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Structure First Detail Next: Image Inpainting with Pyramid Generator
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Abstract

Recent deep generative models have achieved promising
performance in image inpainting. However, it is still very
challenging for a neural network to generate realistic im-
age details and textures, due to its inherent spectral bias.
By our understanding of how artists work, we suggest to
adopt a ‘structure first detail next’ workflow for image in-
painting. To this end, we propose to build a Pyramid Gener-
ator by stacking several sub-generators, where lower-layer
sub-generators focus on restoring image structures while
the higher-layer sub-generators emphasize image details.
Given an input image, it will be gradually restored by going
through the entire pyramid in a bottom-up fashion. Particu-
larly, our approach has a learning scheme of progressively
increasing hole size, which allows it to restore large-hole
images. In addition, our method could fully exploit the ben-
efits of learning with high-resolution images, and hence is
suitable for high-resolution image inpainting. Extensive ex-
perimental results on benchmark datasets have validated
the effectiveness of our approach compared with state-of-
the-art methods.

1. Introduction

Image inpainting aims at restoring corrupted images with
reasonable and relevant contents, which is widely used in
many real-world applications including image restoration,
object removal, and photo editing. In recent years, deep
generative models are broadly adopted to solve this prob-
lem, and have achieved impressive results [12, 25, 28, 16,

, 21,30, 11,13, 15, 32]. However, it is still very challeng-
ing to generate coherent and realistic image details [29, 9].
Such challenges probably stem from the neural networks’
spectral bias [19], i.e., neural networks are biased towards
learning low frequency components instead of high fre-
quency details. To alleviate this problem, most state-of-
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the-art methods adopt a coarse-to-fine framework. Taking
the DeepFillv2 [29] as an example, images are first restored
with an coarse network, and then the details are further re-
fined at the next stage.

Furthermore, there is a conflict in modeling image global
structures and image local details [26, 9]. To tackle this
problem, Yang et al. propose a joint loss function where
the content term and texture term are used to model image
global structure and local texture respectively [26]. How-
ever, modeling image structures often prefers to learn from
large image regions or even the whole image, while model-
ing image details prefers to learn from small image patches.
This dilemma requires different receptive field sizes, and it
is hard to satisfy in single neural network.

By our understanding, image inpainting looks like artists
drawing a picture for a scene. Artists usually first draw the
global structures/sketches of the scene and then refine its lo-
cal details [4, 6, 17]. Inspired by that, we suggest to explic-
itly separate the restoration of image structures from that of
details, and follow the philosophy of ‘structure first detail
next’. Thus, we propose to engage distinct sub-generators
to restore image structures and details, respectively.

In particular, we build a Pyramid Generator for image
inpainting. The pyramid generator is constructed by stack-
ing several sub-generators from bottom to top layer. Inputs
are downsampled into different resolutions and are fed into
corresponding sub-generators. The sub-generators at low-
layers focus on restoring the image global structures, while
the high-layer sub-generators focus on restoring image lo-
cal details. Given an image, it will be gradually inpainted by
going through the pyramid from bottom to top. Obviously,
our novel inpainting approach actually takes the ‘structure
first detail next’” workflow.

Note that the previous coarse-to-fine frameworks in [29]
only cascade two similar sub-generators (i.e., they are
trained with inputs of same resolution) and fail to sepa-
rate effectively the image structures restoration and image
details restoration. On the contrary, with the multi-scale



multi-layer stacking framework, our pyramid generator can
not only effectively separate the structures and details mod-
eling and indeed practise restoring structures before details.

It is well-known that image inpainting becomes much
more challenging when the corrupted area is relative large
[14,9,27]. Some recent work [9] illustrate that such large-
hole challenges could be effectively alleviated by a pro-
gressive learning strategy, i.e., first learn to restore small
hole and then learn to restore a large hole.

Our approach exactly aligns to such strategy. As shown
in Figure 2, both input image and mask image are simul-
taneously downsampled in our pyramid, thus the ratio of
hole size to image size is identical for all layers. However,
whether the hole size is large or small should be measured
with respect to the size of convolutional receptive field (in-
stead of image size). As shown in Figure 1, since all sub-
generators at different layers have the same architecture as
well as the same receptive field size, the hole size is rela-
tively small for the low-layer sub-generator. Thus, the low-
layer inpainting looks like the small-hole inpainting task. In
contrast, the high-layer inpainting looks like large-hole in-
painting. With our bottom-up inpainting workflow, we are
actually aligning to the hole-increasing strategy, i.e., first
conduct small-hole inpainting and then large-hole inpaint-
ing. As a result, our pyramid generator has advantages of
dealing with large holes.

