
Customizing Synthetic Data for Data-Free Student
Learning

Shiya Luo
Zhejiang University
Hangzhou, China
lsya@zju.edu.cn

Defang Chen
Zhejiang University
Hangzhou, China

defchern@zju.edu.cn

Can Wang
Zhejiang University
Hangzhou, China
wcan@zju.edu.cn

Abstract—Data-free knowledge distillation (DFKD) aims to
obtain a lightweight student model without original training
data. Existing works generally synthesize data from the pre-
trained teacher model to replace the original training data for
student learning. To more effectively train the student model, the
synthetic data shall be customized to the current student learning
ability. However, this is ignored in the existing DFKD methods
and thus negatively affects the student training. To address this
issue, we propose Customizing Synthetic Data for Data-Free
Student Learning (CSD) in this paper, which achieves adaptive
data synthesis using a self-supervised augmented auxiliary task to
estimate the student learning ability. Specifically, data synthesis
is dynamically adjusted to enlarge the cross entropy between the
labels and the predictions from the self-supervised augmented
task, thus generating hard samples for the student model. The
experiments on various datasets and teacher-student models show
the effectiveness of our proposed method. Code is available at:
https://github.com/luoshiya/CSD

Index Terms—data-free knowledge distillation, self-
supervision, model compression

I. INTRODUCTION

In recent years, convolutional neural networks (CNNs)
have achieved remarkable success in various applications [1]–
[3] with over-parameterized architectures. But its expensive
storage and computational costs make model deployment
on mobile devices difficult. Therefore, knowledge distilla-
tion (KD) [4], [5] comes into play to compress models by
transferring dark knowledge from a well-trained cumbersome
teacher model to a lightweight student model. The prevailing
knowledge distillation methods [4], [6]–[9] depend on a strong
premise that the original data utilized to train the teacher model
is directly accessible for student training. However, this is not
always the case in some practical scenarios where the data
is not publicly shared due to privacy, intellectual property
concerns or excessive data size etc. Data-free knowledge dis-
tillation (DFKD) [10] is thus proposed to solve this problem.

Existing DFKD methods generally divide each training
round into two stages: data synthesis and knowledge transfer.
Two different approaches are proposed in the data synthesis
stage: model inversion inputs the random Gaussian noise into
the fixed teacher model and iteratively updates the input
via the back-propagation from the teacher model [11], [12];
generative reconstruction utilizes a generator network to learn
a mapping from the low-dimensional noise to the desired high-
dimensional data manifold close to the original training data
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Fig. 1. Two different adversarial frameworks in hard data synthesis. (a) Tradi-
tional adversarial framework aims to enlarge divergence between predictions
of the teacher and student. (b) Our proposed adversarial framework aims to
enlarge divergence between labels and predictions from the self-supervised
augmented task given to the student.

[10], [13], [14]. In the knowledge transfer stage, the synthetic
data from the previous stage is used to train the student model
with the regular knowledge distillation procedure.

As training progresses, easy samples bring little new knowl-
edge and contribute less to the student learning. The key to
improvement of the student learning ability is to provide the
student with hard samples in training such that it can con-
tinuously acquire new knowledge. Some existing adversarial
DFKD methods generate hard samples on which the student
disagree with the teacher by enlarging the divergence between
their prediction distribution [12], [15]–[17] (see Fig. 1(a)).
However, the teacher has not been trained on such synthetic
samples, and thus soft predictions for many samples are
likely to be inaccurate. The student will experience minimal
improvement, or even a decline, in its learning ability when
attempting to imitate the teacher on those incorrect samples
(as shown in Fig. 3). Furthermore, it is difficult to manually
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evaluate whether soft predictions of the teacher is correct.
In this paper, we propose Customizing Synthetic Data for

Data-Free Student Learning (CSD), which directly takes the
current student learning ability as a reference to adaptively
synthesize hard samples and the learning ability is estimated
through a self-supervised augmented auxiliary task that learns
the joint distribution of the classification task and the self-
supervised rotation task. In this way, the capability of cap-
turing semantic information can serve as a good indicator of
the student learning ability, and the auxiliary task can effec-
tively verify how well the student understand semantics [18].
An extra auxiliary classifier appended to the student feature
extractor learns the self-supervised augmented auxiliary task
in knowledge transfer stage and then estimates the current
student learning ability as an evaluator in data synthesis stage
by calculating the divergence between labels and predictions
from the auxiliary task. In this way, we accurately generate
hard samples relative to current student learning ability by
enlarging this divergence in an adversarial way. Different from
the traditional adversarial objective [12], [15]–[17], we use
the student model itself rather than the pre-trained teacher
model to estimate the sample difficulty of the synthetic data
(see Fig. 1(b)), which is more reliable for the student training
and beneficial for the student performance improvement. As
shown in Fig. 3, the student improves its learning ability with
our hard samples and are not easily disturbed by the teacher
misinformation.

