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ABSTRACT

Although diffusion model has shown great potential for gen-
erating higher quality images than GANs, slow sampling
speed hinders its wide application in practice. Progres-
sive distillation is thus proposed for fast sampling by pro-
gressively aligning output images of N -step teacher sam-
pler with N/2-step student sampler. In this paper, we ar-
gue that this distillation-based accelerating method can be
further improved, especially for few-step samplers, with our
proposed Classifier-based Feature Distillation (CFD). Instead
of aligning output images, we distill teacher’s sharpened fea-
ture distribution into the student with a dataset-independent
classifier, making the student focus on those important fea-
tures to improve performance. We also introduce a dataset-
oriented loss to further optimize the model. Experiments
on CIFAR-10 show the superiority of our method in achiev-
ing high quality and fast sampling. Code is provided at
https://github.com/zju-SWJ/RCFD.

Index Terms— Diffusion model, knowledge distillation,
image generation, fast sampling

1. INTRODUCTION

Image generation is an important research field in computer
vision and various models have been invented, such as gen-
erative adversarial networks (GANs) [1] and diffusion mod-
els [2]. The adversarial nature of GANs requires careful
architecture and hyper-parameter selection to stabilize the
model training, while the recent diffusion models can over-
come these weaknesses and achieve better performance [3].
However, diffusion models require a greatly slower iterative
sampling to get the final denoised images. How to accelerate
the sampling efficiency becomes a critical issue.

Two main acceleration directions are training-free sam-
pling and training scheme [2]. Training-free sampling [4, 5, 6]
aims to propose efficient sampling methods to boost sam-
pling speed for the pre-trained diffusion models, while train-
ing scheme methods [7, 8, 9] require additional training, but
it gives model the potential for more powerful performance.

Recently, knowledge distillation-based training scheme
methods [7, 10] have exhibited strong capabilities in fast sam-

pling and high performance, surpass other methods [4, 5, 6,
8, 9] with large margins. Inspired by the idea of distilling the
knowledge in a powerful teacher model into a compact stu-
dent model [11, 12], Progressive Distillation (PD) [7] lets the
student sampler mimic the teacher sampler’s two-step output
with a single step. In this way, the sampler maintains a decent
performance when progressively halving its sampling steps.
However, little work has been done upon this.

In this paper, by using an additional classifier, we further
demonstrate the power of knowledge distillation in speeding
up diffusion sampling. We argue that strictly aligning the in-
dividual pixels in output images of the student and teacher
samplers is difficult, especially for student samplers with few
sampling steps. With the help of a classifier, we can get the
high-level feature distributions based on the images output
by teacher and student. By calculating the KL-divergence of
these two distributions, student is able to focus on those im-
portant features (which are closely related to image composi-
tion), thus reducing the learning burden and ensuring the con-
sistency of the image. We name it Classifier-based Feature
Distillation (CFD). Notice that at this point, our classifier is
NOT necessarily trained on the target dataset, since it is only
used for feature extraction and does not involve category in-
formation. This allows our method to be applied to datasets
that are not used for classification. Such classifier, which does
not require adversarial training and pre-training on the target
dataset, makes our work very different from previous works
with classifiers for image generation and refinement [13, 14].
For classifiers trained on the target dataset, we further pro-
pose Regularized CFD (RCFD) which combines CFD with
entropy and diversity losses to further optimize model perfor-
mance. We provide an overview of our method in Figure 1.

Our contributions can be summarized as follows:

• We propose a novel classifier-based distillation method
for speeding up diffusion sampling speed.

• Our method does not involve adversarial training, and
does not require the classifier to be pre-trained on the
target dataset, making our method easy to use and
widely applicable.

• Experiments on CIFAR-10 show that our method out-

ar
X

iv
:2

21
1.

12
03

9v
2 

 [
cs

.C
V

] 
 1

4 
M

ar
 2

02
3

https://github.com/zju-SWJ/RCFD


Teacher
Sampler

Teacher
Sampler

Student
Sampler

𝑡

Distill
(PD)

Pre-trained
Classifier

Feature
Distribution

Feature Distribution

Sharpen

Distill
(Ours)

𝑡 − 1/𝑁

𝑡 Prediction Distribution Dataset-oriented
Loss

Fig. 1. Overall framework of our method. Instead of directly aligning images as PD, we use the pre-trained classifier to get
feature and prediction distributions. The teacher’s feature distribution is sharpened and distilled to the student, which involves
no category information, giving our method wide applicability. The prediction distribution is guided by dataset-oriented loss to
further improve performance, which can be used when a pre-trained classifier on the target dataset is available.

performs SOTA methods with large margins.

