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Abstract—Video colorization, aiming at obtaining colorful and
plausible results from grayish frames, has aroused a lot of interest
recently. Nevertheless, how to maintain temporal consistency
while keeping the quality of colorized results remains challenging.
To tackle the above problems, we present a Histogram-guided
Video Colorization with Spatial-Temporal connection structure
(named ST-HVC). To fully exploit the chroma and motion
information, the joint flow and histogram module is tailored
to integrate the histogram and flow features. To manage the
blurred and artifact, we design a combination scheme attending
to temporal detail and flow feature combination. We further
recombine the histogram, flow and sharpness features via a U-
shape network. Extensive comparisons are conducted with several
state-of-the-art image and video-based methods, demonstrating
that the developed method achieves excellent performance both
quantitatively and qualitatively in two video datasets.

Index Terms—Video colorization, deep learning, histogram and
flow-guided

I. INTRODUCTION

Video colorization task aims to convert the gray frame
sequences into colorful and plausible ones, which has wide
applications in domains like old films restoration and anime
creation. Video colorization can also assist other tasks like
video action recognition, detection, tracking and segmentation.

Although significant progress has been achieved, automatic
video colorization still poses the following three challenges:
the chroma quality of produced images, the temporal consis-
tency between frames and the possibility of producing distinct
colorization result. Image-based colorization solutions [1]–
[7] can achieve satisfactory visual result. Nonetheless, those
methods tend to take longer time to colorize images and the
temporal coherence of generated results is relatively poor.
Video-based methods [8]–[14] are aimed to produce colorized
frames with vivid color and minimum temporal flickering. But
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to achieve a trade-off between quality of single frame and the
temporal consistency of neighbor frames is hard.

The final challenge makes video colorization an ill-posed
problem, since the same object can have distinct but possible
colors at the same time (i.e., the color of T-shirt can be green or
blue, a flower can be purple or white). To solve this problem,
researchers either build models to produce multiple results all
at once, or tend to seek references to guide the model to
colorize the video frames. User-guided colorization like [6]
seek the indication from users to guide the model. Exemplar-
based methods like [11], [15], [16] utilize exemplar images
as color references. Thus the generated results differs with
different exemplars. Histograms can also be served as color
references to provide an global color distribution for models.
For instance, HistoGAN [17] employs histogram to manipulate
the color of GAN-generated images, [4] uses histograms to
facilitate the extraction of semantic information.

Over the past several years, the attention mechanism along
with the transformer architecture has been broadly used in
vision based tasks like detection [18], segmentation [19] and
image restoration [20], [21]. In the field of colorization,
ColTran [3] proposes a transformer model based on the theory
of probability and samples colors from the learned distribution
to generate diverse and plausible results. CT 2 [2] converts the
colorization task as a classification problem and introduces
color tokens into their model while limiting the range of Lab
color space.

In this work, we develop a histogram-guided video coloriza-
tion with spatial-temporal connection structure, along with a
developed joint flow and histogram feature module, spatial-
temporal connection scheme and a feature recombination-
aimed U-shape network. In particular, the developed method
firstly calculates the temporal sharpness and flow feature,
to help the model better restore the blurred detail caused
by motion and the artifact brought by optical flow. Aiming
to integrate the flow and histogram information to facilitate
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Fig. 1. Model overview of the proposed ST-HVC. Temporal sharpness and flow features are computed and forwarded into U-shape network with the frames.
Histogram and flow features are integrated into joint flow and histogram feature module (short for JFHM) to facilitate the colorization process.

the colorization, we present joint flow and histogram feature
module and employ it in skip connections and in the bottleneck
of the U-shape network. We extract the reference histogram
feature in multiple level via splatting the pixel histogram along
the range dimension. We feed merely the histogram of the
middle frame in a video into our model, which can further
boost the application of the proposed method. We make the
following contributions:
• We propose a novel histogram-guided video colorization

network with spatial-temporal connection structure (i.e.,
ST-HVC) to tackle the color assignment and temporal
consistency challenges.