Our contributions are summarized as follows:
• We propose a novel method to dynamically generate

hard samples based on the current learning ability of the
student in the data-free knowledge distillation scenario.

• An auxiliary classifier is used to learn a self-supervised
augmented task, and also acts as an evaluator to estimate
the student learning ability for hard data synthesis.

• We conduct extensive experiments on various datasets
and teacher-student model architectures. Experimental
results confirm the effectiveness of our method.

II. PROPOSED METHOD

The overview of our proposed CSD framework is shown in
Fig. 2. The framework consists of a fixed pre-trained teacher,
a generator, a student and an auxiliary classifier appended to
the student feature extractor. The generator and the auxiliary
classifier are trained in an adversarial manner. In data synthesis
stage, the generator would explore hard samples based on the
student learning ability with the auxiliary classifier. In knowl-
edge transfer stage, the auxiliary classifier tries to improve
its own evaluating ability. Two stages are executed alternately
until convergence.

A. Data Synthesis

In data synthesis stage, we follow CMI [12] to synthesize
data x̃ ∈ RH×W×C (H, W, C denote the height, width
and channel number, respectively) from a pre-trained teacher
model as the surrogate for original training data x. We jointly
update random noise vector z and the parameters θg of the

generator G to obtain x̃ = G (z) for ng steps in each training
round. The generator provides stronger regularization on pixels
due to the shared parameters θg .

Although the main purpose of our work is to synthesize
hard data based on the current ability of the student itself,
if we synthesize data only by the student, this may make
the distribution of the synthetic data far away from the
original training data due to the lack of data prior constraints.
The optimization objective of data synthesis consists of two
components and is formulated as:

min
z,θg
Lnarrow − αLcsd, (1)

where Lnarrow aims to narrow the gap between the synthetic
data and the original training data with the help of the
well-trained teacher model for alleviating outliers, and Lcsd

estimates the learning ability of the student. We will elaborate
these two terms later.

Narrowing the Distribution Gap. To make synthetic data
more realistic, we adopt the following optimization objective
to narrow the gap between the distribution of synthetic data
and original training data:

Lnarrow = Lcls + Lbns, (2)

Lcls represents an one-hot assumption that if the synthetic data
have the same distribution as that of the original training data,
the prediction of the synthetic data by the teacher model would
be like a one-hot vector [10]. Therefore, Lcls is calculated as
the cross entropy between the teacher prediction T (x̃) and
the pre-defined label ỹ:

Lcls = CrossEntropy (ỹ, T (x̃)) , (3)

Lbns is a constraint that effectively utilizes statistics stored in
the batch normalization (BN) layers of the teacher as data prior
information [11]. It employs running mean µl and running
variance σ2

l of the l-th BN layer as feature statistics of original
training data. Lbns is then calculated as the l2-norm distance
between features statistics of synthetic data x̃ and original
training data:

Lbns =
∑
l

(
∥µ̃l(x̃)− µl∥2 + ∥σ̃2

l (x̃)− σ2
l ∥2

)
, (4)

where µ̃l(x̃) and σ̃2
l (x̃) are mean and variance of the feature

maps at the l-th teacher layer, respectively.
Customizing Synthetic Data for the Student. In each

training round, it is necessary to synthesize data adaptively
according to the current student learning ability, so as to pre-
vent the student from repeatedly learning oversimple samples.
To quantify learning ability, we consider that if a model can
understand the semantic information of a image well, it would
have a strong learning ability. Specifically, we adopt a simple
self-supervised task by first rotating each image at different
angles and then forcing the model to identify which angle
each image comes from. As illustrated in [18], the model can
effectively perform the rotation recognition task unless it first
learns to recognize the object categories and then recognize
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Fig. 2. An overview of our proposed CSD. The student is equipped with an auxiliary classifier after feature extractor to predict the categories of rotated
images with a self-supervised augmented task. 1) In data synthesis stage, random noise vector and the generator are jointly trained to synthesize images, not
only based on outputs from the auxiliary classifier, but also the statistics of the teacher’s BN layers and the given labels. 2) In knowledge transfer stage, the
student is trained to imitate behaviors of the teacher, and the auxiliary classifier is trained separately to improve its own evaluating ability.

