
RENDER-AND-COMPARE: CROSS-VIEW 6-DOF LOCALIZATION FROM NOISY PRIOR

Shen Yan, Xiaoya Cheng, Yuxiang Liu, Juelin Zhu, Rouwan Wu, Yu Liu *, Maojun Zhang

National University of Defense Technology

ABSTRACT

Despite the significant progress in 6-DoF visual localization,
researchers are mostly driven by ground-level benchmarks.
Compared with aerial oblique photography, ground-level map
collection lacks scalability and complete coverage. In this
work, we propose to go beyond the traditional ground-level
setting and exploit the cross-view localization from aerial
to ground. We solve this problem by formulating camera
pose estimation as an iterative render-and-compare pipeline
and enhancing the robustness through augmenting seeds from
noisy initial priors. As no public dataset exists for the studied
problem, we collect a new dataset that provides a variety of
cross-view images from smartphones and drones and develop a
semi-automatic system to acquire ground-truth poses for query
images. We benchmark our method as well as several state-of-
the-art baselines and demonstrate that our method outperforms
other approaches by a large margin.

Index Terms— Cross-view localization, render-and-
compare, aerial-to-ground dataset

1. INTRODUCTION

Visual localization aims to compute the camera pose for a
given image relative to a known scene. Solving the problem is
vital to many important applications, such as self-driving cars,
UAV navigation, and Augmented and Virtual Reality systems.

The majority of existing image localization methods [1, 2,
3, 4, 5, 6] infer camera location and orientation using feature
matching [2, 3, 4, 5] between the query image and a database
of reference images from a similar perspective, usually ground-
to-ground [7, 8]. The inherent limitation of these approaches
is that building a complete and uniform reference map on the
ground is pretty difficult and time-consuming.

Therefore, recent research [9, 10] investigates the problem
of cross-view geo-localization, which localizes ground-level
query images by matching them against easily accessible aerial
views. However, due to a lack of reference 3D models, such
methods can at most estimate a camera’s 3-DoF pose, namely,
x-y coordinate position and azimuth angle. In fact, with the
rapid development of 3D reconstruction techniques, it is possi-
ble to build city-scale digital twins employing aerial oblique
photography, such as Google Earth. In this paper, we thus
explore the possibility of utilizing aerial 3D reconstruction to
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Fig. 1. Cross-view 6-DoF localization. The proposed bench-
mark dataset AirLoc exhibits drastic view changes between
query and reference. The reference map is captured using a
pentacular oblique camera above 100 meters, while the query
images are sampled close to the ground with small drones
and smartphones, respectively. Query images include real
Day-and-Night environments.

conduct cross-view 6-DoF localization.

This is quite an arduous task because, unlike ground-
to-ground visual localization, image retrieval and feature
matching between cross-view images are inherently hard as
ground-to-aerial images capture totally distinctive appear-
ances. To solve the problem, inspired by recent view syn-
thesis works [6], we propose a novel localization framework
Render-and-Compare. Given an initial pose lead by the de-
vice’s sensor prior (i.e., GPS, compass, and gravity direction),
our core idea is to move a virtual camera sequentially until
the camera-observed scenarios align with the query image.
Specifically, we first randomly sample several seeds around
the sensor pose as candidates. Then, we produce synthetic
images and depthmaps for all initial pose hypotheses based on
textured mesh rendering. After that, we establish correspon-
dences between the query image and synthetic candidates and
select one with the largest inliers. According to pixel back-
projecting in depthmap, 2D-2D correspondences can convert
to 2D-3D matches, and the initial camera pose is recovered
by a PnP RANSAC [11, 12]. At last, we iteratively update
the former pose estimation by repeating render-and-matching
operations and obtain a final result until the maximum iteration
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reaches.
To the best of our knowledge, there is no public dataset

for 6-DoF localization under strong viewpoint changes. To
facilitate the research of this area, we collect a new benchmark
dataset AirLoc, as shown in Figure 1. Compared with other
geo-localization datasets [13, 14, 15], AirLoc owns the fol-
lowing advantages: 1) We build textured 3D mesh references
based on aerial oblique photography. 2) We assign 6-DoF
GT poses for query images instead of simply providing lati-
tude, longitude, and azimuth angle. 3) The query image pos-
sesses real conditions, including significant lighting variances
(e.g., Day-and-Night). 4) The query image is captured by a
commonly-used cellphone or drone, rather than panoramic
imaging.

