataset LIVE-VQC KoNViD-1k YouTube-UGC CVD2014
Methods SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
Opinion-Aware Methods:
TLVQM (TIP, 2019) [1] 0.799 0.803 0.773 0.768 0.669 0.659 0.830 0.850
VSFA (ACMMM, 2019) [3] 0.773 0.795 0.773 0.775 0.724 0.743 0.870 0.868
VIDEVAL (TIP, 2021) [20] 0.752 0.751 0.783 0.780 0.779 0.773 0.832 0.854
Existing Opinion-Unaware (zero-shot) Approaches:
(Spatial) NIQE (Signal Processing, 2013) [9] 0.596 0.628 0.541 0.553 0.278 0.290 0.492 0.612
(Spatial) IL-NIQE (TIP, 2015) [10] 0.504 0.544 0.526 0.540 0.292 0.330 0.468 0.571
(Temporal) VIIDEO (TIP, 2016) [26] 0.033 0.215 0.299 0.300 0.058 0.154 0.149 0.119
(Temporal) TPQI (ACMMM, 2022) [12] 0.636 0.645 0.556 0.549 0.111 0.218 0.408 0.469
BUONA-VISTA (Ours, zero-shot) 0.784 0.794 0.760 0.760 0.525 0.556 0.740 0.763
Improvements to Existing Best 23% 23% 37% 38% 80% 69% 50% 25%

artifacts. These distortions are very likely to happen in real-
world videos during compression or transmission. To align
different indexes, we normalize the raw NIQE scores (QNIQE

for Vi) to Gaussian distributionN(0, 1) and rescale them with
sigmoid to get the frame-wise naturalness index (Ni):

Ni =
1

1 + e
QNIQE,i−QNIQE,i

σ(QNIQE,i)

(5)

where QNIQE and σ(QNIQE) are the mean and standard de-
viance of raw NIQE scores in the whole set, respectively.
Then, following [1, 19, 20], we sample one frame per second
(1fps) and calculate the overall Spatial Naturalness Index
(QS) with sampled frames VFk in k-th second as follows:

QS =

S0∑
k=0

NFk/S0 (6)

where S0 is the overall duration of the video.

2.3. The Temporal Naturalness Index (QT )

While the QA and QS can better cover different types of spa-
tial quality issues, they are unable to cover the distortions in
the temporal dimension, such as shaking, stall, or unsmooth
camera movements, which are well-recognized [1, 27–29] to
affect the human quality perception. In general, all these
temporal distortions can be summarized as non-smooth inter-
frame changes between adjacent frames, and can be cap-
tured via recently-proposed TPQI [12], which is based on
the neural-domain curvature across three continuous frames.
Specifically, the curvatures can be computed via the simulated
neural responses on the primary visual cortex (V1, [13]) and
lateral geniculate nucleus (LGN, [14]) domains, as follows:

QTPQI =
log ( 1

M−2
∑M−2

j=1 )CV1
j + log ( 1

M−2
∑M−2

j=1 )CLGN
j

2
(7)

As lower raw NIQE/TPQI scores mean better quality, we use negative
sigmoid-like remapping 1

1+ex
instead of 1

1+e−x
here (Eq. 5) and in Eq. 8.

where M is the total number of frames in the whole video,
CLGN and CV1 are the curvatures at frame j respectively. The
Temporal Naturalness Index (QT ) is then mapped from the
raw scores via gaussian normalization and sigmoid rescaling:

QT =
1

1 + e
QTPQI−QTPQI
σ(QTPQI)

(8)

2.4. BUONA-VISTA Index: Metric Aggregation

As we aim to design a robust opinion-unaware perceptual
quality index, we directly aggregate all the indexes by sum-
ming up the scale-aligned scores without regression from any
VQA datasets. As the QA, QS and QT have already been
gaussian-normalized and sigmoid-rescaled in Eq. 4, Eq. 5 and
Eq. 8 respectively, all three metrics are in range [0, 1], and the
overall unified BUONA-VISTA index QUnified is defined as:

QUnified = QA +QS +QT (9)

In the next section, we will conduct several experimental
studies to prove the effectiveness of each separate index and
the rationality of the proposed aggregation strategy.