semantic parts in the image. But only using the rotation task
to estimate learning ability is not enough. For example,“6” is
rotated 180◦ for the digit “9” and 0◦ for the digit “6”. Inspired
by [19], we also combine the original classification task and
the self-supervised rotation task into a unified task, named as
the self-supervised augmented task, which forces the model
to identify the angle as well as the category to eliminating
incorrect estimation.

We consider a N-way classification task and a M-way self-
supervised rotation task. The CNN student model consists of
two components: the feature extractor Φ : x̃ → Rd and the
classifier h : Rd → RN , i.e., S(x̃) = h(Φ(x̃)). Here d denotes
the feature dimension. we attach an auxiliary classifier c :
Rd → RK with parameters θc behind the feature extractor,
where K = N ∗M represents the number of categories for the
self-supervised augmented task. Lcsd is calculated as follows:

Lcsd = CrossEntropy (k, c (Φ (trans (x̃)))) , (5)

where trans(·) is the operation of rotation and k is the label
of the rotated version of synthetic data x̃ in the self-supervised
augmented task. For example, if the category of x̃ in the
original classification task is n and the category of its rotated
version in the self-supervised rotation task is m, then the
category in the self-supervised augmented task is n ∗M +m.
By enlarging Lcsd, we generate hard samples on which the
student has difficulty understanding semantics.

B. Knowledge Transfer

In knowledge transfer stage, the main purpose is to encour-
age the student model to mimic behaviors of the teacher model.

The vanilla KD [4] matches final prediction distribution of
the teacher and student model by calculating the Kullback-
Leibler (KL) divergence between outputs of the teacher and
the student:

Lkd = KL (σ (T (x̃) /τ) , σ (S (x̃) /τ)) , (6)

where σ(·) is the softmax function and τ is a hyper-parameter
to soften the distribution. We set τ to 20 throughout all
experiments for fair comparison as CMI [12].

Besides prediction distribution, feature maps can also be
used as valuable knowledge to effectively guide the student [6].
We define the Mean-Square-error (MSE) loss between teacher
feature maps Ft ∈ RHt∗Wt∗Ct and student feature maps Fs ∈
RHs∗Ws∗Cs from the last layer as:

Lfea = MSE(Ft, r(Fs)), (7)

where r(·) is a projection to align the dimension of feature
maps. The student is trained for ns steps in each training round
and optimized by:

min
θs
Lce + Lkd + β ∗ Lfea, (8)

where β is a hyper parameter to balance the three loss items,
and Lce = CrossEntropy(ỹ,S(x̃)) is a regular loss in the
original classification task to calculate cross entropy between
student outputs and pre-defined labels.

Besides the student training, the auxiliary classifier is also
separately trained with the following loss to improve its own
evaluation capability to better help the data synthesis stage:

min
θc
Lcsd. (9)



TABLE I
TOP-1 TEST ACCURACY COMPARISON ON THREE DATASETS: SVHN, CIFAR-10 AND CIFAR-100

Dataset Teacher Student Accuracy

Teacher Student DAFL ZSKT ADI CMI CSD

SVHN

WRN-40-2 WRN-16-1 96.14% 95.27% 92.88% 93.39% 87.15% 94.02% 94.57%
WRN-40-2 WRN-40-1 96.14% 95.88% 94.78% 94.84% 89.16% 94.82% 95.58%
WRN-40-2 VGG8 96.14% 94.60% 74.78% 89.16% 86.94% 90.29% 92.72%
WRN-40-2 MobileNet-V2 96.14% 95.24% 79.34% 91.56% 79.11% 91.49% 91.89%
ResNet34 ResNet18 95.62% 95.17% 94.57% 94.48% 82.57% 94.82% 95.06%

CIFAR-10

WRN-40-2 WRN-16-1 94.87% 91.12% 68.97% 80.91% 74.77% 88.81% 90.50%
WRN-40-2 WRN-40-1 94.87% 93.94% 77.87% 85.41% 84.63% 92.37% 93.02%
WRN-40-2 VGG8 94.87% 91.28% 53.3% 47.75% 59.04% 87.66% 88.57%
WRN-40-2 MobileNet-V2 94.87% 89.29% 43.12% 23.39% 52.52% 82.50% 82.95%
ResNet34 ResNet18 95.70% 95.20% 89.07% 90.90% 89.88% 94.38% 94.73%

