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Abstract—Tremendous efforts have been made on document
image rectification, but how to learn effective representation
of such distorted images is still under-explored. In this paper,
we present DocMAE, a novel self-supervised framework for
document image rectification. Our motivation is to encode the
structural cues in document images by leveraging masked autoen-
coder to benefit the rectification, i.e., the document boundaries,
and text lines. Specifically, we first mask random patches of the
background-excluded document images and then reconstruct the
missing pixels. With such a self-supervised learning approach, the
network is encouraged to learn the intrinsic structure of deformed
documents by restoring document boundaries and missing text
lines. Transfer performance in the downstream rectification task
validates the effectiveness of our method. Extensive experiments
are conducted to demonstrate the effectiveness of our method.

Index Terms—Document Image Rectification, Self-supervised
Representation Learning, Transformer

I. INTRODUCTION

With the ubiquitous accessibility of smartphones, document
digitization becomes much more convenient than before. How-
ever, document images captured by smartphones usually suffer
from various distortions, due to some stochastic factors, such
as sheet deformations, camera angles, and scene illuminations.
They bring difficulties to the downstream visual tasks, such
as automatic text recognition [1], content analysis [2], and
question answering [3]. To overcome these issues, document
image rectification has been actively studied in the past decades.

Traditional solutions [4]–[9] to document image rectification
are usually based on 3D reconstruction techniques. These
methods either resort to extra hardware or register multi-
view images to reconstruct a 3D shape of the deformed
document, which inevitably brings lots of inconveniences so as
to block their further real applications. Recently, learning-based
methods [10]–[15] estimate a dense flow field from the distorted
image to the distortion-free one, which have shown promising
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Fig. 1. An overview of our DocMAE. It consists of two stages: (a) A pre-
training stage that reconstructs the randomly masked patches; (b) A fine-tuning
stage that transfers the learned representations for distortion rectification. “S”
denotes the warping operation based on bilinear sampling.

performance. With the flow field, the input distorted image can
be unwarped for rectification. Although these methods report
superior performance, how to learn effective representations
of a distorted document image is still under-explored.

In document image rectification, it is crucial to extract
the structural information of the deformed document. In a
document image, the most informative cues for rectification
exist in the document boundaries and text lines. Concretely,
the document boundaries contain information about the global
physical deformation and shooting angles, while the text lines
show the deformation of local regions. Besides, there is an
explicit prior on the text lines that the distorted horizontal
text lines are straight in the rectified image. To obtain the
structure representation, traditional methods resort to auxiliary
hardware [4]–[6], [16] or multi-view images [7], [8], [17].
Recently, learning-based method [15] have learnt a 3D coordi-
nate map with a U-Net [18]. However, these existing structure
representation learning methods for document images require
auxiliary hardware or human supervision.

To avoid the inconvenience of existing structure representa-
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tion methods, we propose DocMAE, a self-supervised learning-
based framework for document image rectification, inspired
by the success of MAE [19]. The framework of our DocMAE
is simple, which consists of a pre-training stage for distortion
representation learning and a fine-tuning stage for distortion
rectification. Technically, during the pre-training stage, we
first mask the random patches of the background-excluded
document images and then reconstruct the missing pixels. Note
that here the reconstruction is conducted on the background-
excluded document images to avoid non-unique solutions
because a document can be placed in various scenes. Besides, to
support pre-training process, we collect a large-scale synthetic
document distortion dataset named LDIR, which fully simulates
the various distortion of real document images. Then, in fine-
tuning stage, the learned representations are transferred to the
downstream rectification task.

Extensive experiments are conducted on our proposed
LDIR dataset, Doc3D dataset [15], and DocUNet benchmark
dataset [10]. The results verify the effectiveness of our method
as well as its superior performance over existing methods. In
summary, we make three-fold contributions as follows:
• We propose DocMAE, a self-supervised learning-based

framework for document image rectification.
• We propose a large-scale dataset based on the rendering

techniques for self-supervised representation learning.
• We conduct extensive experiments to verify the merits of

our method and report the state-of-the-art performance.

