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Abstract—Graph Convolutional Networks (GCNs) have been
widely used in skeleton-based human action recognition. In GCN-
based methods, the spatio-temporal graph is fundamental for
capturing motion patterns. However, existing approaches ignore
the physical dependency and synchronized spatio-temporal corre-
lations between joints, which limits the representation capability
of GCNs. To solve these problems, we construct the directed
diffusion graph for action modeling and introduce the activity
partition strategy to optimize the weight sharing mechanism of
graph convolution kernels. In addition, we present the spatio-
temporal synchronization encoder to embed synchronized spatio-
temporal semantics. Finally, we propose Directed Diffusion
Graph Convolutional Network (DD-GCN) for action recognition,
and the experiments on three public datasets: NTU-RGB+D,
NTU-RGB+D 120, and NW-UCLA, demonstrate the state-of-the-
art performance of our method.

Index Terms—Skeleton-based action recognition, graph convo-
lutional network, spatial temporal modeling

I. INTRODUCTION

Human action recognition is a hot topic with broad applica-
tions, including video surveillance, human-computer interac-
tion, and abnormal behavior monitoring. Human actions can
be described by multimodal data, such as RGB videos, depth
videos, and skeleton sequences etc. Due to its compactness
and robustness to environmental variations, skeleton-based
methods have attracted increasing attention. In essence, human
skeleton sequences can be represented as isomorphic graphs.
Taking advantage of this structure, Graph Convolutional Net-
works (GCNs) have achieved promising results in human
action recognition.

One of the fundamental issues in GCN-based methods is
action modeling. Yan et al. [1] first constructed the spatio-
temporal graph to describe skeleton sequence. They considered
the bones as spatial edges and connected the same joints in
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Fig. 1. Illustration of Directed Diffusion Graph(DDG). The spatio-temporal
window (b) divides the skeleton sequence (a) into multiple spatio-temporal
neighborhood sets, each of which is modeled as sub-DDG(c) to synchronize
inter-frame and intra-frame information(d).

consecutive frames as temporal edges. Generally, the methods
[1]–[3] based on this vanilla spatio-temporal graph have two
shortcomings. First, these methods neglected the physical
dependency between joints. For example, the wrist moves with
the forearm around the elbow. Second, the temporal edges
only bind the identical joints in adjacent frames, which limits
the spatio-temporal information to diffuse between joints. It is
suboptimal because human actions involve highly concurrent
space-time interactions of joints, not just the separate trajectory
of each joint. For example, when walking, the left arm and
right arm tend to move oppositely, while the left arm and
right leg have the same tendency. This demonstrates that each
joint diffuses the information in localized spatio-temporal joint
sets rather than only within itself. To address these challenges,
each frame is described as the Directed Diffusion Graph
(DDG). The directed edges between nodes not only reflect the
connections but also indicate their relative movement modes.
Furthermore, we focus on boosting inter-frame interactions by
connecting multiple joints in long-range frames, which benefits
extracting intra-frame and inter-frame features of all the joints
involved in human actions, as shown in Fig. 1.

Another critical task is action representation. Most existing
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methods first perform Spatial Graph Convolution (SGC) to
extract spatial features which are then fed into a temporal con-
volution module to capture spatio-temporal patterns. However,
these methods suffer from two drawbacks. Firstly, they always
utilize spatial configuration partitioning strategy coined in ST-
GCN [1] to learn the weights for various neighborhoods. This
strategy disregards the physical dependency between joints
and restricts the representation capability of GCNs. Secondly,
these methods [2], [4]–[6] extract spatial configuration and
temporal dynamics from separate components. This factorized
formulation breaks the synchronized spatio-temporal relations
between joints. To address these limitations, we propose the
activity partition strategy according to the hinged structure of
skeletons to optimize graph convolution kernels. Moreover,
we introduce a Spatio-temporal Synchronous Encoder (STSE)
to embed spatio-temporal action patterns simultaneously, thus
facilitating more discriminative features.

By coupling the above proposals, we present the Di-
rected Diffusion Graph Convolutional Network (DD-GCN)
for skeleton-based human action recognition. Our approach
achieves state-of-the-art performance on three datasets: NTU-
RGB+D, NTU-RGB+D 120, and NW-UCLA. The main con-
tributions of our work are as follows:

• We construct DDG to model actions, which preserves the
kinematic dependence of skeletons and synchronization
of spatio-temporal information diffusion.