• For the first time we calculate the temporal sharpness and
flow feature to form the inputs along with the frames.
This design can better manage the blurred detail caused
by motion and the artifact brought by flow.

• To ameliorate the wrongly-assigned color and improve
the temporal coefficient, we integrate the histogram of
the middle frame and flow features into a joint module
(i.e., JFHM) to guide the colorization process.

• The experiments confirm that the proposed method signif-
icantly outshines existing video colorization approaches
both quantitatively and qualitatively.

II. METHOD

A. Method Overview

Video colorization task aims at attaining colorful and plau-
sible results from black and white frames while reducing
the flickering artifacts and maintain the quality of colorized
images. In Fig. 1, we illustrate the overall pipeline of our
developed network ST-HVC. The proposed method takes
in 2τ + 1 video frames as input and then computes the
temporal sharpness Fs [22], [23] and flow feature Fflow,
the two features are then concatenated with original frames
{xt−τ , ..., xt+τ} and are forwarded into a dynamic region con-
volution [24] based encoder-decoder architecture. To remove
the artifacts commonly occurred in video restoration results
and boost the consistency between frames, four JFHMs are
placed in skip connections and in bottleneck. We decouple the

Fig. 2. Structure of JFHM with flow and histogram feature integrated. ϕx

stands for the input feature. M1 means the middle feature map and M2

denotes the output of JFHM module.

original multi-head self-attention in JFHM along spatial and
temporal dimension to better utilize the spatially histogram
color hint and temporally flow feature. We extract the his-
togram reference feature Hf in multiple levels by introducing
bilateral grid [25] and via splatting the pixel histogram along
the range dimension. It is noteworthy that the reference we
feed into the model is merely the middle frame of the video.
We don’t need any other references to guide the colorization
process.

B. Temporal Detail and Flow Combining

Temporal sharpness and flow features are firstly computed
according to the frames before they are forwarded into U-
shape network. This prior is based on the observation that the
same object in different frames has sharp and blurred pixels
simultaneously. Since many colorization works cannot perform
well in blurred details, the temporal sharpness can prompt our
model to sense the sharpness and help to restore those details.

The temporal sharpness Fs calculated from frames
{xt−τ , ..., xt+τ} indicates the sharpness area of frames. The
overall input Fo can be formed below:

Fo = Concat(xi, (Fs ⊗ xi), Fflow), i ∈ [t− τ, t− τ ] (1)

where Concat and ⊗ represents the concatenation and multi-
plication. We use RAFT [26] to form the optical flow Fflow.
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Fig. 3. Chroma comparison with representing and state-of-the-art approaches. From top to bottom, the figure demonstrates outstanding performance of the
proposed method regarding the front color, background color, blurred pixels and the detail.

C. Joint Flow and Histogram Feature Module

The designed joint flow and histogram feature module
(JFHM) is tailored to utilize the chroma and motion feature
condensed in histogram and flow as depicted in Fig. 2, frames
features are first put into the module. Flow and histogram
information is integrated in SA and feature refinement.

Inspired by [27]–[30], we decouple the attention schema
along the spatial and temporal dimension, thus forming the
temporal attention (TA) and spatial attention (SA). Specifi-
cally, given the input feature F i, i ∈ [t− τ, t+ τ ], we split it
into s2 non-overlapped windows along the height and width
dimension where each window of F i is denoted as F i

jk,
j, k ∈ [1, s]. We take different window size for each attention
and stemporal is smaller than sspatial.

The temporal approach group windows along tempo-
ral dimension, i.e., Gtemporal = {F t−τ

j,k , ..., F t+τ
j,k }, j, k ∈

[1, stemporal] so that temporal attention is performed across
tokens in Gtemporal. Thus, continuous movement of the object
inside a small spatial window can be detected.