CIFAR-100

WRN-40-2 WRN-16-1 75.83% 65.31% 22.06% 30.15% 35.99% 56.46% 60.88%
WRN-40-2 WRN-40-1 75.83% 72.19% 38.49% 39.51% 39.46% 68.62% 69.69%
WRN-40-2 VGG8 75.83% 68.76% 25.24% 10.08% 32.17% 64.50% 66.15%
WRN-40-2 MobileNet-V2 75.83% 62.38% 22.02% 4.42% 18.81% 56.79% 59.95%
ResNet34 ResNet18 78.05% 77.10% 67.91% 61.32% 57.75% 75.06% 76.03%

Algorithm 1 Self-Supervised Data-Free Knowledge Distilla-
tion
Input: A pretrained teacher model T (x̃; θt); A randomly
initialized student model S (x̃; θs); An initialized image bank
B.
Output: A tiny student model S (x̃; θs).

1: for i = 1 to epochs do
2: //stage 1: data synthesis
3: initialize the generator G (z; θg)
4: z ← N (0, I)
5: for j = 1 to ng do
6: x̃← G (z; θg)
7: LDS = Lnarrow − αLcsd

8: z ← z − η∇zLDS

9: θg ← θg − η∇gLDS

10: end for
11: B ← B ∪ x̃
12: //stage 2: knowledge transfer
13: initialize the auxiliary classifier C (ϕ; θc)
14: for j = 1 to ns do
15: sample x̃ from B
16: LKT = Lce + Lkd + β ∗ Lfea

17: θs ← θs − ξ∇sLKT

18: θc ← θc − ξ∇cLcsd

19: end for
20: end for

C. Training Procedure

The two-stage training procedure is summarized in Algo-
rithm 1. In the data synthesis stage, the random noise z and
generator G are first trained for ng times. Then we append
the new synthetic data into an image bank for preventing

catastrophic forgetting [20], [21]. In knowledge transfer stage,
we sample data from the image bank and separately train the
student S and the auxiliary classifier c for ns times.

III. EXPERIMENTS

Datasets and models. We conduct experiments on SVHN
[22], CIFAR-10 and CIFAR-100 [23] datasets, following a
similar training setting as [12]. For all datasets, various models
are used, including ResNet [2], WRN [3], VGG [1] and
MobileNet [24]. The generator architecture is the same as [10].

Training details. For all datasets, to prevent the student
from overfitting to data generated by early training rounds
[20], [21], we first synthesize some data to initialize the image
bank by removing Lcsd and running 400 synthesis batches
with each one containing 200 samples. We totally train 100
rounds (epochs). In data synthesis stage, the random noise
vector and generator are updated using Adam optimizer with
1e-3 learning rate. We synthesize 200 images in each step
and repeat for ng = 500 steps. The hyper-parameter α is
set to 10. In knowledge transfer stage, the student and the
auxiliary classifier are update using SGD optimizer with 0.1
learning rate, 0.9 momentum and 1e-4 weight decay and we
adopt cosine annealing for the learning rate decay. we sample
128 images from the image bank in each step and repeat for
ns = 2000 steps. The hyper-parameter β is set to 30. We
set temperature τ to 20. Test accuracy is used to evaluate the
proposed method. We run all experiments for three times and
report the means. More implementation details and results can
be found in the appendix.

A. Comparison with DFKD methods

We compare with four representative DFKD methods on
five groups of teacher-student models, including three ho-
mogeneous and two heterogeneous architecture combinations.



TABLE II
ABLATION STUDY ON WRN-40-2 & WRN-16-1 TO EXPLORE THE EFFECT
OF OUR PROPOSED ADVERSARIAL LOSS. BASELINE DENOTES REMOVING
Lcsd . ADV DENOTES REPLACING Lcsd WITH TRADITIONAL ADVERSARIAL

LOSS Ladv . ROTATION DENOTES ONLY ADOPTING SELF-SUPERVISED
ROTATION TASK.