• We propose the activity partition strategy to optimize the
weight allocation of SGC, which facilitates discriminative
features and is universal in GCNs.

• We design the STSE module to capture spatial and
temporal motion patterns synchronously, which can be
embedded in other GCNs to boost performance.

• Based on these proposals, we present a novel learning
framework named DD-GCN, and the extensive experi-
ments on three public datasets have proved its superiority.

II. RELATED WORK

Spatio-temporal graph for action modeling. Conventional
methods always model the skeleton data as a sequence of
vectors or a pseudo-image to be processed by RNNs or CNNs.
However, these approaches ignore the physical structure be-
tween joints and bones. Yan et al. [1] first constructed the
spatial-temporal graph for action modeling, where the joints
within one frame are connected with spatial edges according to
skeleton structure, and temporal edges connect the same joint
in the consecutive frame. This static topology limits GCNs
to capture long-range dependencies between joints. Shi et al.
[2] proposed an adaptive graph convolutional network to learn
the spatial topology in an end-to-end manner adaptively. But
undirected connections fail to reflect the complex correlations
between joints adequately. To refine the topology, Shi et al.
[7] represented the skeleton data as a directed acyclic graph,
where the vertex closer to the predefined center vertex points
to the farther one. However, the kinematic dependency that
one joint moves around another is ignored, and the methods

above all focus on spatial graph, but the optimization of the
inter-frames temporal edges is rarely considered.

Partition strategy of graph convolution. There is no rigid
arrangement naturally exists in graphs. Thus, it is difficult to
establish the correspondence between various neighbors and
weights. To solve this problem, Yan et al. [1] propose three
partition strategies to group neighbors and the neighbors in the
identified subset sharing unique weight. For the uni-labeling
strategy, all the neighbors are indistinctive. That is to say, the
feature vectors of every neighboring node will have an inner
product with the same weight vector. Unlike this, the distance
partition strategy divides neighbors based on their distance
from the root node. The spatial configuration partitioning
strategy is widely used, which separates neighborhoods into
three subsets: (1) the root node itself, (2) the centripetal subset,
which is closer to the body barycenter than the root, otherwise
(3) the centrifugal subset. These strategies are not optimal
because they limit the full use of the intrinsic characteristic
of joints. However, there has been a paucity of research on
graph convolution partition strategies.

Attention mechanism in GCN-based methods. Chen et
al. [3] employed channel attention in GCN to compute the
correlation between joints and then dynamically refined the
topology. Qian et al. [8] introduced a symmetry trajectory
attention module to measure the relation between the left
and right body and then imposed a part relation attention
module to explore the relationships of each part. Zhu et al.
[6] applied relative attention to model the interaction between
interacted skeletons and then constructed dynamic relational
graphs. Qiu et al. [9] devised a two-branch network that
utilized graph convolution units and the temporal attention unit
to model long-range dependency and extract local and global
spatio-temporal features. Bai et al. [10] decomposed spatio-
temporal features into spatial and temporal ones, and global
and temporal attention modules were performed, respectively.
Unlike these methods, we focus on the synchronized spatio-
temporal information diffused between inter-frames.

III. METHOD

A. Pipeline Overview

The overview of the proposed DD-GCN is illustrated in
Fig. 2. The input of DD-GCN is skeleton sequences denoted
as X ∈ RT×V×C , where T , V , and C denotes the num-
ber of frames, joints, and channels, respectively. DD-GCN
has ten Spatial Temporal Graph Convolution (STGC) layers
for hierarchical motion representation. Each layer contains
two modules, i.e., Channel-wise Adaptive Graph Convolution
(CAGC) module and STSE. CAGC first constructs DDG for
action modeling. On this basis, it obtains channel-wise refined
adjacency matrix by correlation modeling function [3] and
adopts activity partition strategy for adaptive joints embedding.
Then, the rearranged joint sequences are put into STSE, where
the normalized feature in parallel spatio-temporal windows is
aggregated synchronously by Multi-head Self-attention (MSA)
to reserve diffused spatio-temporal signals. Afterwards, the
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Fig. 2. The overview of DD-GCN. (a) It has ten STGC layers containing two modules: CAGC (b) and STSE(d). After global average pooling, Softmax
is utilized for action classification. CAGC is the unit of channel-wise correlation modeling and graph convolution with activity partition strategy(c). STSE
employs MSA and GTC for synchronized spatio-temporal embedding.

