
COMPACT REAL-TIME RADIANCE FIELDS WITH NEURAL CODEBOOK

Lingzhi Li, Zhongshu Wang, Zhen Shen, Li Shen, Ping Tan

{llz273714, zhongshu.wzs, zackary.sz}@alibaba-inc.com, lshen.lsh@gmail.com, pingtan@ust.hk

ABSTRACT

Reconstructing neural radiance fields with explicit volumetric
representations, demonstrated by Plenoxels, has shown remark-
able advantages on training and rendering efficiency, while
grid-based representations typically induce considerable over-
head for storage and transmission. In this work, we present
a simple and effective framework for pursuing compact radi-
ance fields from the perspective of compression methodology.
By exploiting intrinsic properties exhibiting in grid models, a
non-uniform compression stem is developed to significantly
reduce model complexity and a novel parameterized module,
named Neural Codebook, is introduced for better encoding
high-frequency details specific to per-scene models via a fast
optimization. Our approach can achieve over 40 × reduction
on grid model storage with competitive rendering quality. In
addition, the method can achieve real-time rendering speed
with 180 fps, realizing significant advantage on storage cost
compared to real-time rendering methods.

Index Terms— Neural Radiance Fields, Real-time Ren-
dering, Neural Codebook, Compact Radiance Fields.

1. INTRODUCTION

Neural representations have recently emerged as a promising
direction for reconstructing shapes [1], lighting [2] and radi-
ance fields [3, 4] of scenes with intricate geometry and appear-
ance. Neural radiance field methods [3, 4] have shown com-
pelling quality for realizing free-view photo-realist rendering.
By means of volumetric rendering techniques, a continuous
mapping function realized with multi-layer perceptron (MLP)
is learned to map 5D coordinates (3D position with a viewing
direction) to view-dependent colors and volume densities, so
pixel colors are rendered by accumulating sampling points
along casting rays. However, these methods suffer from costly
training and rendering issue due to the need of tremendous
sampling, each of which passes through large networks.

Recent advances introduce discretized grid structures into
radiance field reconstruction [5, 6, 7, 8] and have shown that
representing a scene with volume grid has significant advan-
tages on inference efficiency, i.e., reaching interactive speed
or even real-time rendering speed. Unlike relying on network
evaluation in implicit methods, color features and volume
densities are explicitly stored in the voxels of a grid model.

Fig. 1: Quantitative Results on Synthetic-NeRF for comparing
real-time rendering methods in terms of storage cost (MB),
inference time (ms) and rendering quality (PSNR).

However efficiency gains are at the price of storage allocation,
typically costing hundreds of megabytes even more for repre-
senting a single scene. As shown in Figure 1, most of real-time
inference methods cost large storage, which is prohibitive for
storage and transmission in real-world applications.

In this paper we aim to address the storage issue induced
by using voxel grids, aiming to realize compact real-time radi-
ance fields with competitive rendering quality. We consider it
from a perspective of compression methodology, i.e., reducing
the storage cost through an efficient compression phase and
recovering the grid model through one-time deployment (de-
compression). We conduct empirical analysis and propose a
simple yet efficient compression framework based on several
practical guidance, for better leveraging the intrinsic properties
existing in volume grid models. The framework is illustrated
in Fig. 2. Specially, we introduce a non-uniform compression
strategy to compress a huge full-scale grid model to reach
significantly lower storage overhead, and exploit a position
embedding modulated component, i.e., Neural Codebook, to
effectively encode high frequency information specific to each
grid model in order to better preserve the scene-specific details.
Our method can realize about 40× storage reduction compared
to original grid models [5] with competitive quality (less than
0.3dB drop) on benchmark datasets. We further exploit several
strategies to improve inference efficiency without the need of
octree-based structures [6]. We are able to realize real-time
rendering with 180 fps, achieving smaller storage cost than
modern real-time rendering methods (in Fig. 1) and showing
the best tradeoff between storage cost and rendering speed.

ar
X

iv
:2

30
5.

18
16

3v
1 

 [
cs

.C
V

] 
 2

9 
M

ay
 2

02
3



2. RELATED WORK

A series of strategies are employed to improve the training
and inference efficiency of Neural Radiance Fields (NeRF)
[3]. FastNeRF [9] accelerates rendering speed by efficiently
caching and querying radiance maps. KiloNeRF [10] reduces
processing time by representing scenes with a lot of small
MLPs. [11, 12] introduce auxiliary networks to predict sam-
pling points locations likely placed around surface. [13] jointly
reconstructs surfaces/meshes with radiance fields .