II. RELATED WORK

There are mainly two technical routes to address document
image rectification, including (a) rectification based on 3D
reconstruction, and (b) rectification based on low-level features.
We discuss them separately in the following.

A. Rectification Based on 3D Reconstruction

In order to rectify document images, some traditional
methods take advantage of auxiliary equipment to reconstruct
the 3D shape of the deformed documents and then flatten the
reconstructed surface to correct the distortions. Brown and
Seales [4] utilize a light projector to gain the 3D representation
of the document shape and then flatten the page through a
spring-mass particle system. Zhang et al. [5] fulfill restoration
based on physical modeling techniques with the help of a
laser scanner. Meng et al. [6] project two structured beams
illuminating the document page to recover two spatial curves
of the page surface. In comparison, some other methods exploit
multi-view images for 3D shape reconstruction. Among them,
Koo et al. [7] calculate the corresponding points between two
document images by SIFT to resolve the unfolded surface.
You et al. [8] present a method based on a ridge-aware 3D
reconstruction technique. Tan et al. [20] employ the shading
technique to acquire shape for distortion rectification. Das et
al. [9] build a 3D shape model with the help of the convolutional
neural network. However, no matter whether using auxiliary
equipment or taking advantage of multi-view images, these

methods cannot be used in common situations, resulting in the
limitation of their usability.

B. Rectification Based on Low-level Features

The low-level features of an image also contain informative
cues for geometric distortion rectification. In previous work,
many algorithms focus on how to restore the curved text lines
straight. For example, Lavialle et al. [21] model the detected
text lines as cubic B-splines. While Mischke and Luther et
al. [22] utilize polynomial approximation to model it. However,
these methods rely more on hand-craft settings and human
prior knowledge. The neural network is introduced to solve this
task by Ma et al. [10]. They utilize a stacked UNet to directly
regress the pixel-wise displacement. Li et al. [11] stitch the
displacement field of the image patches to unwrap the image.
Xie et al. [12] adopt a fully convolutional network to evaluate
pixel-wise displacement. FDRNet [23] transforms the image
to the Fourier space to extract structural representations.

III. APPROACH

In this section, we present DocMAE, a novel framework
for the geometric rectification of document images. Fig. 1
shows the framework of our method. DocMAE consists of
two stages, including: (1) a distortion-aware pre-training
stage that reconstructs the randomly masked patches, and
(2) a rectification fine-tuning stage that transfers the learned
representations for estimating the distortion rectification.

A. Self-supervised Pre-training

In a geometrically distorted document image, the document
structure information is reflected by its edges, text lines,
and illumination variations, which provides rich cues for
distortion rectification. To obtain the structure representation
in a convenient way, our DocMAE framework introduces
a distortion-aware self-supervised pre-training stage, free of
hardware requirements or human supervision.

Background Removal. Due to the diversity of the document
image background, the reconstruction of them cannot help
the learning of the structure information, different from the
reconstruction of text lines and document boundaries. Therefore,
to obtain the meaningful features for rectification, we remove
the background of the input image Id ∈ RH×W×3 during
the pre-training stage. Specifically, a lightweight semantic
segmentation network [24] is trained to predict the mask
M ∈ RH×W×1 of the foreground document. Then, the noisy
background is removed by pixel-wise multiplication along the
channel dimension between image Id and mask M .

Masking. Following ViT [25], we first divide the background-
excluded document image Ie ∈ RH×W×3 into a sequence of
2D patches xp ∈ RN×(P 2·3), where H and W represent the
height and width of the document image Id, P represents the
patch size, and N = HW/P 2 denotes the number of patches.
Then, we randomly mask the N patches xp with a ratio R.