Method CIFAR-10 CIFAR-100

Baseline 86.88% 57.59%
Adv 87.57% 53.5%

Rotation 89.55% 59.32%

CSD 90.50% 60.88%

(a) CIFAR-10 (b) CIFAR-100

Fig. 3. Accuracy curves of the student trained by our CSD in comparison
with baseline (removing Lcsd) and modified method (replacing Lcsd with
traditional adversarial loss Ladv) on WRN-40-2 & WRN-16-1.

DAFL [10] and ZSKT [15] are generator-based methods. ADI
[11] and CMI [12] are inversion-based methods.

Table I shows that our proposed CSD outperforms all
other methods. We also observe that, except for CMI, other
comparison methods perform poorly on heterogeneous combi-
nations and more complex datasets. For example, in the case
of “WRN-40-2 & VGG8” on CIFAR-100, the test accuracy
of DFAL is only 25.24%, which do not even achieve half
accuracy of the student trained on the original data (68.76%).
In contrast, our proposed CSD is robust on different datasets
and teacher-student combinations.

B. Effect of Our Proposed Adversarial Loss

We conduct ablation study on CIFAR-10 and CIAFR-100
to explore whether our proposed adversarial loss Lcsd can
help improve the student performance. As shown in Table II,
in the case of Baseline, i.e., removing the adversarial loss
(Equation 5), the accuracy drops by 3.62% on CIFAR-10
(from 90.50% to 86.88%) and 3.29% on CIFAR-100 (from
60.88% to 57.59%), which demonstrates the effectiveness of
our proposed Lcsd.

To further demonstrate the superiority of our method, we
compare with two alternative adversarial strategies. The first
one is traditional adversarial manner as the previous work
[12], [15]–[17], whose adversarial loss is to calculate the
divergence between predictions of the teacher and student.
We replace Lcsd with traditional adversarial loss Ladv =
KL (σ (T (x̃) /τ) , σ (S (x̃) /τ)) and find that it has a slight
improvement of 0.65% (from 86.88% to 87.57%) compared
to Baseline on CIFAR-10. Surprisingly, We observe that it
even results in a large drop of 4.09% (from 57.59% to 53.5%)

(a) CIFAR-10 (b) CIFAR-100

Fig. 4. Effect of the auxiliary classifier structure on WRN-40-2 & WRN-16-
1. The student is equipped with different numbers of fully-connected layers
after feature extractor.

TABLE III
EFFECT OF TRAINING STRATEGY OF THE STUDENT AND AUXILIARY

CLASSIFIER DURING KNOWLEDGE TRANSFER ON WRN-40-2 &
WRN-16-1.

Method CIFAR-10 CIFAR-100

Baseline 86.88% 57.59%
Joint training 89.77% 60.43%

Separate training(CSD) 90.50% 60.88%

on the more complex CIFAR-100 dataset. This indicates that
estimating the sample difficulty with teacher predictions is
likely to be unreliable, which would enlarge the negative effect
in the case of teacher misdirection and thus weakens the
student performance. Additionally, we plot the learning curves
of the student trained by different strategies. In Fig. 3, it is
clear that Ladv causes very large accuracy fluctuations across
training rounds (epochs), while our CSD makes the model
converge faster and more stable.

The second alternative strategy is to use only the rotation
task as the final task to quantify the student learning ability
without containing the original classification task. So we
replace Lcsd with self-supervised rotation loss Lrotation =
CrossEntropy (m, c (Φ (trans (x̃)))), where m is the label
of synthetic data in the rotation task. From Table II, this causes
significantly performance improvement on both CIFAR-10 and
CIFAR-100 compared to the traditional adversarial manner,
which shows the superiority of synthesizing hard samples
according to the current student learning ability. However,
only rotation task may destroy the original visual semantic
information on some samples (such as “6” vs “9”) and results
in inaccurate ability estimation. By combining the original
classification task and the self-supervised rotation task, our
CSD further improves the model performance.

C. Auxiliary Classifier Analysis

Next, we explore how the structure and training strategy of
the auxiliary classifier affect the final student performance.

To study the effect of the auxiliary classifier structure, we at-
tach different numbers of fully-connected layers (from 1 to 3)
behind the feature extractor. In Fig. 4, only one fully-connected
layer even has a negative impact, which reduces the student
performance on CIFAR-10 and CIFAR-100 by about 3% and



5% compared to the Baseline (without Lcsd), while two or
three fully-connected layers can achieve similarly superior per-
formance. We conjecture that multiple layers can effectively
filter out noise in feature representations to accurately estimate
the student ability. Therefore, we adopt two fully-connected
layers as the auxiliary classifier for all experiments to trade
off between the effectiveness and complexity.