Group Temporal Convolution (GTC) calculates the window-
wise aggregated feature and passes them to the next layer.
Finally, the output feature will send to the Softmax classifier
for action recognition. Besides, we boost performance by
ensemble joint and bone stream, considering the complemen-
tarity of multimodal data.

B. Spatio-temporal Directed Diffusion Graph

Human actions can be described by skeleton sequences and
modeled by spatio-temporal graphs. Considering the kinematic
dependency and high concurrency of the joints, we construct
the DDG, denoted as G, for action modeling as shown in
Fig. 1. Each skeleton is represented as a directed graph, and
the directed edge indicates the dependency between joints,
e.g., vi → vj manifests that vj moves around vi. Because
interactions between joints are spatio-temporal synchronized
and localized, the temporal edges are extended to multiple
joints within spatio-temporal windows for inter-frame in-
formation diffusion. By adjusting the window, actions can
be described by multiple sub-DDGs represented as gi, i.e.,
G = {g1, g2, . . . , gn}. The spatial edges are reflected by the
adjacency matrix A ∈ RV×V , and the spatial neighborhood of
vi can be defined as N S

vi = {vj | Ai,j ̸= 0}. The localized
spatio-temporal neighborhood of vi is defined as N ST

vi =
{vj | vi, vj ∈ g}.

C. Channel-wise Adaptive Graph Convolution

Since there is no rigid arrangement naturally exists in
graphs, it is difficult to establish the correspondence between
neighbor vertices and weights. To solve this problem, Yan et al.
[1] divided vertexes into K subsets, and mapped each vertex

with a unique weight according to subset index. On this basis,
the spatial graph convolution operation on vi is formulated as:

fout (vi) =
∑

vj∈Nvi

1

Zi,j
fin (P (vi, vj)) ·W (M (vi, vj)) (1)

where Zi,j denotes the cardinality of the corresponding subset
N k

vi . It balances the contribution of each subset. fin is the
input feature map X ∈ RT×V×C . P is the partition strategy
determining vj belongs to which subset, and M is the mapping
function that is the subset index of vj . W is the weight vector
with K dimension.

Activity partition strategy. The partitioning strategy not
only determines the number of subsets, i.e., the convolutional
kernel size, but also constrains parameter sharing. Therefore,
the subset partitioning strategy is essential for SGC. For ac-
tions, the contribution of joints depends on their own activity.
Hands and feet are critical parts of human movements, and
they are leaf nodes. Inspired by this, we employ out degree
as a measure and propose the activity partition strategy to
optimize the graph convolution operation, as illustrated in Fig.
2(c). Formally,

M (vi, vj) =

 0, if D (vj) = 0
1, if D (vj) = 1
2, if D (vj) ≥ 2

(2)

where D is the out-degree function. Besides, we adopt
channel-wise correlation modeling [3] for adaptive topologies
as depicted in Fig. 2(b). Specifically, CAGC can be formulated
by

fout = σ

(
K∑
k

fin

(
D

− 1
2

k ĀkD
− 1

2

k

)
Wk

)
(3)



where Ā = (A+ I + α ·A′). I is the identity matrix which
means self-connection. A′ ∈ RV×V×C is the channel specific
correlations and α is a trainable scalar. Āk is the adjacency
matrix of N k

vi . Dk is the diagonal degree matrix of Āk. Wk

is the weight vector and k = M (vi, vj). Leveraging activity
partition strategy, the CAGC can reasonably assign weights
and extract action-specific features, contributing to the strong
representation capability of DD-GCN.

D. Spatio-temporal Synchronous Encoder

In the view that human actions contain highly concurrent
spatio-temporal dynamics of joints, we propose STSE to
capture synchronized spatio-temporal motion patterns. The
correlation between joints is local due to the skeleton structure
and time step. For example, the action consists of multiple sub-
actions, and joints consisting of the same sub-action are highly
correlated. To reduce computing complexity and redundant
relations, we split the skeleton sequence by non-overlapping
windows as shown in Fig. 2(d).