We evaluate several image localization baselines and our
method on the proposed dataset AirLoc. The experiments
demonstrate that our method outperforms state-of-the-art ap-
proaches by a large margin.

In summary, our main contributions include:

• A novel render-and-compare framework for robust and
accurate visual localization under significant viewpoint
changes.

• A new dataset for cellphone and UAV 6-DoF localiza-
tion under great viewpoint conversions and strong illu-
mination variations.

• Benchmarking existing methods and demonstrating the
effectiveness of the proposed approach.

2. RELATED WORKS

Structured localization. State-of-the-art methods [1, 2, 3,
4, 5, 6] perform visual localization by establishing 2D-3D
correspondences between the query images and sparse SfM
points. The camera pose is recovered using a PnP solver [12]
inside a RANSAC loop [11]. Besides, an intermediate image
retrieval step [16, 17] is often applied to handle large-scale
problems. However, the pipeline cannot guarantee the correct-
ness of image matching in the case of cross-view localization.
In this work, we show that the render-and-compare framework
enables query and reference images to share similar geometric
configurations, facilitating accurate feature matching.
Geo-localization. Recently, many methods [9, 10] treat the
cross-view localization problem as a standard image retrieval
task and solve it by aerial-to-ground image polar transforma-
tion and global feature embedding. However, these approaches
output a 3-DoF camera pose at most, which is not sufficient
to support VR/AR applications on mobile devices and precise
control of drones. In contrast, our method can yield 6-DoF
localization under significant viewpoint changes.
Synthesis localization. Ours is not the first work to use
view synthesis for visual localization. The most related to
our work are [18, 6, 8]. Among them, [18] build a virtual

panoramic map in mountainous terrain, and train local features
to match images and this textured mesh. However, they show
pretty coarse localization (hundreds of meters level), while we
achieve centimeter-accurate localization. [6] show that meshes
can be used to localize images from scratch and describe a full
pipeline for this task. The drawback is that they suffer from
terrible feature matching under notable viewpoint changes,
while our render-and-compare framework ensures high-quality
image matching by providing similar perspectives. [8] render
the scene from poses close to the ground-truth, and conduct
iterative pose refinement for dataset GT pose labeling. We
extend this idea to cross-view localization and successfully
design a robust render-and-compare framework initialed from
noisy sensor priors.
Localization Datasets. Almost of the existing 6-DoF local-
ization benchmarks [7, 8] capture query and reference images
from a similar perspective on the ground. The problem is
that such data collection is time-consuming and cannot guar-
antee the integrity of the reference map. To this end, many
geo-localization benchmarks are proposed recently, including
CVUSA [13], CVACT [14] and VIGOR [15], which aim to de-
termine the locations of street-view query images by matching
with GPS-tagged reference images from aerial view. Although
these datasets can be easily scalable to the city level, they can-
not solve the 6-DoF pose due to the lack of a 3D model. We
combine the advantages of the two categories datasets men-
tioned above and introduce a new benchmark AirLoc. AirLoc
builds a large-scale 3D model via aerial oblique photography,
facilitating 6-DoF visual localization of any viewpoint within
the bounds of this map.

3. METHOD

Given the textured aerial reconstructionM, our objective is
to estimate the 6-DoF poses {ξq} for the altered perspective
images {Iq} based on its noisy sensor priors {sξq}. We pro-
pose to tackle the cross-view issue of feature matching with
a Render-and-Compare framework. An overview of the pro-
posed method is exhibited in Figure 2.