2. RELATED WORK

2.1. Diffusion model

Diffusion models aim to sample high-quality images from
random noises, which contains two processes: training and
sampling. A standard training process is proposed by
DDPM [15]. The well-trained network with parameter θ
could take noisy image zt and time 0 ≤ t ≤ 1 as inputs, and
outputs the predicted denoised image xt = θ(zt, t) = θ(zt).
Starting from t = 1, the sampling process is then repeated
N times to get the final generated image. Since such sam-
pling process is very time-consuming, DDIM [4] proposes an
implicit sampling to speed up, which can be represented as

zs = αs θ(zt)︸ ︷︷ ︸
predicted denoised image xt

+σs
zt − αtθ(zt)

σt︸ ︷︷ ︸
direction pointing to zt

, (1)

where α and σ are pre-defined time-related functions, z0 is the
final denoised image, and 0 ≤ s < t ≤ 1. We provide a more
detailed explanation in Appendix A. Based on DDIM, Pro-
gressive Distillation (PD) [7] uses knowledge distillation to
improve sampling speed. Other methods such as PNDMs [5]
and DPM-Solver [6] also manage to speed up sampling, but
fail to outperform PD with huge margins.

2.2. Knowledge distillation

Knowledge distillation [11] is an efficient method for model
compression. Diverse knowledge such as logits [11] and in-
termediate features [16], can be transferred from a superior
teacher model to a compact student model. In addition, online
knowledge distillation [17] introduces multiple training mod-
els, while self-distillation [18] contains only a single model

architecture. Although knowledge distillation has a wide ap-
plications such as image classification [11] and semantic seg-
mentation [19], distillation for fast diffusion sampling [7] has
rarely been explored yet. We believe this field holds great
promise.

2.3. Classifier for image generation

Classifier is important for image classification. Recent works
show that it can also be applied to image generation [13, 14].
However, these methods need a robust classifier with adver-
sarial training, which increases training difficulty. Classifier
is also used in diffusion models to provide class-related guid-
ance and improve performance [3]. Different from the above
works, in this paper, we use the classifier to extract the fea-
ture/prediction distribution of images and transfer it to the stu-
dent model as knowledge. Such classifier does not require ad-
versarial training and can be pre-trained on a different dataset.

3. METHODOLOGY

3.1. Progressive distillation

Progressive Distillation (PD) [7] introduces knowledge distil-
lation to speed up sampling. Once teacher sampler with N
steps is given, student sampler with N/2 steps is trained to
speed up sampling. Assuming that the sampling time is now
t, we can get the predicted denoised image xT at time t−2/N
by sampling the teacher model for two steps. The detailed
derivation for xT is provided in Appendix B. The training loss
for PD is represented as

LPD = wt||xT − θ(zt)||22, (2)

where wt = max(α2
t /σ

2
t , 1) is used for better distillation.

Directly aligning images is very effective when the sam-
pler has many steps, but it degrades rapidly when there are



few steps. We believe that when the sampling steps are small,
it becomes difficult for the student to strictly align the pixels
on the image, which hinders the model learning. Therefore,
we argue that in this situation, the student model should pay
more attention to learning the key features associated with
images, so as to improve the learning efficiency and quality.

3.2. Classifier-based feature distillation

A classifier cls is usually composed of two parts, feature ex-
tractor extr and fully connected layers.

Instead of aligning xT and θ(zt) as PD [7], we use a classi-
fier to extract features and use them as transferred knowledge.
To be more specific, student’s output image xS = θ(zt) and
teacher’s output image xT are input to the same extractor extr,
and output the last features before the fully connected layers,
which can be represented as

FS = extr(xS), FT = extr(xT). (3)

After that, we convert feature into distribution using soft-
max function σ(·), and calculate the KL-divergence between
teacher and student feature distributions

LCFD = KL
(
σ(FS), στ (FT)

)
, (4)

where temperature 0 < τ ≤ 1 is used to sharpen the distri-
bution. Note that τ is only applied to teacher feature distribu-
tion, which we find to be more effective than applying to both
distributions. In this case, the upper limit of student perfor-
mance is no longer the teacher, so in some cases (see section
4.2), students can even surpass the teacher model!

Different from the L2 distance used in PD, KL divergence
can give large feature values greater weight in gradient de-
scent, thus helping the model focus more on aligning these
features. After the image is input into the feature extractor,
the features change from the shallow fine-grained features to
the deep coarse-grained features as the layer increases. Deep
features contain more semantic information related to cate-
gories, which is crucial for image composition. By aligning
important teacher features, and reducing the interference of
irrelevant features on model training, students with poor abil-
ity can learn more useful knowledge to generate high-quality
images and improve performance.