In spatial branch, we gather them along spatial dimension
Gspatial = {F i

1,1, F
i
1,2, ..., F

i
sspatial,sspatial

}, i ∈ [t− τ, t+ τ ],
and attention is performed across tokens in it. The operation
helps our model to understand similar textures in spatially-
neighboring pixels.

Giving a sequence of frame features ϕx, the output after
concatenating the TA and SA features M1 can be described:

M1 = ϕx ⊕ TA(LN(ϕx)⊕ SA(LN(ϕx), Fflow) (2)

where LN means the Layer Normalization and Fflow stands
for flow features of the frames. The sign ⊕ denotes the
concatenate operation. After concatenation, we integrate the
histogram feature and we introduce the skip connection after
the feature refinement and feed forward layer.

The histogram reference serves as a multi-scale color distri-
bution indicator. Following [25], [31] and by splicing the pixel
histogram along the range dimension, we can obtain different
histogram patch and attain distinct feature map at multiple
scale. The HistConv in Fig. 1 denotes the 2 × 2 convolution

without bias and with its weight shrunk to downscale the hist-
map. The output of joint feature module M2 is:

M2 = M1 ⊕ FFN(LN(M1 ⊕MFR)) (3)

where FFN stands for feed forward network. MFR means the
middle output after integrating histogram and feature refine-
ment. The structure of feature refinement module is composed
of three times duplicated sequence of 3 × 3 convolution and
LeakyReLU, where we inject color information of reference
histogram into grayscale frame features.

D. Feature Recombination via U-shape Network

The concatenation results from Sec.II-B are put into the
designed U-shape network which consists of basic encoder-
decoder, JFHM module and a histogram exploitation module.

Motivated by [4], [17], [31], we design to exploit the
reference histogram from the middle frame of video. The
JFHM aims to integrate the flow and histogram information,
and help the reconstruction process. As is shown in Fig. 1,
we apply JFHM in skip connection and replace the bottleneck
with it as well. Besides, we employ dynamic region-aware
convolution [24] in our decoder to learn different kernels
according to local illumination features. The DRBlock in the
legend of Fig. 1 is composed of a sequence of original DR
convolution, batch normalization and ReLU, repeated twice.

E. Loss Functions

Inspired by [8], [9], our model aims to reduce the temporal
flickers via adopting the warping loss Lw as:

Lw =
∑

d={1,2}

N−d∑
t=1

∥∥Mt+d⇒t ⊙
(
yt − ywarp

t+d

)∥∥
2

(4)

where d stands for the frame interval, thus the loss under
larger interval means longer temporal coefficient. yt means the
tth frame and Mt+d⇒t = exp

(
−α

∥∥yt − ywarp
t+d

∥∥2
2

)
represents

the visibility mask [8]. ywarp
t+d = W (yt+d, ft+d→t) where W

warps the (t+d)th frame under the indication of flow ft+d⇒t

from (t+ d)th frame to tth frame.



TABLE I
QUANTITATIVE COMPARISONS ON DAVIS AND VIDEVO DATASETS. WE PICK BOTH IMAGE AND VIDEO-BASED APPROACHES FOR COMPARISONS. THE

BEST RESULT IS HIGHLIGHTED IN BLACK BOLD WHILE THE SECOND BEST IS MARKED UNDERLINE.

Methods DAVIS Videvo
PSNR ↑ SSIM ↑ Warp Error ↓ L2 Error ↓ PSNR ↑ SSIM ↑ Warp Error↓ L2 Error ↓

CIC [5] 22.77 0.9431 0.06055 15.88 22.56 0.9417 0.03317 17.11
IDC [6] 24.85 0.9436 0.05377 11.99 25.17 0.9568 0.02997 11.69

InstColor [32] 24.51 0.9411 0.07828 13.20 24.80 0.9458 0.04917 20.37
GCP [7] 23.53 0.9309 0.04978 12.45 24.25 0.9369 0.02864 12.08