Finally, our pyramid generator is more suitable for high-
resolution image inpainting. Many previous works have
shown that increasing the resolution of training images
could benefit the high-resolution image inpainting [31, 27].
Our experimental results also validate such observation, as
shown in Section 4.3. However, we find that such perfor-
mance gain is still limited if we just directly train the ex-
isting models (e.g., DeepFillv2 [29]) with high-resolution
images (e.g., on 512x512 images), as shown in Fig 7.

We argue that such observation is also related to the
large-hole challenge. Since high-resolution training images
often come along with large holes, if we directly train a
generator with high-resolution images, we have to face the
large-hole challenge. Nevertheless, due to the capability of
handling the large-hole challenge, our approach could fully
exploit the advantages of learning with high-resolution im-
ages. As a result, our approach is more suitable for high-
resolution image inpainting.

To the best of our knowledge, this is the first work that
adopts a pyramid of GANs for image inpainting. We high-
light our contributions as follows:

* A Pyramid Generator is proposed to conduct image in-
painting by following the strategy of ‘structure first de-
tail next’. With our dedicated multi-scale generative
architecture, the conflict between image global struc-
tures and local details restoration could be alleviated.
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w.r.t. the receptive field
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The sizes of receptive field are identical
for all layers in the pyramid

Figure 1. Bottom-layer inpainting task (right) looks like a small-
hole inpainting task, while the top-layer inpainting (left) looks like
a large-hole inpainting. It is obvious that the mask size of bottom
layer is relative small with respect to the same receptive field size,
while the mask size of top layer is relative large.

e Our pyramid generator has a learning scheme of pro-
gressively increasing hole size, which allows it to re-
store large holes.

e Qur approach could totally reap the benefits of learning
with high-resolution images, and hence is suitable for
inpainting high-resolution images.

2. Related Work
2.1. Image Inpainting

Conventional image inpainting methods often utilize
low-level image statistics [2]. PatchMatch [3] fills holes
by searching similar patches from unfilled area. Although
effective at textured images, when inpainting complex im-
ages with global structures, these methods often generate
artifacts or incoherent content.

Recently, many deep learning based methods are pro-
posed with great improvement [18, 7, 14, 29, 27]. Context
encoder [ | 8] presents the first attempt to apply the convolu-
tion neural network on image inpainting. lizuka et al. im-
prove the architecture with both global and local discrimina-
tors to keep consistency [7]. Partial convolution [14] is pro-
posed to handle free-formed masks by using only valid pix-
els as conducting convolutions. Recently, DeepFillv2 [29]
introduces a contextual attention module and a coarse-to-
fine learning framework, which has significantly improved
the inpainting performance. HiFill [27] focuses on high-
resolution inpainting task and proposes a contextual resid-
ual aggregation mechanism.

2.2. Multi-scale Mechanism

Multi-scale design is applied broadly in many computer
vision tasks thanks to its progressive refinement property
[5, 20, 23, 22]. One representative work is SinGAN [22],
where a pyramid of GANs is proposed to generate a re-
alistic image sample of arbitrary size and aspect ratio. In
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Figure 2. Architecture of our pyramid generator. The input image and mask are gradually downsampled until to the bottom layer, and then
the model is trained in a bottom-up manner. The output of a lower layer will be fed to its higher layer to help refining the higher-layer’s

results. I is regarded as the final output of our pyramid generator.

particular, the pyramid GANs has a multi-scale framework:
images are gradually generated with the increasing of image
scale, from bottom layer to the top one.

Multi-scale mechanism is also adopted to image inpaint-
ing task. In [26], images are gradually refined by increasing
image scales, but only L2 content loss, VGG textual loss
and TV loss are used for training. Since adversarial loss is
not adopted for learning, it is still hard to generate realistic
image details. Recently, a pyramid-context encoder PEN
is proposed to incorporate high-level semantics with low-
level pixels in [31]. PEN has only one encoder, and there is
a feature-pyramid within the encoder.

On the contrary, our model is similar to SinGAN that
has a stack of distinct sub-generators, where all the sub-
generators are trained in an adversarial manner with inde-
pendent discriminators. We argue that those distinct sub-
generators could better model image structures and local
details respectively.