Note that the loss in Equ. 4 is NOT oriented to a specified
dataset, since we only use the feature extractor and do not
include the subsequent fully connected layers for classifica-
tion. This advantage makes our proposed distillation method
can be extended to more datasets, such as CelebA and LSUN
bedrooms. Next, we further introduce dataset-oriented loss to
help the model better improve performance.
Dataset-oriented loss. For aN -step sampler, as the sampling
step increases, the image obtained by θ(zt) tends to be clearer.
A clearer denoised image in the early steps will benefit the
subsequent sampling steps.

Fig. 2. Entropy evaluation on CIFAR-10 using 8-step sam-
pler with different sampling steps. The classifier is ResNet18
and the entropy is calculated by averaging 4096 generated im-
ages. We give an illustration of the denoised image from the
same noise initialization.

By feeding the images obtained from each sampling step
into a classifier, we can calculate the entropy as follows

Lentropy = −
C∑
c=1

pc log pc, p = σ(cls(xS)). (5)

where C is the total number of classes, p denotes prediction
results. Figure 2 shows that sampling with fewer steps yield a
larger entropy and generate more blurred images. This means
if we minimize the entropy of prediction results, we could get
relatively clearer images, especially for early sampling steps.

In addition, with the progressive distillation, it inevitably
makes the current sampler’s output image distribution devi-
ate more and more from the original optimal one. Since the
dataset we used is balanced, we expect the predicted proba-
bility to remain equal for each class within each batch:

Ldiversity =
C∑
c=1

p̂c log p̂c, p̂ =

∑B
b=1 p
B

, (6)

where B is the batch size. These two losses do not involve
teacher guidance and are thus less effective when used alone.
But better results can be achieved by combining them with
LCFD.
Overall loss. The overall loss function can be represented as

LRCFD = LCFD + β[γLentropy + (1− γ)Ldiversity], (7)

where β and γ are hyper-parameters, and RCFD stands for
Regularized Classifier-based Feature Distillation.

4. EXPERIMENT

4.1. Setting

In this section, we use CIFAR-10 to validate the superiority
of our method. We use the cosine schedule introduced in [8]



Sampling
Steps Method IS ↑ FID ↓

1
RCFD-DenseNet201 8.87 8.92

RCFD-ResNet18 8.56 12.03
PD (ICLR 2022) 7.88 15.06

2
RCFD-DenseNet201 9.19 5.07

RCFD-ResNet18 9.09 6.12
PD (ICLR 2022) 8.70 7.42

4
RCFD-DenseNet201 9.34 3.80

RCFD-ResNet18 9.24 4.24
PD (ICLR 2022) 9.04 4.83

8 PD (ICLR 2022) 9.14 4.14
DDIM (ICLR 2021) 8.14 20.97

10 PNDMs (ICLR 2022) - 7.05
12 DPM-Solver (NIPS 2022) - 4.65

1024 DDIM (ICLR 2021) 9.21 3.78

Table 1. Performance comparison with state-of-the-art meth-
ods on CIFAR-10. Higher IS and lower FID are better. Re-
sults are the average of 3 runs.

to calculate αt and σt. We use the U-Net [20] as the diffu-
sion model. ResNet18 [21] and DenseNet201 [22] are used
as the classifiers. The base diffusion model is trained with
1024 steps. More details are provided in Appendix C.

We compare our method with DDIM [4], Progressive Dis-
tillation (PD) [7], PNDMs [5], and DPM-Solver [6]. The
distillation-based acceleration method requires iterative train-
ing to halve sampling steps. Based on results in [7] and our
own experiments, we find that performance changes rapidly
in distillation from 8-step to 1-step. So we focus on distilla-
tion process starting from 8-step and train the teacher model
as PD [7] from 1024 to 8 steps without the classifier. We re-
implemented DDIM and PD for better comparison. Note that
the PD performance we reported in Table 1 is different from
the original paper [7] because we failed to train a good base
model on the U-Net architecture used by PD. Therefore, we
chose the architecture introduced in DDPM [15], and used a
smaller distillation iterations to reduce training overhead.

4.2. Result

The result is shown in Table 1. As we can see, distillation-
based methods (RCFD and PD) surpass other methods with
large margin (4-step distillation-based samplers can achieve
the performance of other samplers with 10+ steps). Also, the
difference between the 8-step sampler obtained by PD and
the 1024-step DDIM sampler (base diffusion model) is small,
indicating the effectiveness of distillation.