To study the effect of the training strategy during the knowl-
edge transfer stage, we conduct experiments with two different
training strategies: joint training and separate training.

(1) Joint training updates the parameters of the student
and the auxiliary classifier simultaneously at each step, that
is, change the lines 17 and 18 of the Algorithm 1 to θs ←
θs − ξ∇s(LKT + Lcsd) and θc ← θc − ξ∇c(LKT + Lcsd).
This strategy requires the student to learn the self-supervised
augmented task together with the original classification task.

(2) Separate training is exactly our adopted strategy for
CSD. At each step, we update the student parameters first and
then fix it and turn to train the auxiliary classifier.

Table III demonstrates separate training performs better. We
conjecture that the additional self-supervised auxiliary task
might distract the student from the main classification task.

IV. CONCLUSION

In data-free knowledge distillation, the student model itself
can act as a key contributor to synthesize more valuable data
while this point is largely overlook previously. In this paper,
we utilize a self-supervised augmented task to accurately
estimate the current student learning ability in each training
round to synthesize more valuable data rather than oversimple
synthetic data. Extensive experiments are conducted on three
popular datasets and various groups of teacher-student models
to evaluate the performance of our proposed method, and the
results demonstrates the effectiveness of our proposed CSD.
A potential future work is to explore how to apply the popular
diffusion models to synthetic samples for data-free knowledge
distillation [25].

V. APPENDIX

A. Experimental Details

1) Datasets: We evaluate our proposed CSD on three
public datasets for classification task: SVHN, CIFAR-10 and
CIFAR-100. The details of these datasets are listed as follows:

• SVHN [22]. SVHN is a dataset of street view house
numbers collected by Google, and the size of each image
is 32×32. It consists of over 600,000 labeled images,
including 73257 training images, 26,032 testing images
and 531,131 additional training images.

• CIFAR-10 [23]. CIFAR-10 is a dataset of 32×32 colored
images. It consists of 60,000 labeled images from 10
categories. Each category contains 6,000 images, which
are divided into 5,000 and 1,000 for training and testing,
respectively.

• CIFAR-100 [23]. CIFAR-100 is similar but more chal-
lenging to CIFAR-10, which consists of 100 categories.

TABLE IV
THE ARCHITECTURE DETAILS OF THE GENERATOR. FC-C DENOTES A

FULLY-CONNECTED LAYERS WITH C UNITS. CONV3-K DENOTES A
CONVOLUTIONAL LAYER WITH K 3 × 3 FILTERS AND STRIDE 1 × 1.

UPSAMPLING DENOTES A 2 × 2 NEAREST NEIGHBOUR INTERPOLATION
OPERATION.

FC-8WH, reshape-(W/8,H/8,512), Batchnorm
Upsampling, Conv3-128, Batchnorm, LeakyReLU
Upsampling, Conv3-64, Batchnorm, LeakyReLU

Conv3-3, Tanh, Batchnorm

Each categories contains 500 training images and 100
testing images.

Note that the training set is only utilized for teacher training
and is unseen for data-free knowledge distillation. However,
the testing set is still used for assessment.

2) Model Architectures: For all datasets, three network
types are used in teacher-student models: ResNet [2] ,WRN
[3], VGG [1] and MobileNet-V2 [24]. The number behind
“VGG” and “ResNet” denotes the depth of the network.
“WRN-n-k” denotes a residual network with n depths and
widening factor k. We use the same generator architecture as
the previous work [10], which is detailed in Table IV. We set
the dimension of random noise vector to 256.

3) Baseline: We compare with four representative data-free
knowledge distillation methods: two generator-based methods
(DSFL and ZSKT) and two inversion-based methods (ADI
and CMI). The details of these compared methods are listed
as follows:

• DAFL [10]. DFAL is a generator-based DFKD method
that introduces one-hot loss, activation loss and informa-
tion entropy loss from the teacher feedback as constraints
to generate data close to the original training data.

• ZSKT [15]. ZSKT is another generator-based DFKD
method that first introduces adversarial distillation. It gen-
erate hard samples on which the student poorly matches
the teacher, i.e., maximizing the KL divergence between
their predictions, and then use these hard samples to
minimize the KL divergence in order to train the student.

• ADI [11]. ADI is an inversion-based DFKD method that
first proposes to utilize statistics stored in batch normal-
ization layers of the teacher as image prior information.