In particular, given the window size M × N , STSE splits
X ∈ RT×V×C into n windows, where n = T/M ×V/N , and
X = {X1, X2, . . . , Xn}. The localized joints are arranged
as a sequence according to sub-DDG, and joints can be
regarded as tokens in transformer [11]. Then MSA is applied to
obtain synchronized spatio-temporal relationships. The linear
embedded joint sequences are denoted as Q, K, V , and then
the scaled dot-production is conducted to compute similarity.
For each head, the attention can be formulated as follows

Attention (Q,K,V) = Softmax

(
QKT

√
C ′

+B

)
V (4)

where B is the relative position bias which is introduced
to retain primary structures. Every head is concatenated and
then projected for the feature of Xi. The complete motion
embedding is obtained by the following equation.

X = Concat (X1, X2, . . . , Xn) (5)

MSA allows the model to extract discriminative features from
different representation subspaces. Considering the continuity
of spatio-temporal information, we employ GTC to implement
window-wise feature aggregation.

XSTS = Conv 2D[Γ× 1](X) (6)

where Γ× 1 is the kernel size. In addition, shortcut and layer
normalization are designed for stability. STSE exposes the
essential spatio-temporal information flow of actions and thus
improves the performance of DD-GCN.

IV. EXPERIMENTS AND DISCUSSIONS

A. Datasets

NTU RGB+D. NTU RGB+D contains 56,880 samples
which are categorized into 60 actions. These samples are
performed by 40 volunteers and captured by three Microsoft
Kinect v2 cameras from various views concurrently. There are
two experiments settings: cross-subject and cross-view [12].
In cross-subject setup, training set comes from half of the

subjects, and testing set comes from the other. In cross-view
setup, training set comes from camera ID 2 and 3, and the
testing set comes from camera ID 1.

NTU RGD+D 120. NTU RGD+D 120 is extended from
NTU RGB+D with 60 extra classes. It has 114,480 samples
conducted by 106 subjects. The recommended benchmarks
are cross-subject (as mentioned above) and cross-setup [13].
Training data comes from samples with even setup IDs, and
testing data comes from samples with odd setup IDs in cross-
setup setting.

NW-UCLA. NW-UCLA [14] is captured by three Kinect
cameras. It has 1494 video clips and covers ten classes. Each
action is performed by 10 subjects. The data from first two
cameras are training set and the others are testing set.

B. Training Details

We utilize the PyTorch deep learning framework to develop
our models and optimize the training with Adam optimizer.
Our models are trained for 80 epochs with batch size 64. The
learning rate is set to 0.1, which is ten times smaller every ten
steps. We adopt the data preprocessing following [3] on three
datasets.

C. Ablation Study

The ablation experiments are conducted on NTU RGB+D
dataset with the cross-subject setup, and we only input bone
data as default. We discuss the influence of parameter settings
and the effectiveness of the proposed components.

Parameter selection. The experimental results in Table I
shows that the window size denoted as Win size influences
spatio-temporal information’s diffusion intensity. If the win-
dow is too large, it will lead to redundant correlation and
computational cost. In addition, the unit of sub-DDG should be
sub-action as the accuracy will be impaired when the window’s
width is smaller than V , i.e., the minimum unit of sub-DDG
should be a complete skeleton. The possible explanation is that
human motion modeling relies on the integrity of the body
structure. Besides, the number of heads denoted as h is also
a vital factor. Table I suggests that more heads may not be
optimal. Verified by the experiments,, we set Win size to
4× 25, and h is set to 4.

Comparisons of partition strategies. We validate the
proposed activity partition strategy by comparing it against
other strategies in [1]. In addition, Table II demonstrated that
our strategy is compatible with other GCNs. The experimental
results in Table II verify its superiority. Based on activity
partition strategy, we developed the CAGC module. As pre-
sented in Table II, our proposed DD-GCN, which incorporates

TABLE I
COMPARISONS OF MODELS WITH VARIOUS PARAMETERS.

Win size h Acc. (%) Win size h Acc. (%)
4× 5 4 89.49 4× 25 2 88.52
8× 25 4 90.08 4× 25 8 88.34
32× 25 4 88.60 4× 25 4 90.52



TABLE II
COMPARISONS WITH DIFFERENT PARTITION STRATEGIES.