3. Method

In this section, we first introduce the architecture of our
pyramid generator including its layer fusion strategy and the
adaptive dilation scheme. Next, we discuss the loss function
and describe how to effectively train our pyramid generator.

3.1. Pyramid Generator

In order to fully capture the internal statistics of an im-
age at different scales, [22] proposes a hierarchical GAN
architecture to learn the distribution within each scale sepa-
rately. Inspired by that, we adopt its hierarchical framework

to separate the modeling of image global structures and lo-
cal details at different scales.

3.1.1 Architecture Design

Figure 2 shows the architecture of our pyramid generator
which are stacked from some sub-generators. DeepFillv2
[29] is adopted as the sub-generator in this paper due to its
state-of-the-art performance. At different layers, the sub-
generator is trained with images of different resolutions.

Specifically, the pyramid consists of N + 1 sub-
generators {Gy, ..., Gy}. Their inputs are {zg, ..., n},
where each z,, is a concatenation of an image and a mask.
In this paper, we adopt a three-layer architecture (i.e., N =
2) since it is enough to inpaint high-resolution images.

We train the model on 512512 images, so the input im-
age is of 512x512 resolution. The mask is a binary image,
where value of 1 represents corrupted area and 0 represents
known area. As shown in Figure 2, the original training im-
age and mask are noted as x5 (with resolution of 512x512),
which are gradually downsampled to x; (with resolution
of 256x256) and x( (with resolution of 128 x 128), respec-
tively.

In the pyramid, each layer has a sub-generator G,, and
a corresponding discriminator D,,. The model is trained in
a bottom-up manner: 1) G is trained firstly by using xg.
Let I,, indicate the recovered image of each layer. Thus, we
have the output of bottom layer,

Iy = Go (o). (D



2) The output Iy is then upsampled and fed to sub-generator
G1, meanwhile z7 is also fed to GG;. Both of them are used
to train G;. The training of G5 is the same as G;. As a
result, we have the following outputs,

jn = Gn(xnajnfl)vn > 0. (2)

Note that I is regarded as the final output of our pyramid
generator.

3.1.2 Fusion Strategy

In our pyramid generator, the output of a lower layer will be
fed to a higher layer to help refine the higher-layer’s results.
For example, the output of G will be fed to G to refine
the results of G;. There are many possible fusion choices.
Since there are two stages for each G,, (i.e., coarse-stage
and refine-stage), the output of GG could be fed to either the
coarse-stage or the refine-stage of G.

On the other hand, the fusion could be conducted in
feature-level or image-level. Feature-level fusion is simi-
lar to [23] that the feature maps of G is upsampled and
added to the corresponding feature maps of GG;. In contrast,
the image-level fusion is to upsample the output image of
Gy and add to the internal produced image of G;.

We have conducted extensive experiments to compare all
those fusion options, and selected the best one according
to experimental results. Specifically, we adopt the refine-
stage as well as image-level fusion strategy. As shown in
Figure 2, the output image of G is upsampled and added
with the output of coarse stage of G1. Then their sum is fed
to the refine stage of G1. This process can be formulated as

I, = G, (Gs (xn) + upsample(f,,,_l)),n >0, 3)

where G¢, and G}, indicate the coarse and refine stage of G,
respectively.

The detailed comparisons of those options are shown in
Section 4.4. We guess that refine-stage fusion being better
than coarse-stage fusion is due to that the high-frequency
details of high-resolution image (e.g., 1) can be sufficiently
exploited by the G before conducting fusion. By receiving
both the output of G§ and G, the refine network G could
properly leverage the good results of image details model-
ing (by GY) and image structure modeling (by G)).

Regarding to the feature-level fusion, we found that it is
either inferior to image-level fusion or relatively difficult to
stably achieve convergence. Besides, we also try another
option that is to directly drop the coarse-stage G and only
remain refine-stage G7. Although it can reduce some com-
putation, it is also difficult to stably get convergence.

3.1.3 Adaptive Dilation

Dilated convolutions [7] are broadly used in inpainting neu-
ral network, since it can not only explicitly adjust filter’s

field-of-view but also keep the resolution of feature maps.
Keeping the resolution of feature maps is very important
to the performance of those pixel-level algorithms such as
image inpainting, and image segmentation.