3. EXPERIMENTAL EVALUATIONS

3.1. Implementation Details

Due to the differences of the targeted quality-related issues
in three indexes, the inputs of the three branches are differ-
ent. For QA, the video is spatially downsampled to 224×224
via a bicubic [31] downsampling kernel, and temporally sub-
sampled to N = 32 uniform frames [18]. For QS , the video
retains its original spatial resolution but temporally only keep
S0 uniform frames, where S0 is the duration of the video
(unit: second). For QT , all videos are spatially downsampled
to 270 × 480 (to keep the aspect ratio), with all frames fed
into the neural response simulator. The QA is calculated with
Python 3.8, Pytorch 1.7, with official CLIP-ResNet-50 [32]
weights. The QS and QT are calculated with Matlab R2022b.



Table 2: Comparing the cross-dataset performances of existing opinion-aware approaches with zero-shot BUONA-VISTA
(which requires no training at all). BUONA-VISTA is notably more robust than these approaches.

Train on (None for BUONA-VISTA) KoNViD-1k LIVE-VQC Youtube-UGC
Test on LIVE-VQC Youtube-UGC KoNViD-1k Youtube-UGC LIVE-VQC KoNViD-1k

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
CNN-TLVQM (2020,MM) [4] 0.713 0.752 NA NA 0.642 0.631 NA NA NA NA NA NA
GST-VQA (2021, TCSVT) [30] 0.700 0.733 NA NA 0.709 0.707 NA NA NA NA NA NA
VIDEVAL (2021, TIP) [20] 0.627 0.654 0.370 0.390 0.625 0.621 0.302 0.318 0.542 0.553 0.610 0.620
MDTVSFA (2021, IJCV) [23] 0.716 0.759 0.408 0.443 0.706 0.711 0.355 0.388 0.582 0.603 0.649 0.646
BUONA-VISTA (zero-shot) 0.784 0.794 0.525 0.556 0.760 0.760 0.525 0.556 0.784 0.794 0.760 0.760

Table 3: Ablation Studies (I): effects of different indexes in the proposed BUONA-VISTA, on three natural video datasets.
Different Indexes in BUONA-VISTA LIVE-VQC KoNViD-1k CVD2014

Semantic Affinity (QA) Spatial Naturalness (QS) Temporal Naturalness (QT ) SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
3 0.629 0.638 0.608 0.602 0.685 0.692

3 0.593 0.615 0.537 0.528 0.489 0.558
3 0.690 0.682 0.577 0.569 0.482 0.498

3 3 0.692 0.712 0.718 0.713 0.716 0.731
3 3 0.749 0.753 0.670 0.672 0.618 0.653

3 3 0.767 0.768 0.704 0.699 0.708 0.725
3 3 3 0.784 0.794 0.760 0.760 0.740 0.763

3.2. Evaluation Settings

Evaluation Metrics. Following common studies, we use two
metrics, the Spearman Rank-order Correlation Coefficients
(SRCC) to evaluate monotonicity between quality scores and
human opinions, and the Pearson Linearity Correlation Coef-
ficients (PLCC) to evaluate linear accuracy.
Benchmark Datasets. To better evaluate the perfor-
mance of the proposed BUONA-VISTA under different in-
the-wild settings, we choose four different datasets, includ-
ing CVD2014 [6] (234 videos, with lab-collected authentic
distortions during capturing), LIVE-VQC [8] (585 videos,
recorded by smartphones), KoNViD-1k [7] (1200 videos, col-
lected from social media platforms), and YouTube-UGC [17,
33] (1131 available videos, non-natural videos collected from
YouTube with categories Gaming/Animation/Lyric Videos).