Methods Uniform Distance Spatial Activity
ST-GCN [1] ∗ 80.84 83.33 83.65 84.89

AGCN [2] ∗ 88.29 88.51 88.84 89.00

DD-GCN 89.71 90.04 90.13 90.52

Those marked with ∗ are the methods we reproduced.

TABLE III
COMPARISONS OF MODELS WITH/WITHOUT STSE AND RELATIVE

POSITION BIAS.

Backbone Accuracy (%)
ST-GCN [1] ∗( w/ STSE) 83.65(87.85) ↑ 4.20

AGCN [2] ∗(w/ STSE) 88.84(89.53) ↑ 0.69

DD-GCN(w/o STSE) 90.52(89.85) ↓ 0.67

DD-GCN ( w/o PE) 90.52(90.27) ↓ 0.25

Those marked with ∗ are the methods we reproduced.

CAGC, surpasses the orignal ST-GCN and AGCN by 6.87%
and 1.68%, respectively.

The effectiveness of STSE module. We validate the effec-
tiveness of the STSE from two aspects as reported in Table III.
First, the accuracy of our method is dropped by 0.67% after the
STSE module is dismantled. Second, the ST-GCN and AGCN
combined with the STSE module improved their performance
by 4.2% and 0.69%, respectively. It further explains that the
STSE module is practical and plug-and-play. In addition, the
relative position bias is valuable, which increases the accuracy
by 0.25%.

D. Comparison with the State-of-the-art

We compare our model with the state-of-the-art methods
on three public datasets: NTU RGB+D, NTU RGB+D 120,
and NW-UCLA. The experiment results are reported in Table
IV-VI. Fusion means the two-stream network with joint and
bone data. For the NTU RGB+D and NTU RGB+D 120
datasets, DD-GCN outperforms the state-of-the-art models,
especially those without graph convolutions [18], [19]. In
addition, DD-GCN achieves the highest performance on the

TABLE IV
COMPARISONS ON NTU RGB+D DATASET.

Methods Accuracy (%)
Cross-subject Cross-view

CTR-GCN [3] 92.4 96.8
Graph2Net [15] 90.1 96.0
GLTA-GCN [9] 61.2 81.2
MKE-GCN [16] 91.8 96.2
H-GCN(fusion) [10] 91.6 96.2
SMotif-GCN [17] 90.5 96.1
SA-GCN [8] 92.6 96.7

AimCLR [18] 86.9 92.8
Ta-CNN++ [19] 90.7 95.1

DD-GCN (bone) 90.5 95.7
DD-GCN (fusion) 92.6 96.9

TABLE V
COMPARISONS ON NTU RGB+D 120 DATASET.

Methods Accuracy (%)
Cross-subject Cross-setup

Graph2Net [15] 86.0 87.6
GLTA-GCN [9] 49.1 51.1
H-GCN [10] 88.9 90.0
SMotif-GCN [17] 87.1 87.7
CTR-GCN(bone) [3] 85.7 87.5
CTR-GCN(fusion) [3] 88.7 90.1

Ta-CNN++ [19] 85.7 87.3
AimCLR [18] 80.1 80.9

DD-GCN (bone) 86.1 87.6
DD-GCN (fusion) 88.9 90.2

TABLE VI
COMPARISONS ON NW-UCLA DATASET.

Methods Accuracy (%)
DC-GCN+ADG [20] 95.3
ShiftGCN++ [21] 95.0
GCN-HCRF [22] 91.5
Graph2Net [15] 95.3
CTR-GCN(fusion) [8] 96.5
FGCN [23] 95.3

DD-GCN(fusion) 96.7

NW-UCLA dataset as well, which indicates that the proposed
DDG can effectively model daily behaviors and complex in-
teractive actions. The extensive experiments fully demonstrate
the superiority of DD-GCN and its components: CAGC with
activity partition strategy and STSE.

V. CONCLUSION

We propose the Directed Diffusion Graph Convolutional
Network (DD-GCN) for skeleton-based human action recog-
nition. We construct the directed diffusion graph to model
the kinematic dependencies of intra-frame joints and enhance
temporal correlations between inter-frame joints. Then, we
devise the activity partition strategy to optimize the weight
allocation of the graph convolution. Besides, we design
the spatio-temporal synchronous encoder to embed diffused
spatio-temporal information simultaneously. The experiments
on three datasets have proved the superiority of DD-GCN.
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