CIC [5]+BTC [8] 22.11 0.9298 0.05170 16.67 21.77 0.9343 0.02891 17.68
IDC [6]+BTC [8] 23.91 0.9006 0.04498 12.91 23.74 0.9383 0.02786 12.60

FAVC [10] 22.98 0.9055 0.06002 13.26 23.47 0.9183 0.03236 12.21
TCVC [9] 25.49 0.9550 0.04819 11.86 25.43 0.9570 0.03589 11.59

Ours 26.68 0.9612 0.04626 10.38 26.95 0.9623 0.02612 10.13
Ours w/o histogram 25.62 0.9590 0.05052 11.49 25.22 0.9587 0.02963 11.37

Besides, we adopt the Charbonnier loss Lc =∑N
t=1

√
(ŷt − yt) + ϵ2 and smooth loss Ls in Lab space to

avoid the gradient exploding and produce smooth result. The
overall loss function is shown below:

Ltotal = λ1Lw + λ2Lc + Ls (5)

where λ1 and λ2 denote the weights of loss functions.

III. EXPERIMENT

A. Experimental Procedure

Dataset and Metrics. Following previous works [8], [10],
[13], we adopt DAVIS dataset [33] and Videvo dataset
[8] for training and testing. Originally designed for video
segmentation, DAVIS dataset includes a variety of moving
objects and distinct motion types. It contains 60 short videos
for training and 30 for testing, with 100 frames in each video.
The Videvo dataset has 80 long videos for training and 20
for testing. There are about 300 frames in each video clips.
To evaluate the quality of generated video frames, we use
PSNR, SSIM, warp error [8] and L2 error. The warp error is
to measure the temporal continuity of the generated frames.

Implementation Details. We utilize the pytorch framework
to implement our model with Adam [34] its optimizer. A
single GeForce RTX 3090 graphic card is used to train and
test the models. During the training, the size of input frames
are resized to 256 * 256. The learning rate is initialized to
5e-5 and we set the α in loss functions to 9 according to [8].

Fig. 4. Illustrations of each feature connection schema where (c) is employed
in our proposed ST-HVC.

TABLE II
ABLATION STUDY ON FEATURE CONNECTION SCHEMA. DETAILED

STRUCTURES OF (A), (B) AND (C) ARE DEFINED IN FIG 4.

Settings (a) (b) (c)

PSNR 26.12 26.49 26.95
drop rate 3.08% 1.71% -

TABLE III
ABLATION STUDY ON KEY COMPONENTS. EXPERIMENTS ARE

CONDUCTED IN VIDEVO DATASET.

Settings PSNR↑ SSIM↑ Warp Error ↓

w/o histogram guide 25.22 0.9590 0.02993
w/o flow integration 26.31 0.9577 0.03836
w/o spatial attention 24.39 0.9370 0.03295

w/o temporal attention 26.16 0.9551 0.04122
ours 26.95 0.9623 0.02612

B. Ablation Studies

Illustrating Different Connection Schema. We firstly
conduct ablation studies on connection schema as is depicted
in Tab. II. Detailed structure of each schema is shown in
Fig. 4 where (c) is employed in our ST-HVC. The PSNR
scores and drop rates from experiments demonstrate that
temporal sharpness contributes to the reconstruction process
and the direct concatenate operation is less effective than
multiplication.

Effectiveness of Different Modules. We perform ablation
studies on key components (i.e., the histogram guidance mod-
ule, flow feature integration, temporal and spatial attention.)
in the Videvo dataset. The statistical results are summarized
in Tab. I and Tab. III. Without histogram, the proposed model
still outperform other methods, and in many cases is merely
second to the full model. Besides, the drop rates of PSNR are
6.42% and 2.37%, which demonstrate the great improvement
brought by the histogram exploitation schema. The warp error
grows nearly a half without flow, meaning the significance of
flow integration paradigm.