On the other hand, adjusting filter’s field-of-view is con-
ducted by adjusting the dilation rate of dilated convolutions,
which will determine the receptive field of convolutions.
However, there is a conflict in modeling image global struc-
tures and image local details: modeling image structures
often prefers to observe large image regions, while model-
ing image details prefers to observe small image patches.
Therefore, it is very hard to select a proper dilation rate for
a single-scale architecture to balance the distinct needs of
modeling image structures and details.

Nevertheless, our pyramid generator has several inde-
pendent sub-generators so that we could select distinct dila-
tion rate for different sub-generators. Specifically, Gy em-
phasizes modeling global structures and needs a relatively
large receptive field, and hence we have 4 dilated convs
with dilation rates {2, 4, 8,12}. In contrast, G; and G5 em-
phasize modeling image local details, and hence we only
have 3 dilated convs with the dilation rates {2, 4, 8}. In this
way, we can effectively solve the conflict of modeling im-
age global structures and local details, which is called as
adaptive dilation scheme in this paper.

3.2. Learning of Pyramid Generator

In this section, we will describe the loss function and the
training details of our pyramid generator. Our pyramid gen-
erator is composed of several sub-generators, where each
sub-generator is trained by using GAN mechanism. Partic-
ularly, for each sub-generator GG,, we adopt the loss function
as [29], which consists of a reconstruction term and an ad-
versarial term,

»Cn = »C'adv (Gna Dn) + a»cre (Gn)u (4)

and we choose a = 1 in our experiments.

The reconstruction term is defined as the L1 distance be-
tween the generated output I,, and the ground-truth image
I,, at the pixel level:

For the adversarial term, we use the hinge loss. The loss
for generator is

D(G(2).y), (6)

La=—E.up. y~piata
and for discriminator, it is

‘CD = Erwpdata(:t) RGLU (]]' - D (x))

7
+E.mp. ., ReLU (14 D (G (2))). @
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Figure 3. Qualitative comparisons on Places2 val and DIV2K val set (with image resolution 512x512). T indicates methods retrained by

us with 512512 images. Best viewed by zooming-in.

Table 1. Quantitative comparisons on the Places2 val and DIV2K val set (with image resolution 512x512). Both center masks and free-
form masks settings are considered. Up-arrow (1) indicates higher score is better, while lower score is better for down-arrow ({.). t indicates

that the model is trained on 512512 images instead of 256 X256 imag

es. *: This is reported from [26] using single Titan X GPU.

Method Places2 square mask Places2 free-form mask DIV2K square mask DIV2K free-form mask speed
SSIMT  PSNR? L1] SSIMT  PSNR?T L1} SSIMT  PSNR?T L1} SSIMT  PSNR? L1] time /image
GL [7] 0.773 20.72 0.055 0.683 18.71 0.086 0.769 20.85 0.075 0.660 17.88 0.109 125ms
MNPS [26] 0.727 19.22 0.058 - - - 0.749 23.15 0.047 - - - Imin™
EC[17] 0.770 19.55 0.069 0.736 18.92 0.086 0.817 24.65 0.042 0.759 21.61 0.070 178ms
PEN [31] 0.754 19.36 0.056 0.724 19.72 0.068 0.792 23.42 0.036 0.758 22.40 0.053 347ms
DeepFillv2 [29] 0.769 18.86 0.056 0.737 18.59 0.073 0.814 23.47 0.043 0.765 20.91 0.064 69ms
DeepFillv2' [29] 0.769 19.40 0.053 0.740 19.41 0.067 0.827 25.72 0.036 0.789 23.40 0.053 69ms
HiFill [27] 0.749 19.87 0.051 0.701 19.14 0.074 0.791 23.63 0.040 0.736 20.67 0.073 24ms
ours 0.777 20.09 0.050 0.746 19.90 0.064 0.840 26.74 0.034 0.796 24.25 0.050 85ms

Taking the three-layer pyramid generator as an example,
its total loss can be represented by

Lpa = Lo+ ML+ AaLo, ®)

where L, £1 and L5 indicate the loss of G, G1, and G5 re-
spectively, with \g, A1, A\s the weights for them. In practice,
we select the weight values empirically according to exper-
imental results, i.e., we set \g = 10, Ay = 1, and Ay = 1.
We found that it is necessary to assign a large weight to the
bottom sub-generator since the error back propagation path
is relatively long for the bottom layer.

The structure of discriminator in all layers are identical
to each other, as in [22]. Note that those discriminators are
independently trained in our approach.