In addition, RCFD with DenseNet201 achieved 6.14
(↓40.7%), 2.35 (↓31.6%), and 1.03 (↓21.3%) FID improve-
ment compared to PD in the 1, 2, and 4-step samplers, respec-
tively, demonstrating its superiority. Also, with the help of the
classifier, we offer the possibility for the student sampler (4-

Method LCFD Lentropy Ldiversity IS ↑ FID ↓

RCFD

X 9.14 4.42
X 2.18 330.27

X 1.22 308.61
X X 5.87 92.07

X X X 9.24 4.24
PD 9.04 4.83

Table 2. Impact of each loss on performance.

Iteration 1000 Iteration 10000

DDIM
1024 Steps

Smaller
γ

Fig. 3. The first three rows indicate the images of differ-
ent training stages obtained by only using different scales of
Lentropy and Ldiversity. It can be seen that in the absence of
LCFD, the visual quality of the images at early training stage
surpasses even the sampler with 1024 steps of DDIM, but
those images are easily collapsed latter.

step of RCFD-DenseNet201) to significantly outperform its
teacher (8-step sampler obtained from PD).

4.3. Ablation study

In this section, we perform some ablation studies to verify the
importance of each component in our method. If not spec-
ified, we use ResNet18 as the classifier and use the 8-step
sampler trained by PD as the teacher to train a 4-step student.
Ablation study on each loss. Three losses are included in
our method, LCFD, Lentropy, and Ldiversity. LCFD is a dataset-
independent loss, which introduces classifier-based distil-
lation to align student’s feature distribution with teacher’s
sharpened feature distribution. The latter two are dataset-
oriented losses, where Lentropy is used to generate clearer im-
ages and Ldiversity maintains the class balance.

As we can see from Table 2, with only LCFD, we can al-
ready achieve better performance than PD. Although good



Pre-trained Dataset Classifier IS ↑ FID ↓

CIFAR-10
ResNet18 9.14 4.42
ResNet50 9.16 4.24

DenseNet201 9.34 3.80
ImageNet ResNet50 9.05 4.62

Table 3. Impact of different pre-trained classifiers on CIFAR-
10 image generation performance. For better comparison, we
use LCFD only.
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Temperature for Feature Distribution
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Temperature for Prediction Distribution

Feature
Prediction

Fig. 4. Impact of softmax temperature on performance. The
FID of PD is shown by the blue dotted line. For better com-
parison, we use LCFD only.

results cannot be achieved using Lentropy and Ldiversity when
LCFD is not available, optimal performance can be achieved
by combining all three terms. The reason is that the teacher
constraint (LCFD) will prevent the generated images from be-
ing too abstract and meaningless during training (as shown in
Figure 3), which improves the model performance.
Ablation study on classifier. In this section, we try different
classifiers and see how the performance changes. As shown
in Table 3, no matter what classifier we use, we can achieve
better results than PD. However, if possible, it is better to train
the classifier on the target image generation dataset. In addi-
tion, as the classifiers become more and more powerful, they
also help the student samplers produce higher quality images,
which even achieve significantly better FID than the teacher.
We believe that for a more powerful classifier, it will extract
more accurate and meaningful features, therefore, it provides
students with more effective knowledge for distillation, thus
helping students produce better images.
Ablation study onLCFD. In our method, we align feature dis-
tributions rather than prediction distributions since the former
is dataset-independent and achieve better results.

In this section, we provide the performance comparison
of these two approaches under different softmax tempera-
tures. Figure 4 shows that aligning student’s feature distri-
bution with teacher’s slightly sharpened feature distribution
(temperature 0.9 ≤ τ ≤ 1) obtain better results than PD and
almost always outperform distilling the prediction distribu-
tions. For the feature distribution, over large temperature will
make the teacher’s feature distribution tend to be uniformly
distributed, hindering the learning of important features and

0.01 0.1 0.5 1 2 4 8 15
Dual Temperature for Feature Distribution

4.0

4.5

5.0

5.5

6.0

FI
D

1 2 4 8 15
Dual Temperature for Prediction Distribution

Feature
Prediction

Fig. 5. Impact of dual softmax temperature. The FIDs of PD
and CFD are shown by the blue dotted line and red dashed
line, respectively. For better comparison, we use LCFD_dual
only.

making the image meaningless, while over small temperature
makes few features to be highlighted, making the image too
abstract and causing performance degradation. For the pre-
diction distribution, since it has smaller constraints compared
to the feature distribution (i.e., different feature distributions
may yield the same prediction results), the learning of image
details can be weakened, which leads to bad performance.
Ablation study on dual softmax temperature. In our
method, softmax temperature τ is only used for the teacher,
as shown in Equ. 4. We now apply the same temperatures τ
to both the student and the teacher, and change the loss as

LCFD_dual = τ2KL
(
στ (FS), στ (FT)

)
. (8)

Figure 5 show that, for a wide range of temperatures,
aligning feature distributions and prediction distributions
achieve better performance than PD, but fails to outperform
the original LCFD which only uses temperature for the teacher.
Although large dual temperature helps to improve perfor-
mance when prediction distributions are aligned, we believe
that such aligning (no matter it is feature or prediction distri-
bution) determines that the upper limit of the student is the
teacher (unlike traditional knowledge distillation for image
classification, there is no additional guidance such as labels
during distillation), which limits performance improvement.