Fig. 5. Visual results of ablation on flow integration. → denotes the movement
of frames. Caused by inherent attributes of optical flow, artifacts occur without
flow integration.
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Fig. 6. Comparison under warp error. We denote the corresponding warp
error among the depicted frames in the right. We achieve the best results in
both perception and statistics.

Without temporal attention, warp error increases over a half,
indicating the contribution of temporal branch in reducing the
frames inconsistency. Without spatial attention, the pixel-level
scores drop heavily, showing that the spatial branch can better
handle the texture information.

Effectiveness of Flow Integration. In Fig. 5, we demon-
strate how will flow integration in JFHM affect the visual re-
sult. The first column shows the overall frame of dogs jumping
and the following three figures show the details of green and
red rectangles area while frames move forward. Without flow
integration, undersaturated area occurs. It is interesting to find
that the area are most obvious in the first frame of one batch
and will diminish along the frame sequences. We argue that
the phenomenon is stemmed from the inherent attributes of
optical flow. With the flow integration, the undersaturated area
vanishes and color becomes plausible and vivid again.

C. Comparing with State-of-the-Arts

We conduct thorough experiments between our ST-HVC and
several state-of-the-art approaches: image-based methods (i.e.,
CIC [5], IDC [6], InstColor [32] and GCP [7]) and video-based
methods (i.e., FAVC [10], TCVC [9]. Moreover, we apply the

blind temporal consistency [8] on CIC [5] and IDC [6] to form
another two groups of comparison.

Quantitative Comparison. We conduct quantitative com-
parisons on DAVIS and Videvo datasets where the results
are summarized in Tab. I. The top four rows show the
performance of image colorization methods and middle four
rows present the result of video-based models. In general,
image-based methods can achieve relatively higher PSNR and
SSIM scores, but their temporal coherence is poor. GCP ranks
the first among image-based methods regarding warp error,
since it utilizes generative color prior and the adjacent frames
may have similar result when put into GAN encoder. Video-
based approaches like BTC is prone to boost the temporal
consistency, consequently the warp error is improved. But
the cost is singe image colorization quality when compared
to original results of CIC and IDC. TCVC strike a balance
between temporal consistency and colorization performance
due to its bidirectional propagation of frame-level features.

As can be noticed in the bottom row of Tab. I, our method
achieved the best score in most cases. Due to our designed
architecture, we rank the first in PSNR, SSIM and L2 error
in both datasets. It demonstrates that the proposed method
can generate the best textual and pixel-wise result closest to
the ground truths. Besides, thanks to our flow integration, we
outshine most models regarding the temporal consistency.

Comparison in Color. We conduct comparison regarding
the chroma with representing and state-of-the-art approaches
in Fig. 3. From top to bottom, the figure demonstrates out-
standing performance of the proposed method regarding the
front color, background color, blurred pixels and the detail.
Thanks to designed reference exploitation schema in JFHM,
our proposed method can exploit the indication of color
distribution. We can surprisingly assign the correct color in
details as shown in the mouth of black-swan in bottom row.

Temporal Consistency Comparison. In Fig. 6, we show
the temporal consistency performance of our model. Severe
temporal flickering with inconsistent colors is occurred in
InstColor. As for GCP and TCVC, the overall results are great,
but the color change of the body of cars between frames shows
that they are still suffering from temporal inconsistency. Our
proposed ST-HVC can generate satisfactory images with the
least flickering and the lowest warp loss as is depicted in the
figure.

IV. CONCLUSION

We proposed a novel network with spatial-temporal con-
nection schema to tackle the chroma assignment and temporal
coefficient challenges in video colorization. To demonstrate its
effectiveness, we conduct comparisons with the several state-
of-the-art image and video-based methods. The experiment
results show that the developed method achieves excellent
scores on four quality metrics in two classic datasets.

Limitations Despite the competitive performance, the pro-
posed network cannot colorize well if scene changes rapidly,
since histogram of the middle frame is no longer representa-
tive. Future work will take these cases into account.
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