A big difference between our pyramid and SinGAN [22]
is that SinGAN is trained layer by layer but all sub-
generators in our pyramid are jointly trained. Actually, we
have tried the layer-by-layer training scheme for our model,
e.g., we first train Gy and then train (G; while fixing the
parameters of Go. Experimental results show that it is rel-
atively difficult for G to stably achieve convergence with
this layer-by-layer training scheme. We will try to find out
the underlying reason of such phenomena in future work.

4. Experiments

We conduct experiments on Places2 [34], CelebA-HQ
[8], and DIV2K [1] to evaluate our approach. The offi-



cial train+val splits of Places2 are used to train our object-
inpainting model, where each image is randomly cropped
into 512x512 resolution. The 28,000 images in CelebA-
HQ are used to train our face-inpainting model, where all
images are resized into size 512x512 as in [10].

Although our two inpainting models are both trained
on 512x512 images, they can be used to restore an im-
age in any resolution. Besides evaluating our approach on
512512 testing images, high-resolution testing image are
also involved into the evaluation. Particularly, we choose
DIV2K val as our high-resolution testing dataset, which
consists of 100 images from the Internet in 2k resolution.
These images have diverse contents in nature and are suit-
able for evaluations. Note that the images of DIV2K are
randomly cropped into size 512x512 and 1024 x1024 for
evaluation, since it is very memory-consuming to conduct
image inpainting on 2k resolution.

We adopt the original mask generation algorithm in [29],
which generates center square mask plus random free-form
masks for each training sample. All of our experiments
are trained with TensorFlow v1.15, CUDA v10.0. The fi-
nal model needs 5 days to converge on a single NVIDIA
Tesla V100 GPU with batch size of 4, and we apply Adam
as our optimizer. We are going to release our code in the
future.

(a) Masked

(b) G&L

Figure 4. Qualitative comparisons on CelebA val set (with image
resolution 512x512).

(c) DeepFill (d) DeepFillt  (e) Ours

4.1. Comparison to SOTA Methods

In this section, we compare our model with methods
Global&Local (G&L) [7], MNPS [26], EdgeConnect (EC)
[17], DeepFillv2 [29], PEN [31], and HiFill [27]. The
original Global&Local, MNPS, EdgeConnect and PEN are
trained with 256256 images, while HiFill is trained with
512x512 images. For more comparison, we also re-trained
DeepFillv2 on 512x512 images, noted as DeepFillv2t.

For numerical comparisons, we evaluate those methods
on L1 loss, structural similarity index measure (SSIM) [24],
and peak signal-to-noise ratio (PSNR). To calculate the in-

ference time per image, we test all the images in Places2
validation set with center masks on single NVIDIA GTX
2080Ti GPU.

Comparisons on 512x512 images Table | is the com-
parison of those methods on the datasets Places2 and
DIV2K (with images in 512x512 resolution). We could
find that our approach outperforms all the other methods on
both the free-form mask inpainting and the center mask in-
painting.

(c) HiFill

(a) Masked (b) DeepFillv2t (d) Ours

Figure 5. Qualitative comparisons on DIV2K val set (with image
resolution 1024 x1024).

Table 2. Quantitative comparisons on 1024 x1024 images from
DIV2K val set. Both center masks and free-form masks setting
are considered.

square mask free-form mask

Method SSIM{ PSNRT LI | SSIMf PSNRT LI

DeepFill‘L [29] 0.782 19.83 0.052 0.734 19.16 0.072
HiFill [27] 0.765 19.58 0.053 0.700 18.43 0.079

ours 0.788 20.37 0.049 0.734 19.36 0.069

Figure 3 shows the visual comparison for examples
of resolution 512x512 from dataset Places2 and DIV2K.
From the results, we could find Global&Local and Edge-
Connect prone to producing color inconsistent and blurry
content. The original DeepFillv2 could better recover con-
tent on small holes, but it tends to produce artifacts when
inpainting large holes. Moreover, PEN is not good at gen-
erating realistic high-frequency details. Probably because
they are trained on 256 x256 images, they cannot properly
handle 512512 inpainting task.

On the other hand, DeepFilleT, HiFill and our model
are all trained on 512x 512 images, and there is an obvious
performance improvement. However, the restored content
from DeepFillv2' is not very coherent to their surrounding
pixels, and HiFIll is not good at recovering image global
structures. In contrast, our approach can not only recover
image global structures but also produce coherent image de-



tails.