3.3. Benchmark Comparison

We compare with both existing opinion-unaware (zero-shot)
or opinion-aware VQA methods in Tab. 1/2 to evaluate the
accuracy and robustness of proposed BUONA-VISTA index.
Comparison with Opinion-Unaware Approaches. The
proposed BUONA-VISTA quality index is notably better than
any existing opinion-unaware quality indexes with at least
20% improvements. Specifically, on the three natural VQA
datasets (LIVE-VQC, KoNViD-1k and CVD2014), it has
reached almost 0.8 PLCC/SRCC, which are even on par with
or better than some opinion-aware approaches. On the non-
natural dataset (YouTube-UGC), with the assistance of the
semantic affinity index, the proposed BUONA-VISTA has
extraordinary 80% improvement than all semantic-unaware
zero-shot quality indexes, for the first time provides reason-
able quality predictions on this dataset. Without any training,

(a) Semantic Affinity Index:  QA (b) Spatial Naturalness Index:  QS

(c) Temporal Naturalness Index:  QT (d) BUONA-VISTA Index: QUnified
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Fig. 3: Videos with best/worst quality in perspective of three
separate indexes, and the overall BUONA-VISTA index. All
demo videos are appended in supplementary materials.

these results demonstrate that the proposed BUONA-VISTA
achieves leapfrog improvements over existing metrics and can
be widely applied as a robust real-world video quality metric.
Comparison with Opinion-Aware Approaches. Though it
is extremely difficult, if not impossible for BUONA-VISTA to
surpass opinion-aware approaches, it has largely bridged the
gap between zero-shot and supervised methods. Moreover,
these opinion-aware methods might face an extra challenge of
over-fitting on specific datasets. As compared between their
Cross-dataset Performances and results of BUONA-VISTA
in Tab. 2 the proposed zero-shot BUONA-VISTA can out-
perform existing opinion-based methods when they do not
train and test on the same set of videos and opinions, further
proving the robustness of the proposed BUONA-VISTA.



Table 4: Ablation Studies (IV): effects of different text prompts and the proposed multi-prompt aggregation strategy.
Overall Performance of BUONA-VISTA Performance of Semantic Affinity Index Only

Dataset LIVE-VQC KoNViD-1k CVD2014 LIVE-VQC KoNViD-1k CVD2014 YouTube-UGC
Prompt Pairs SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑

(a) [high↔low] quality 0.768/0.775 0.725/0.725 0.738/0.757 0.560/0.575 0.477/0.472 0.728/0.729 0.539/0.564
(b) a [good↔bad] photo 0.778/0.785 0.727/0.727 0.653/0.686 0.608/0.581 0.586/0.551 0.507/0.512 0.473/0.458

(a)+(b) Aggregated 0.784/0.794 0.760/0.760 0.740/0.763 0.629/0.638 0.609/0.602 0.686/0.693 0.585/0.606

Table 5: Ablation Studies (II): effects of different indexes in
the proposed BUONA-VISTA on YouTube-UGC dataset.

Indexes in BUONA-VISTA YouTube-UGC
QA QS QT SRCC↑ PLCC↑
3 0.585 0.606
3 3 0.589 0.604
3 3 3 0.525 0.556

3 0.240 0.153
3 0.133 0.141

Table 6: Ablation Studies (III): comparison of different ag-
gregation strategies in the proposed BUONA-VISTA.

Aggregation LIVE-VQC KoNViD-1k CVD2014
Metric SRCC↑/PLCC↑ SRCC↑/PLCC↑ SRCC↑/PLCC↑

Direct Addition 0.760/0.750 0.675/0.660 0.664/0.699
Linear + Addition 0.776/0.760 0.720/0.710 0.700/0.729

Sigmoid + Multiplication 0.773/0.729 0.710/0.679 0.692/0.661
Sigmoid + Addition 0.784/0.794 0.760/0.760 0.740/0.763

3.4. Qualitative Studies

In the qualitative studies, we visualize snapshots of videos
with highest or lowest score in each separate index, and the
overall BUONA-VISTA index. As shown in Fig. 3, the (a) Se-
mantic Affinity is highly related to aesthetics, where the (b)
Spatial Naturalness focus on spatial textures (sharp↔blurry),
and the (c) Temporal Naturalness focus on temporal varia-
tions (stable↔shaky), aligning with the aforementioned cri-
teria of the three indexes. We also append the original videos
of these examples in our supplementary materials.