3.1. Prior Pose Generation

The sensor pose acquisition for mobile phones can be divided
into two parts: 1) For translation, we apply latitude and lon-
gitude coordinates in GPS as an x-y value. Due to the low
accuracy of GPS along altitude direction, we vertically project
the x-y position onto the pre-build 3D surface and record its
floor height. We then plus 1.5 meters upon the floor to obtain
the z value, as phone photos are generally taken with a hand-
held gesture. 2) For rotation, we build SO(3) matrix utilizing
gravity and compass direction from mobile sensor.

Considering the sensor noises on the ground, we augment
pose perturbations for UAVs and smartphones. Specifically,
we extend ±5 meters for x-y coordinate and supplement ±60



degrees for Euler angle yaw around the pose prior. We only
adjust the yaw angle because the gravity sensor, which de-
termines roll and pitch angles, shows high accuracy. The
candidates of initial pose increase from sξ

q to {sξq1, ...,s ξ
q
k},

where k is the augment number.

3.2. View Synthesis

For a query Iq, assuming that we have obtained all possible
initials {sξq1, ...,s ξ

q
k}, we aim to acquire the corresponding

textured renderings and depthmaps. Taking the time overhead
into account, we apply Workbench Engine in Blender 1 with
flat color mechanisms for fast rendering. Note that although
we now use Blender to verify the Render-and-Compare frame-
work, the pipeline can be replaced with a more advanced ren-
dering technique, such as Neural Radience Field (NeRF) [19].
We denote the rendered image and depth for each virtual pose
sξ

q
i as (sI

q
i ,s d

q
i ).

3.3. Pose Correction

The pose correction stage first selects the maximum likelihood
pose ξqt1 from initial candidates {sξq1, ...,s ξ

q
k}. In detail, we

employ state-of-the-art learned local features [2] and matching
strategies [3, 4] to find 2D-2D correspondences between query
Iq and renderings {sIqi |i = 1, ..., k}, where k is the seed num-
ber. A fundamental matrix is employed to prune possible incor-
rect correspondences. The candidate with the largest matching
number wins the selection, and (ξqt0 , I

q
t0 ,d

q
t0) is regarded as

the first (t0) iteration during pose correction. Then, we lift
2D-2D to 2D-3D matches using current pose estimation ξqt0
and the depth map dq

t0 . The next pose estimation ξqt1 is recov-
ered by a P3P solver [12] within LO-RANSAC [11] loops. We
repeat the iterative camera optimizations by h times. Finally,
the computed pose converges to an ultimate result ξq = ξqth .
Taking efficiency and effectiveness into consideration, we set
k = 15, h = 3 in the experiment.

4. DATASET

The released dataset AirLoc includes a large urban area (ap-
proximately 100, 000m2), containing buildings, streets, and
vegetation. In total, there are 1, 970 reference images and
1, 432 query images. The query images are captured from
various viewpoints, including smartphones on the ground and
UAVs in the near air. Moreover, the query images incorporate
Day-and-Night conditions. Please see Figure 1 for a visualiza-
tion of the dataset.

4.1. Reference Map Collection

We capture high-resolution aerial image sequences with a five-
eye oblique camera on a flight platform, using SHARE PSDK

1https://www.blender.org
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Fig. 2. Overview of the proposed method. (a). For each
prior pose sξ

q, we first eliminate the noise by adding several
random seeds {sξq1, ...,s ξ

q
k}. Then we choose one by cal-

culating the maximum inlier matching number as ξqt1 . The
virtual pose experiences a render-and-compare update process
towards GT target ∗ξq, varies from intermediate ξqti at step i
to final ξqth at step h. (b,c,d). The feature correspondences
are visualized between the query and rendered image during
the iterative refinement, where warmer colors indicate higher
confidence. The matching results improve a lot along with the
sequential adjustments.

102S2 and DJI M300 RTK3, respectively. In order to fully and
evenly cover the survey area, all flight paths are pre-planned
in a grid fashion and automated by the flight control system
supported by DJI M300. We apply modern 3D reconstruction
techniques to build a textured mesh model and align it with
the real geographic world with built-in RTK measurements.
Note that, the camera has the ability to take both oblique and
nadir photographs, ensuring that vertical surfaces are captured
appropriately. Please refer to the supplementary material for a
more detailed introduction.