• CMI [12]. CMI is another inversion-based DFKD method
that mainly addresses model collapse issue. It introduces
a contrastive learning objective to encourage each sample
to distinguish itself from others for sample diversity.

B. Visualization

We visualize synthetic images of our CSD from different
training epochs in Figure 5. We observe that images from early
training epoch are more visually discernible than images from
later training epoch, which indicates that as the number of
training epochs increases, the student learning ability gradually
becomes stronger, leading to more difficult synthetic images.
Additionally, we plot the learning curves of the auxiliary
classifier during knowledge transfer in Fig. 6.
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Fig. 5. Visualization of images generated from different training epochs on CIFAR-10 for WRN-40-2 & WRN-16-1

(a) CIFAR-10 (b) CIFAR-100

Fig. 6. Accuracy curves of the auxiliary classifier during knowledge transfer
on WRN-40-2 & WRN-16-1.

Fig. 7. Sensitivity to hyper-parameter α on CIFAR-100 for WRN-40-2 &
WRN-16-1. The dash line refer to the mean student accuracy of CMI.

C. Sensitivity Analysis

To study how the hyper-parameter α affect the student final
performance, we plot student accuracy curves on CIFAR-100
for WRN-40-2 & WRN-16-1 with α ranging from 2 to 20
at equal interval of 2. From Fig. 7, we find that our CSD
outperforms the best competitor (CMI) on all values of α.

D. RELATED WORK

1) Data-Driven Knowledge Distillation: Knowledge distil-
lation (KD) is proposed to solve model compression problem
by distilling knowledge from a cumbersome model (teacher)
into a less-parameterized model (student). The vanilla KD [4]
takes predictions from the last layer as the teacher knowl-
edge to guide the student training. Besides predictions, many
subsequent works excavate the knowledge in the output of

intermediate layers to supervise the training of the student. The
intermediate supervision can be formed by feature maps [5],
[6], [8], [9], attention maps [26], [27] or feature representation
[28]. There are also some works for transferring knowledge
in relationships between different samples or layers [27], [29].
All the above mentioned methods are based on the premise
that the original training data is available, while our proposed
method is discussed in a more challenging scenario of no
original data.

E. Data-Free Knowledge Distillation

Data-free knowledge distillation (DFKD) deals with trans-
ferring knowledge without the access to the original training
data. A straightforward idea is to synthesize the original data
for knowledge transfer. The approaches of data synthesis can
be roughly categorized into two classes: inversion-based and
generator-based approaches. Inversion-based approaches input
the random Gaussian noise into the fixed teacher and update
the input iteratively via the back-propogation until meeting
certain constraints [11], [12], [17]. ADI [11] proposes to
leverage information stored in the batch normalization layers
of the teacher to narrow gap between synthetic data and orig-
inal data. CMI [12] introduces contrastive learning objective
to address the mode collapse issue and thus ensure sample
diversity. FastDFKD [17] introduces a meta-synthesizer to
accelerate data synthesis process and achieves 100× faster
speed. Generator-based approaches adopt a learnable generator
to synthesize data [10], [15], [16], [21]. DAFL [10] introduce
one-hot loss, activation loss and information entropy loss
as the objective of synthesizing data, which are calculated
according to the teacher output. PRE-DFKD [21] designs a
Variational Autoencoder (VAE) to replay synthetic samples
for preventing catastrophic forgetting without storing any data.
Adversarial Distillation [15], [16] focus on synthesizing hard
data by enlarging the divergence between predictions of the
teacher and the student, so as to narrow the information gap
between the teacher and the student.

However, all above methods do not properly take into
account the student’s current ability during data synthesis,
which may lead to oversimple samples and thus limit the final
student performance.

REFERENCES

[1] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in ICLR, 2015.



[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in CVPR, 2016, pp. 770–778.

[3] Sergey Zagoruyko and Nikos Komodakis, “Wide residual networks,” in
BMVC, 2016.

[4] Geoffrey E Hinton, Oriol Vinyals, and Jeffrey Dean, “Distilling the
knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[5] Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and
Chun Chen, “Knowledge distillation with the reused teacher classifier,”
in CVPR, 2022, pp. 11933–11942.

[6] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine
Chassang, Carlo Gatta, and Yoshua Bengio, “Fitnets: Hints for thin
deep nets,” in ICLR, 2015.