3.5. Ablation Studies

In the ablation studies, we discuss the effects of different
quality indexes: Semantic Affinity, Spatial Naturalness and
Temporal Naturalness (Sec. 3.5.1), on either natural. We then
discuss the effects of the aggregation strategies (Sec. 3.5.2).
Moreover, we evaluate the effects of different prompt pairs
and the proposed multi-prompt aggregation (Sec. 3.5.3).

3.5.1. Effects of Separate Indexes

Evaluation on Natural Datasets. During evaluation on
the effects of separate indexes, we divide the four datasets
into two parts: for the first part, we categorize the LIVE-
VQC, KoNViD-1k and CVD2014 as natural datasets, as
they do not contain computer-generated contents, or movie-
like edited and stitched videos. We list the results of different
settings in Tab. 3, where all three indexes contribute notably

to the final accuracy of the proposed BUONA-VISTA, prov-
ing that the semantic-related quality issues, traditional spa-
tial distortions and temporal distortions are all important to
building an robust estimation on human quality perception.
Specifically, in CVD2014, where videos only have authentic
distortions during capturing, the Semantic Affinity (QA) in-
dex shows has largest contribution; in LIVE-VQC, the dataset
commonly-agreed with most temporal distortions, the Tem-
poral Naturalness (QT ) index contributes most to the over-
all accuracy. These results demonstrate our aforementioned
claims on the separate concerns of the three indexes.
Evaluation on YouTube-UGC. In YouTube-UGC, as shown
in Tab. 5, the Spatial Naturalness index cannot improve the
final performance of the BUONA-VISTA, where the Tempo-
ral Naturalness index even lead to 8% performance drop. As
YouTube-UGC are all long-duration (20-second) videos and
almost every videos is made up of multiple scenes, we suspect
this performance degradation might come from the during
scene transition, where the temporal curvature is very large
but do not lead to degraded quality. In our future works, we
consider detecting scene transition in videos and only com-
pute the Temporal Naturalness Index within the same scene.

3.5.2. Effects of Aggregation Strategies

We evaluate the effects of aggregation strategies in Tab. 6, by
comparing with different rescaling strategies (Linear denotes
Gaussian Noramlization only, and Sigmoid denotes Gaussian
followed by Sigmoid Rescaling) and different fusion strate-
gies (addition(+) or multiplication(×)). The results have
demonstrated that the both gaussian normalization and sig-
moid rescaling contributes to the final performance of aggre-
gated index, and addition is better than multiplication.

3.5.3. Effects of Different Text Acronym Pairs

In Tab. 4, we discuss the effects of different text acronym pairs
as T+ and T− in Eq. 3. We notice that [high↔low] qual-
ity can achieve very good performance on CVD2014, where
the content diversity can be neglected and the major concern
is the authentic distortions. For LIVE-VQC and KoNViD-
1k (with diverse aesthetics), however, the [good↔bad] photo
prompt shows higher accuracy. The results suggests that dif-
ferent datasets have different quality concerns, while aggre-
gating two acronym pairs can result in stable improvements
for overall performance in all datasets, proving the effective-
ness of the proposed multi-prompt aggregation strategy.



4. CONCLUSION

In this paper, we propose BUONA-VISTA, a robust zero-shot
opinion-unaware video quality index for in-the-wild videos,
which aligned and aggregated CLIP-based text-prompted se-
mantic affinity index with traditional technical metrics on
spatial and temporal dimensions. The proposed BUONA-
VISTA achieves unprecedented performance among opinion-
unaware video quality indexes, and demonstrates better ro-
bustness than opinion-aware VQA approaches across differ-
ent datasets. We hope the proposed robust video quality in-
dex can serve as an reliable and effective metric in related re-
searches on videos and contribute in real-world applications.
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