Distortion Encoder. The distortion encoder extracts the fea-
tures of the input image Ie. We only process the visible



Fig. 2. Example results of real document images. For each triplet, we show the mask image (left), our reconstruction (middle), and the ground truth (right).
The masking ratio is set as 50% here.

patches xv ∈ RNv×(P 2·3), where Nv = N × (1−R) denotes
the number of patches. Then, these patches are flattened and
mapped to D dimension with a linear projection. The output is
the patch embeddings Eo ∈ RNv×D. Here, we set D = 512.
To maintain the positional information, positional embeddings
Ep ∈ RNv×D (the sine-cosine version) are included and
bonded with the patch embeddings Eo. Then, the output passes
through K1 transformer blocks [25] to output encoded visible
patches Ee ∈ RNv×D.

Reconstruction Decoder. The learnable mask tokens Em ∈
RNm×D are zero-initialized and concatenated with encoded
visible patches Ee, where Nm = N × R is the number
of masked patches. Then we add positional embeddings
E′p ∈ RN×D to all tokens, to help mask tokens gain the
information about their locations in the image. The obtained
embeddings Ed ∈ RN×D are then fed into another K2

transformer blocks [25]. Finally, we employ a linear projection
to project the output channels D to the pixel number in each
patch, i.e., P 2 × 3. The output xf ∈ RN×(P 2·3) is reshaped
to form the reconstructed image Ir ∈ RH×W×3.

Loss Function. The training loss is defined as the L2 distance
between the reconstructed image Ir and the input background-
excluded image Ie on the masked patches,

Lpre =
1

n

n∑
i=1

(yi − ŷi)
2
, (1)

where yi denotes the pixel value of the background-excluded
image Ie, ŷi represents the pixel value of the reconstructed
image Ir, and n denotes the number of reconstructed pixels.

B. Fine-tuning for Rectification

In this section, we transfer the learned representations for
downstream distortion rectification. As shown in Fig. 1, a
rectification decoder is cascaded to the pre-trained encoder and
outputs the rectified image, described next.

Feature Extraction. Given an input image Id ∈ RH×W×3,
we first remove its noisy background as the pre-training stage,
to make the rectification network focus on the distortion
rectification without localizing the document first. Then, the ob-
tained background-excluded document image Ie ∈ RH×W×3

is divided into multiple patches, embedded into tokens, and

fed into the pre-trained distortion encoder for representation
extraction. Next, we fed the obtained representations into
another rectification decoder with K2 transformer blocks [25].
The output feature Ef ∈ RN×D is taken as the input of the
following flow prediction head.
Flow Prediction. We first reshape the feature Ef ∈ RN×D to
fs ∈ RH

P ×
W
P ×2. Then, we upsample the 1

P scale warping flow
fs to full-scale one f ∈ RH×W×2 using a learnable upsample
module [13], [26]. Note that f is a flow field that describes the
deformation from the distorted image to the distortion-free one.
Given the predicted warping flow f ∈ RH×W×2, we resample
the pixels from the background-excluded image Ie to generate
the rectified one Ic ∈ RH×W×3 as follows,

Ic(u, v) = Ie(fu(u, v),fv(u, v)), (2)

where (u, v) is the integer pixel coordinate in rectified image,
fu and fv represent the two channel of warping flow f , and
(fu(u, v),fv(u, v)) is the projected coordinate in Ie.
Loss Function. During the fine-tuning stage, the model is
optimized with the training objective as follows,

Lft =
1

n

n∑
i=1

|yi − y′i| , (3)

where yi and y′i are the coordinates in predicted flow f and
ground truth fgt, and n denotes the number of pixels in f .

IV. EXPERIMENT

A. Dataset

Doc3D. Doc3D dataset [15] consists of 100k distorted doc-
ument images created by real document data with rendering
software. It is the largest dataset to date in the field. In this
work, we take the Doc3D dataset for training in our approach.
LDIR. To perform self-supervised learning on document
images, we propose LDIR, a large-scale synthetic dataset
for document image rectification. We utilize 3D rendering
software to simulate real-world document textures, lighting
conditions, backgrounds, and distortions, which ensures the
quality of LDIR. It contains 200k distorted document images.
The distorted document images are rendered through real
document data in our daily life, such as books and magazines.
Our experiments reveal the high quality of LDIR that indeed



improves the rectification performance based on self-supervised
learning.