5. CONCLUSION

In this paper, we propose a novel classifier-based distillation
method to speed up the sampling of the diffusion models. We
let student align its feature distribution with teacher’s sharp-
ened feature distribution, rather than aligning the generated
images. In this way, student can focus on learning important
features that make up an image, resulting in even better per-
formance than the teacher. This distillation method is also
applicable when the classifier is pre-trained on other datasets.
When the classifier pre-trained on the target dataset is avail-
able, we propose a dataset-oriented loss to further improve



performance. Experiments on CIFAR-10 show the superior-
ity of our method.
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Fig. 6. An overview of the training and sampling of diffusion models. (a) The diffusion models contain two processes, forward
(turn the image into noise) and reverse (remove noise from the image). Our target is to model the reverse process using the
neural network (which can be achieved by using DDPM [15]), so that we can get images from random noises. (b) Once the
model is well trained, we can use it multiple times to get the denoised image. For sampling time t, we can get zt from previous
step, and we input zt and t into the model, which outputs the predicted denoised image xt (or predicted noise εt, depending on
the training target of the model). Based on the xt (or εt), we can get the corresponding εt (or xt). After that, we use DDIM
(Equ. 1) to calculate the noisy image zs, which is the model input for next step.

A. TRAINING AND SAMPLING OF DIFFUSION
MODELS

We provide an overview of the training and sampling of dif-
fusion models in Figure 6.

B. DERIVATING DENOISED IMAGE FOR
DISTILLATION

Assume we have N -step teacher, and the current time is t,
then we can get t′ = t − 1/N and t′′ = t − 2/N . z′t and z′′t
are calculated as

zt′ = αt′η(zt) + σt′
(zt − αtη(zt))

σt
, (9)

zt′′ = αt′′η(zt′) + σt′′
(zt′ − αt′η(zt′))

σt′
, (10)

where η is the teacher model.
Assume student has denoised image xS and gets noisy im-

age z̃t′′ in one step. If well aligned, we should have

zt′′ = z̃t′′ = αt′′xS + σt′′
(zt − αtxS)

σt
. (11)

The distillation target xT can thus be represented as

xT = xS =
zt′′ − (σt′′/σt)zt
αt′′ − (σt′′/σt)αt

. (12)

C. EXPERIMENT DETAILS

C.1. Model Architecture

The U-Net includes four feature map resolutions (32 × 32
to 4 × 4), and it has two convolutional residual blocks per
resolution level and self-attention blocks at 8 × 8 resolution.
Diffusion time t is embedded into each residual block. Initial
channel number is 128 and is multiplied by 2 at last three
resolutions.

C.2. Performance Evaluation

We report the Inception Score (IS) [23] and Fréchet Inception
Distance (FID) [24] results of each method. IS measures the
class balance and confidence of the generated images, while
FID measures the difference in feature distribution between
the generated and real images. Therefore, higher IS and lower
FID represent better generated images.



C.3. Training Setting

Learning rate (warmup for 5000 iterations) 0.0002, dropout
0.1, batch size 128, ema decay 0.9999, gradient clip 1, total
iterations 800000.

C.4. Distillation Setting

Common setting. Learning rate (cosine annealing) 5e-5,
batch size 128, gradient clip 1, total iterations 10000 for 1024
to 4-step and 20000 for 4 to 1-step.
RCFD (ResNet18) setting.

• 8 to 4-step: τ = 0.95, β = 0.003, γ = 0.75.

• 4 to 2-step: τ = 0.95, β = 0.003, γ = 0.75.

• 2 to 1-step: τ = 0.85, β = 0.003, γ = 0.5.

RCFD (DenseNet201) setting. Since introducing dataset-
oriented loss makes it more difficult to tune hyper-parameters,
we only use LCFD for DenseNet201.

• 8 to 4-step: τ = 0.9, β = 0.

• 4 to 2-step: τ = 1, β = 0.

• 2 to 1-step: τ = 0.85, β = 0.
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