A family of methods achieve fast or even real-time render-
ing by storing features in a voxel grid structure. The features
are either converted from a pretrained NeRFs for inference
only [6, 14] or learned in a hybrid manner with small MLPs
[7, 8, 15]. Plenoxels leverages spherical harmonics to realize
view-dependent appearance without neural networks. How-
ever, these methods typically take huge storage cost, even two
orders of magnitude larger than implicit methods. TensorRF
[16] factorizes voxel grids to achieve compact model sizes
however obviously slowing inference speed (requiring 200ms
for rendering 800 × 800). Our method aims to address the
storage issue of explicit grid and achieve real-time inference.

Our work is also related to model compression, which aims
to reduce model size of large networks while remaining accu-
racy, typically through the techniques of parameter pruning
[17], network quantization [18], low-rank approximation [19]
and knowledge distillation [20]. The sparsification operation
in [5, 6] can be treated as a kind of parameter pruning. [21, 22]
introduce codebooks for quantizing feature vectors and map-
ping into feature index. TensorRF [16] is built upon low-rank
approximation. Our method can be seen as a combination of
volume data compression [23] and knowledge distillation with
domain priors.

3. METHOD

3.1. Overview

We propose a compression framework to address the storage
issue of voxel grid models, including compressing grid models
to a much smaller size through Nonuniform Compression and
learning a parameterized module Neural Codebook for details
recovery, by employing intrinsic properties in grid models.

Formally, a grid model [5] is comprised of volume den-
sity and the features inducing view-variant colors, denoted
as Vσ ∈ RH×W×K and Vc ∈ RH×W×K×C . Here H , W
and K denote spatial resolutions. Color features are formed
by the coefficients of a set of spherical harmonics (SH) and
the dimension is C. The mode is optimized via volume ren-
dering technique, i.e., casting a batch of rays r from camera
center, and sampling N points along each ray to estimate the
corresponding colors Ĉ(r) according to

Ĉ(r) =

N∑
i=1

Ti · αi · ci, (1)

αi = 1− exp(−σiδi), Ti =

i−1∏
j=1

(1− αj), (2)

where σi and ci denote the density and color at point i, cal-
culated via tri-linear interpolation with neighboring voxels.
The model size of grids grows cubically with respect to spatial
dimension. When initializing a grid with 5123, the memory
cost is about 13 GB. Although the overall model size can de-
crease to 820 MB via the traditional compression operations
of sparsification and conversion to float16 type as in [6, 5],
such a size is still less satisfied for storage and transmission in
real-world applications.

We address the storage issue from the perspective of com-
pression methodology, i.e., reducing the resources required
to store and transmit grid models via a compression phase,
and restoring them from the encoded models at once at the
decompression phase. The insights behind the method are
derived from the following practical guidance (which will be
elaborated in the following sections):

• Compared to higher-dimensional color features, density
information influences more for preserving model abil-
ity. Compression color features with a higher rate is
more effective.

• The voxels with large importance scores only occupy a
fraction, but they contribute much to rendering quality.

• Better employing the correlation between color features
and density is helpful for fine details recovery.

A full-scale model can be gotten by one-time deploy-
ment(decompression) with comparable deployment time to
the original model and no loss for rendering speed.

As an orthogonal improvement, we introduce engineering
strategies to accelerate rendering without the need of con-
verting to an octree structure which may sacrifice rendering
quality. Specially, we 1) combine all cuda threads, 2) double
sampling steps in ray casting, 3) terminate rays when the ac-
cumulated density reaches 99%, 4) prefecth all data-pointer
before trilinear interpolation. Detailed descriptions can refer to
supplemental material. We can finally achieve rendering with
180 fps, reducing the cost from 41 ms/frame to 5.5 ms/frame.

3.2. Nonuniform Compression on Grid Models

Given a well-trained grid model V = {Vσ,Vc}, a much
smaller model can be intuitively obtained by employing a
down-sampling operation on the grid along with resolution.
As the color features Vc is typically tens of times larger than
the volume density Vσ, we adopt different down-sampling
scales on Vc and Vσ ,

V̂c =↓Sc (Vc), V̂σ =↓Sσ (Vσ), (3)

where Sc and Sσ denote down-sampling ratios for color
features and density. Intuitively, the compressed model



Fig. 2: The illustration of the framework. (a-c) Given an explicit grid model, we effectively compress it via nonuniform
compression and a learnable Neural Codebook (NCB) for preserving details. The grid model is restored by performing one-time
decompression without loss on rendering efficiency given novel views. (d) Illustration of NCB architecture.