DocUNet benchmark. DocUNet benchmark dataset [10]
is a widely-used dataset for the evaluation of rectification
algorithms. It contains 130 real-world distorted document
images and their scanned ground truth.

B. Setup

We use all the images of LDIR dataset for pre-training and
all the images of Doc3D dataset [15] for fine-tuning. The image
size (H,W ) is (288,288) and the patch size P is 16. During
the pre-training stage and fine-tuning stage, the latent vector
size D of the encoder and decoder is both 512. The layer
number K1 and K2 are set as 6 and 4, respectively.

We use the Adam optimizer and one-cycle learning rate
policy with a maximum value of 10−4. Both stages are trained
for 65 epochs with a batch size of 64. Two NVIDIA GeForce
RTX 1080Ti GPUs are employed to train the network.

C. Evaluation Metrics

We discuss the evaluation scheme mainly in two fields: pixel
alignment and Optical Character Recognition (OCR) accuracy.
Specifically, for pixel alignment, Local Distortion (LD) and
Multi-Scale Structural SIMilarity (MS-SSIM) are recommended
to evaluate the restoration performance as previous works [10],
[12], [15] suggest. In terms of OCR, Edit Distance (ED)
and Character Error Rate (CER) are used to evaluate the
performance on text recognition, following [10], [15].

Local Distortion. Local Distortion (LD) [8] calculates the
average deformation of each pixel and represents the mean
displacement error according to the SIFT flow (∆x,∆y) [27]
from the ground-truth scanned image to the rectified one.

MS-SSIM. The Multi-Scale Structural SIMilarity (MS-SSIM)
calculates the multi-scale image similarity between the ground-
truth scanned image to the rectified one. We follow the weights
setting of works [10], [12], [15].

ED and CER. Edit Distance (ED) measures the differences be-
tween two strings, based on the minimal number of operations
required to change one string into the target one. It involves
three types of operations, including deletions (d), insertions
(i), and substitutions (s). Furthermore, Character Error Rate
(CER) can be computed: (d+ i+ s)/Ns, where Ns is the total
number of the target string.

D. Comparison with State-of-the-art Methods

We evaluate the performance of DocMAE on the DocUNet
Benchmark dataset [10] by quantitative and qualitative eval-
uation. Table I shows the comparisons of our DocMAE with
the existing state-of-the-art learning-based methods [10]–[12],
[15], [23], [28], [29] on distortion metrics, including distortion
rectification and OCR accuracy.

As it can be seen in Fig. 3, DocMAE achieves excellent
qualitative rectification. Compared with other learning-based
methods, the rectified images of DocMAE show less distortion
and the corrected text lines are more straight.

TABLE I
QUANTITATIVE COMPARISONS OF THE EXISTING LEARNING-BASED

METHODS IN TERMS OF DISTORTION METRICS, OCR ACCURACY, AND
IMAGE SIMILARITY ON THE DOCUNET BENCHMARK DATASET. “↑”

INDICATES THE HIGHER THE BETTER, WHILE “↓” MEANS THE OPPOSITE.

Methods Venue LD ↓ ED ↓ CER ↓MS-SSIM ↑
Distorted Images - 20.51 2111.56 0.54 0.25

DocUNet [10] CVPR’18 14.19 1933.66 0.46 0.41
DocProj [11] TOG’19 18.01 1712.48 0.43 0.29

DewarpNet [15] ICCV’19 8.39 885.90 0.24 0.47
FCN-based [12] DAS’20 7.84 1792.60 0.42 0.45
PWUNet [28] ICCV’21 8.64 1069.28 0.27 0.49
DDCP [29] ICDAR’21 8.99 1442.84 0.36 0.47

FDRNet [23] CVPR’22 8.21 829.78 0.21 0.54
DocMAE (Ours) - 7.63 801.52 0.20 0.50

TABLE II
ABLATIONS EXPERIMENTS ABOUT THE PRE-TRAINING STAGE FOR

REPRESENTATION LEARNING. WITH THE LEARNED REPRESENTATIONS, THE
RECTIFICATION PERFORMANCE IMPROVES SIGNIFICANTLY.