4.2. Query Image Collection

We conduct query image acquisition using smartphones and
a micro aerial vehicle, including HUAWEI Mate30 and DJI
Phantom 44. The query images include multiple sessions
during daytime and night-time. For each session, we use

2https://www.shareuavtec.com/ProductDetail/6519312.html
3https://www.dji.com/cn/matrice-300
4https://www.dji.com/cn/phantom-4-pro



Fig. 3. Alignment quality of the aerial-to-ground recon-
struction on AirLoc. The dark black model comes from aerial
oblique photography, while the yellow model is built from a
sequence of ground cellphone photos. The accuracy of the
alignment can be observed in, for instance, the agreement of
corners and edges.

SensorLog Application5 to record raw in-build data. Since our
method studies robust visual localization under noisy priors,
we do not ensure the hardware is synchronized and carefully
calibrated for all sensors. More details are provided in the
supplementary material.

4.3. Query GT Generation

We apply a scalable semi-automatic annotation to find the GT
pose parameters {ξqi } for query images. Our GT tool can
label thousands of query poses, while only asking for dozens
of manual assignments. In detail, we first employ Structure-
from-Motion to reconstruct sparse point clouds for reference
images and multiple query sequences, respectively. As ground
and aerial images show remarkable visual differences, it is
quite difficult to match keypoints even adopting state-of-the-
art learning-based techniques [3, 4]. We then manually specify
some iconic tie points across aerial-and-ground images, and
conduct bundle adjustment for all individual SfM blocks. Fi-
nally, we obtain an integral 3D registration model, which owns
camera poses for reference and query images. We evaluate
the accuracy of the GT poses by median reprojection errors,
which are 0.52 pixels for the whole 3D model and 0.38 for
tie points. For visual inspection, we demonstrate the aerial
and ground model registration quality in Figure 3. Besides,
we randomly render images at the estimated GT poses using
the textured mesh in Figure 4. They appear in pixel-level
alignment, supporting that the poses are accurate.

5. EXPERIMENT

In this section, we introduce the selection of baselines and
evaluation metrics on AirLoc dataset in Section 5.1. Experi-
mental results and ablation studies are reported in Section 5.2
and Section 5.3, respectively.

5http://sensorlog.berndthomas.net
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Fig. 4. GT poses quality on AirLoc. Pixel-aligned render-
ings of the estimated camera pose confirm that the poses are
sufficiently accurate for our evaluation.

5.1. Baselines and Metrics

Baselines. We compare our approach with state-of-the-
art visual localization baselines, mainly HLoc [1, 3] and
MeshLoc [6], with different feature extractors and matchers,
including sparse keypoint-based methods (SIFT [20], Super-
Point(SPP) [2], Nearest Neighbors(NN), SuperGlue(SPG) [3])
and semi-dense methods (LoFTR [4], Patch2Pix [5]).
For our render-and-compare framework, we adopt Super-
Point(SPP) [2]+SuperGlue(SPG) [3] and LoFTR [4] to match
query images and virtual renderings. Note that all mentioned
features are directly applied without fine-tuning or re-training
on the AirLoc dataset.

For a fair comparison, we do not employ global features
to retrieve image pairs for HLoc and MeshLoc, as we found
that feature-based approaches (e.g., NetVLAD [16]) suffered
a lot in cross-view situations. Instead, We first obtain top-50
retrieval pairs by computing a modified Chamfer distance be-
tween prior observed points of the query and 3D observation of
the reference. Then, we exploit the compass direction and GPS
x-y coordinates to filter obvious wrong ranks. Supplemental
materials provide more details.
Metrics. We follow the standard localization evaluation
procedure [7], and report the localization recall at thresholds
(25cm, 2◦), (50cm, 5◦), and (1m, 10◦). We divide the results
into four splits by Day-and-Night conditions and different
capturing devices.

5.2. Evaluation Results and Analysis

The localization results are reported in Table 1. Our method
substantially outperforms HLoc [1, 3] and MeshLoc [6] by a
large margin under all conditions, even we employ the same
local features (e.g., SuperPoint(SPP) [2]+SuperGlue(SPG) [3]
and LoFTR [4]). The results fully demonstrate the capability
of our render-and-compare design for camera localization.