[7] Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and Chun Chen,
“Online knowledge distillation with diverse peers,” in AAAI, 2020, pp.
3430–3437.

[8] Defang Chen, Jian-Ping Mei, Yuan Zhang, Can Wang, Zhe Wang,
Yan Feng, and Chun Chen, “Cross-layer distillation with semantic
calibration,” in AAAI, 2021, pp. 7028–7036.

[9] Can Wang, Defang Chen, Jian-Ping Mei, Yuan Zhang, Yan Feng, and
Chun Chen, “Semckd: Semantic calibration for cross-layer knowledge
distillation,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 6, pp. 6305–6319, 2023.

[10] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu,
Boxin Shi, Chunjing Xu, Chao Xu, and Qi Tian, “Data-free learning of
student networks,” in CVPR, 2019, pp. 3514–3522.

[11] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun
Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz, “Dreaming to distill:
Data-free knowledge transfer via deepinversion,” in CVPR, 2020, pp.
8715–8724.

[12] Gongfan Fang, Jie Song, Xinchao Wang, Chengchao Shen, Xingen
Wang, and Mingli Song, “Contrastive model inversion for data-free
knowledge distillation,” in IJCAI, 2021, pp. 2374–2380.

[13] Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang, “Knowledge
extraction with no observable data,” NeurIPS, 2019.

[14] Zhiwei Hao, Yong Luo, Zhi Wang, Han Hu, and Jianping An, “Model
compression via collaborative data-free knowledge distillation for edge
intelligence,” in ICME, 2021, pp. 1–6.

[15] Paul Micaelli and Amos J Storkey, “Zero-shot knowledge transfer via
adversarial belief matching,” NeurIPS, vol. 32, 2019.

[16] Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon Lee, “Data-
free network quantization with adversarial knowledge distillation,” in
CVPR, 2020, pp. 710–711.

[17] Gongfan Fang, Kanya Mo, Xinchao Wang, Jie Song, Shitao Bei, Haofei
Zhang, and Mingli Song, “Up to 100x faster data-free knowledge
distillation,” in AAAI, 2022, pp. 6597–6604.

[18] Spyros Gidaris, Praveer Singh, and Nikos Komodakis, “Unsupervised
representation learning by predicting image rotations,” ICLR, 2018.

[19] Chuanguang Yang, Zhulin An, Linhang Cai, and Yongjun Xu, “Hier-
archical self-supervised augmented knowledge distillation,” in IJCAI,
2021.

[20] Kuluhan Binici, Nam Trung Pham, Tulika Mitra, and Karianto Leman,
“Preventing catastrophic forgetting and distribution mismatch in knowl-
edge distillation via synthetic data,” in CVPR, 2022, pp. 663–671.

[21] Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman,
and Tulika Mitra, “Robust and resource-efficient data-free knowledge
distillation by generative pseudo replay,” in AAAI, 2022.

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng, “Reading digits in natural images with unsupervised
feature learning,” 2011.

[23] Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multiple layers of
features from tiny images,” 2009.

[24] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in CVPR, 2018, pp. 4510–4520.

[25] Defang Chen, Zhenyu Zhou, Jian-Ping Mei, Chunhua Shen, Chun Chen,
and Can Wang, “A geometric perspective on diffusion models,” arXiv
preprint arXiv:2305.19947, 2023.

[26] Nikos Komodakis and Sergey Zagoruyko, “Paying more attention to
attention: improving the performance of convolutional neural networks
via attention transfer,” in ICLR, 2017.

[27] Frederick Tung and Greg Mori, “Similarity-preserving knowledge
distillation,” in CVPR, 2019, pp. 1365–1374.

[28] Yonglong Tian, Dilip Krishnan, and Phillip Isola, “Contrastive repre-
sentation distillation,” in ICLR, 2020.

[29] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim, “A gift from
knowledge distillation: Fast optimization, network minimization and
transfer learning,” in CVPR, 2017, pp. 4133–4141.


	Introduction
	Proposed Method
	Data Synthesis
	Knowledge Transfer
	Training Procedure

	EXPERIMENTS
	Comparison with DFKD methods
	Effect of Our Proposed Adversarial Loss
	Auxiliary Classifier Analysis

	Conclusion
	Appendix
	Experimental Details
	Datasets
	Model Architectures
	Baseline

	Visualization
	Sensitivity Analysis
	RELATED WORK
	Data-Driven Knowledge Distillation

	Data-Free Knowledge Distillation

	References