Methods LD ↓ ED ↓ CER ↓ MS-SSIM ↑
w/o pre-training 8.69 854.84 0.23 0.48
w/ pre-training 7.63 801.52 0.20 0.50

E. Ablation Studies

In this section, we conduct ablations to verify the effec-
tiveness of each component in DocMAE, including the self-
supervised pre-training, the masking strategy, the way of fine-
tuning, and the dataset for pre-training.

Self-supervised Pre-training. The key idea of DocMAE is the
self-supervised representation learning strategy for document
images. We study the impact of self-supervised learning strategy
on the learned representations in Table II. As we can see,
self-supervised representation learning significantly boosts
the rectification performance. This can be attributed to the
representation learning of the structural cues in document
images to improve the rectification. Furthermore, as shown
in Fig. 2, we show some cases of the reconstructed results
using the pre-trained model. The document boundaries and
text lines are well-reconstructed. Note that here our goal is not
to reconstruct the fine-grained text lines, but to capture their
layout caused by perspective and paper distortions.

Masking Ratio. The masking ratio affects the difficulty of self-
supervised learning. Therefore, we initialize the pre-training
network with different mask ratios. As the result shown in
Table III, DocMAE achieves the best performance with a
75% mask ratio. With a higher mask ratio, more details of
the document like edges and text lines are missing, which
makes the network struggle to extract high-level structural
representations. In contrast, with a lower mask ratio, the task is
relatively easy for the network to learn effective representations.

Fine-tuning Way. Table IV studies the impact of fine-tuning
way on performance. By default, during the fine-tuning stage,
we update the weights of the whole model for rectification.
Then, we fixed the pre-trained encoder and only fine-tune the
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Fig. 3. Qualitative comparison on DocUNet benchmark dataset [10]. Note that such images are real-world document images. Our DocMAE can effectively
rectify such images and show less distortion compared with other learning-based methods.

TABLE III
ABLATION EXPERIMENTS ABOUT MASKING RATIO IN THE PRE-TRAINING

STAGE. 75% PRODUCES THE BEST PERFORMANCE.

Masking Ratio LD ↓ ED ↓ CER ↓ MS-SSIM ↑
60% 7.88 808.35 0.20 0.50
75% 7.63 801.52 0.20 0.50
90% 8.21 933.52 0.22 0.49

TABLE IV
ABLATION EXPERIMENTS ABOUT FINE-TUNING WAY. FINE-TUNING THE

WHOLE MODEL WORKS BETTER.

Settings LD ↓ ED ↓ CER ↓MS-SSIM ↑
freezing the encoder 8.56 1011.64 0.25 0.49

fine-tuning the whole model 7.63 801.52 0.20 0.50

rectification decoder. As we can see, our default fine-tuning
way produces much better performance.

Datasets for Pre-training. We ablate the dataset used for pre-
training. We use two different datasets separately: the Doc3D
dataset [15] and our LDIR dataset. As shown in Table V, the
network pre-trained on our LDIR dataset performs much better.
We attribute this performance gain to the use of the extra data
and the quality of our LDIR dataset.

V. CONCLUSION

In this work, we present DocMAE, a self-supervised
framework for document image rectification. The key idea
is to capture the structural cues in document images and
leverage it for rectification. Technically, we first mask random
patches of the background-excluded document images and
then reconstruct the missing pixels. In our implementation,

TABLE V
ABLATION EXPERIMENTS ABOUT THE DATASET USED FOR PRE-TRAINING.
THE LDIR DATASET HELPS GAIN MORE PRIOR KNOWLEDGE COMPARED

WITH THE DOC3D DATASET [15].

Dataset LD ↓ ED ↓ CER ↓ MS-SSIM ↑
Doc3D 8.05 891.76 0.22 0.49
LDIR 7.63 801.52 0.20 0.50

we collect a large-scale dataset named LDIR based on the
rendering techniques. Extensive experiments are conducted,
and the results demonstrate the effectiveness of the learned
representations as well as the superior rectification performance.
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