We attribute the success to the following mechanism:
feature matching between real-to-render pairs with similar
viewpoints owns overwhelming advantages over read-to-real



Method Day Night
(25cm, 2◦) / (50cm, 5◦) / (1m, 10◦)

UAV
HLoc (SIFT + NN) 19.8 / 31.5 / 37.0 5.2 / 62.6 / 80.0
HLoc (SPP + NN) 41.6 / 52.9 / 56.3 0.0 / 29.6 / 87.8
HLoc (SPP + SPG) 67.2 / 84.9 / 87.4 0.0 / 53.9 / 100.0
MeshLoc (SPP + NN) 14.7 / 31.5 / 46.6 1.7 / 29.6 / 60.9
MeshLoc (Patch2Pix) 19.3 / 34.5 / 48.7 1.7 / 23.5 / 58.3
MeshLoc (SPP + SPG) 72.7 / 80.0 / 82.8 0.0 / 69.6 / 98.3
MeshLoc (LoFTR) 74.0 / 83.6 / 84.5 0.0 / 40.9 / 90.4
Ours (SPP + SPG) 90.8 / 99.6 / 100.0 90.0 / 100.0 / 100.0
Ours (LoFTR) 84.5 / 99.6 / 100.0 81.7 / 99.1 / 100.0

Phone
HLoc (SIFT + NN) 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0
HLoc (SPP + NN) 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0
HLoc (SPP + SPG) 19.1 / 25.3 / 28.3 19.1 / 25.1 / 27.8
MeshLoc (SPP + NN) 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.2
MeshLoc (Patch2Pix) 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.6
MeshLoc (SPP + SPG) 14.5 / 22.8 / 26.9 10.7 / 12.9 / 15.9
MeshLoc (LoFTR) 12.1 / 18.3 / 22.2 11.1 / 15.3 / 18.6
Ours (SPP + SPG) 47.8 / 81.0 / 86.1 24.5 / 56.2 / 68.6
Ours (LoFTR) 46.5 / 81.6 / 88.9 28.2 / 60.7 / 74.4

Table 1. Visual localization results. We report the recall at
(25cm,2deg) / (50cm,5deg) / (1m,10deg). Our method is com-
pared with HLoc [1] and MeshLoc [6] with different feature-
matching methods.

pairs with distinct perspectives. To visually explain this phe-
nomenon, we provide the LoFTR [4] feature-matching results
in Figure 5. It is obvious that close synthetic view local match-
ing takes the lead in terms of accuracy and number.

5.3. Ablation Studies

Iteration number. As a sequential update method, we ex-
ploit the influence of the iteration number. Increasing the
number increases the localization at all thresholds, as reported
in Table 2. Considering that well-matured OpenGL-based
rendering technology, which is optimized for real-time per-
formance on GPUs [6], this render-and-compare solution has
the potential to efficiently achieve better results with more
refinements.
Seed initialization. We evaluate the effect with or without
translation and rotation augmentations of the initialization. As
shown in Table 3, both parameters significantly influence the
final localization accuracy, especially for the phone data split,
which proves the effectiveness of the proposed initial pose
enhancement strategy.

6. CONCLUSION

In this paper, we present a new approach for cross-view 6-DoF
localization from noisy priors. To overcome the difficulties
of image matching over distinctive viewpoints, we propose a
render-and-compare framework to sequentially refine the pose
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Fig. 5. Mechanism analysis of advantage of our method.
The left column shows that state-of-the-art learned feature
LoFTR [4] cannot establish correspondences for real image
pairs sharing notable viewpoint differences. The right col-
umn illuminates that LoFTR [4] is good at matching real-and-
synthetic views with similar poses. Warmer colors show higher
confidence.

estimation. The localization performance is evaluated on a
new aerial-to-ground dataset with an oblique photography map.
Our results demonstrate significant improvements compared
to state-of-the-art localization methods.
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