The results on CelebA-HQ are shown in Figure 4. Com-
pared to the vanilla DeepFillv2, DeepFillv2! could properly
synthesize some face parts (e.g., eyes). Nevertheless, it still
cannot model the global structures of a face.

Comparisons on 1024 x 1024 images Table 2 illustrates
the comparison of high-resolution image inpainting (with
images resolution 1024x1024). On both free-form mask
and center mask, our approach outperforms DeepFillv2*
and HiFill.

015 020 025 030 035 040 045 050 055 015 020 025 030 035 040 045 050 055
Mask to image ratio Mask to image ratio

(a) L1 (b) PSNR

Figure 6. The performance degradation with respect to the increas-
ing of hole size. With the ratio of hole size increased from 15%
to 55%, the degradation magnitude of our model is much less than
that of DeepFillv2 [29]. All the experiments are on DIV2K val set
with square shape masks.

The results of these methods on high-resolution image
inpainting are shown in Figure 5. Obviously, it is much
more challenging to generate coherent and realistic image
details on 1024 x 1024 images. For example, DeepFillv2{
tends to generate incorrect semantic content to fill in the
hole (e.g., the missing ‘cloud’ region are filled with ‘tree’
pixels), and there is visible color discrepancy for HiFill in-
painting results. At the same time, our approach’s inpaint-
ing results look more relevant and realistic.

4.2. Large-hole Inpainting

It is known that when the corrupted area is large the im-
age inpainting becomes much more challenging. As shown
in Figure 3, when the hole size becomes large, the center of
the hole tends to have color discrepancy and blurriness.

Recent work found that such issues could be alleviated
by adopting the progressive learning strategy [©], without
the needs of modifying the generative model itself. The pro-
gressive learning strategy is to divide the training procedure
into several stages so that the small-hole training data are
first used to train the model at early stages whereas large-
hole training data will be used to fine-tune the model at later
stages. Even if it is effective sometimes, such strategy still
has some limitations. For example, it is hard to decide when
to move from one stage to the next stage.

As aforementioned, we have illustrated that our pyramid
generator could not only align to the progressive learning
strategy but also avoid the need for explicitly separating the
training procedure into several stages. In this section, we

will evaluate our method by gradually increasing the hole
size and show its advantage on large hole inpainting.

Specifically, the center mask setting is adopted in this
experiment, since it is easy to control the ratio of hole size
to the image size. We gradually increase such ratio from
15% to 55% with interval of 10%. As shown in Figure 6,
the red line is the performance of DeepFillv2 [29] and the
blue line indicates our model performance. There is a clear
performance degradation for both methods when the ratio
increases, but the degradation magnitude of our model is
much less than that of DeepFillv2.
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Figure 7. The performance degradation with respect to the in-
creasing of image resolution. With the image resolution increased
from 256 to 1024, our model could better cope against the perfor-
mance degradation, and hence our model is more suitable for high-
resolution image inpainting. Experiments are conduct on DIV2K
val set with center square masks.

Besides, it is obvious that increasing resolution of train-
ing images also benefits large-hole inpainting task (e.g.,
DeepFillv2" outperforms DeepFillv2), but it is still inferior
to our approach.

4.3. High-resolution Image Inpainting

With the rapid development of high quality camera de-
vices, the images we meet in daily life are often high-
resolution. Thus, the real-world inpainting task is often
about high-resolution image inpainting.

On the other hand, many previous works have demon-
strated that increasing the resolution of training images is
critical to the inpainting performance, especially for the
high-resolution image inpainting task [31, 27].

In this section, we conduct some experiments to study
such observations. Specifically, we train the same model
DeepFillv2 [29] with images of different resolution: the
original DeepFillv2 is trained with images of 256 x 256
resolution, while the model Do;aepFilleJr is trained with im-
ages of 512 x 512 resolution. From Figure 7, we can see
that the inpainting performance could be improved by in-
creasing the resolution of training images, which validates
the conclusion of previous work.

Besides, Figure 7 tells us that the inpainting performance
will decrease when the resolution of testing image is in-
creasing. This indicates that the high-resolution image in-
painting task is much more difficult than low-resolution in-



painting task. Moreover, it is worth noting that such per-
formance degradation is different between the model Deep-
Fillv2 and DeepFillv2': the DeepFillv2! could better cope
against the performance degradation than the DeepFillv2,
i.e., the green line drops slower than the red line according
to the metric PSNR. Therefore, it is critical to use high-
resolution images as training data.

More importantly, we also evaluate our pyramid genera-
tor (noted as blue line in Figure 7). Compared to the model
DeepFillv2' and HiFill [27], we can see that our model out-
performs those methods, although they are all trained with
images of same resolution (i.e., 512 x 512). It indicates
that our model could fully exploit the benefits of learning
with high-resolution images, and hence our model is good
at high-resolution image inpainting.

4.4. Ablation Study

Except the recent architecture of our pyramid generator
described in Section 3, there are many other design options.
We have evaluated those design options and will discuss
their performance in this section. Such evaluation are con-
ducted on DIV2K dataset under the same settings as the pre-
vious experiments.

Table 3. Comparisons between our three-layer model and the two-
layer variants.

SSIMT PSNRT L1}
PG1ag4256 0.809 24.07  0.042
PGaset512 0.827 26.03 0.035

PG128+256+512 (Ours) 0.840 26.74 0.034

(d) PG128+256+512

(¢) PG2s64512

Figure 8. Qualitative comparisons between our three-layer model
and the two-layer variants.

How many layers should we have? Since our pyramid
generator has a multi-layer architecture where each layer
corresponds to a specific image scale, we could have many
choices for the number of layers. Apart from our current

implementation of 3 layers, we also try two variants of two-
layer architecture: one variant is the combination of the
128-layer and 256-layer (noted as PG1ag+256 ), the other
variant is the combination of 256-layer and 512-layer (noted
as PGas64512)-

The comparisons of our recent three-layer model and
the two variants are illustrated in Table 3 and Figure 8. It
shows that the two variants have distinct drawbacks. The
model PG12g1256 tends to generate blurry content due to
its disadvantage on modeling image high-frequency details.
On the other hand, the model PGas564512 tends to generate
incoherent image structures because of the lacking of im-
age global information. In contrast, our three-layer model
PG128+1956+512 enjoys the advantages of the two variants,
and could generate both coherent image structures and real-
istic image details.

How to fuse different layers? As mentioned above,
there are many possible fusion options, and we compare
them in this section. First, we consider feature-level fusion,
which can be further categorized as coarse-stage fusion (i.e.,
fuse with G¢) and refine-stage fusion (i.e., fuse with G7).
Next, we consider image-level fusion. Besides the fusion
scheme adopted in our model, there are additional two op-
tions. Since there are two path for the G (i.e., attention
path and non-attention path), we can feed the output of G
only to one path. From Table 4, we can see that feature-level
refine-stage fusion cannot converge, and our fusion scheme
is the best among them.

Table 4. Quantitative comparisons on different fusion strategies.

feature-level image-level
coarse  refine | att. path  non-att path  ours
SSIM?T | 0.786 - 0.825 0.833 0.840
PSNRT | 23.16 - 25.94 25.96 26.74
L1} 0.044 - 0.036 0.036 0.034

Is adaptive dilation effective? Due to the pyramid
structure, our approach could adopt the adaptive dilation
mechanism, which means the sub-generators at different
layers could have different number of dilation layers, and
different dilation rate configurations. In this section, we
use the baseline that all sub-generators have same num-
ber of dilation layers and same dilation rate configurations.
In particular, it has 4 dilation layers with dilation rates
{2,4,8,16}, which is the same as [29]. In contrast, in
our approach G has 4 dilation layers with dilation rates
{2,4, 8,12}, and both G and G5 have 3 dilation layers with
dilation rates {2,4,8}. As shown in Table 5, we find that
our adaptive dilation mechanism benefits the performance
improvement compared to the baseline methods.

Table 5. Quantitative comparisons between the standard and our
adaptive dilation scheme.

SSIMT PSNRT LI}
standard dilation 0.829 26.38  0.035
adaptive dilation (Ours) | 0.840 26.74  0.034




5. Conclusion

This paper proposes a ‘structure first detail next” work-

flow for image inpainting.

In particular, we introduce

a Pyramid Generator by stacking several sub-generators,
where image global structures and local details could be bet-
ter separately modeled at different pyramid layers. Notice
that our approach has a progressive learning scheme which
allows it to restore images with large masks. In addition,
our model is suitable for inpainting high-resolution images.
Extensive experiments show that our approach outperforms
the other state-of-the-art methods.
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