Table 1: The effect of downsampling with different scales on
color features and volume density.

PSNR↑ SSIM↑ LPIPS↓ Size↓

↓1/2 (Vc) + ↓1/2 (Vσ) 26.55 0.920 0.095 27.9MB
+ codebook 31.52 0.950 0.058 34.4MB

↓1/2 (Vc) + ↓1/4 (Vσ) 23.11 0.884 0.144 26.3MB
+ codebook 31.52 0.956 0.062 33.8MB

↓1/4 (Vc) + ↓1/2 (Vσ) 25.20 0.897 0.118 6.2MB
+ codebook 31.45 0.955 0.058 13.7MB

↓1/4 (Vc) + ↓1/4 (Vσ) 22.67 0.872 0.1569 4.6MB
+ codebook 31.43 0.954 0.070 12.1MB

{V̂σ, V̂c} can be directly up-sampled to the size of the origi-
nal grid during decompressing through tri-linear interpolation,
a parameter-free manner, to obtain the recovered grid model,
{Ṽσ, Ṽc}.

We evaluate these models to assess the effect for rendering
quality (shown in Table 1). We can observe that density in-
formation contributes more than color features for preserving
model rendering quality. Using a smaller down-sampling rate
on volume density would obviously reduce model capacity
while contributing less for storage saving. In contrast, using
a smaller down-sampling rate on color features can obtain a
model with much lower storage, while with moderate degener-
ation on rendering quality. It is more efficient to use a larger
compression rate on color features.

We further define an importance score for each voxel as
follows. When sampling a point xi, the density σi is calculated
by linearly interpolating the 8 adjacent voxels vl ∈ Ni accord-
ing to the distance between them, where the linear weight of

Table 2: Importance analysis.

x% of voxels 1% 10% 17% 20% 100%
y% of importance 17% 66% 83% 86% 100%

vl with respect to xi is denoted as wi,l. We leverage these
sampling points to measure the importance score Il of the
voxel vl according to

Il =
∑
i

1 {xi ∈ ι(vl)} · wi,l · Ti · αi, (4)

where 1{·} denotes the indicator function and ι(vl) = {vl+δ :
δ ∈ [−1, 1]3}, and Ti and αi are defined in Eq. 2.

In practice, we cast a large set of rays in the source grid
model V across a wide range of views and estimate the impor-
tance scores of all voxels as in Eq. 4. The statistic analysis
in Table 5 shows that over 83% of the overall importance is
contributed by only 17% of total voxels. Voxels with large
scores form a small proportion. We introduce a rate to denote
the percentage of voxels sorted in decreasing scores. As shown
in Table 5, saving a minimal amount of important voxels is
a simple and effective strategy to retain model ability. We
thus store a compressed grid and a tiny set of important vox-
els, reaching a significantly smaller storage compared to the
original grid. While the rendering quality is still less satisfied
only with nonuniform compression, we therefore propose a
parameterized module to further preserve subtle details.

3.3. Neural Codebook for Details Recovery

When performing downsampling on grids, many high-
frequency details encoded in models are lost. We introduce a



Table 3: Comparison with real-time inference methods on
Synthetic-NeRF.

PSNR ↑ Deploy Time↓ Test Time↓ Size↓
(dB) (s) (ms) (MB)

NeRF[3] 31.01 - 3000 5
Real-Time Inference Methods
FastNeRF[9] 29.97 - 4.2 -
SNeRG[14] 30.38 - 12 86
KiloNeRF[10] 31.00 5.67 11 153
AutoInt[26] 26.83 7.65 386 14
DIVeR [27] 32.12 1.28 11.1 68
PlenOctrees[6] 31.71 3.97 3 1976

⌞ compressed 29.60 - 1.5 300
Plenoxels [5] 31.71 1.36 41 779
Ours 31.45 1.39 5.5 18.4

new module, namely Neural Codebook (NCB), to encode the
model-specific details effectively via a shallow network. The
network input and output represent the same type of features
with an identical shape, thus it is a nature way to use a residual
connection to ease information propagation. In addition, point-
wise manipulation may omit contextual information existing in
spatial locations of grid models and the model-specific details
are usually position-aware, thus embedding position informa-
tion is necessary. To this end, we design a position modulated
network. The design is inspired from style injection in [24].

Formally, assume that we have a pair of grid models (V, Ṽ)
where Ṽ = {Ṽσ, Ṽc} denotes the model with the same di-
mensions to the source grid V = {Vσ,Vc} after upsampling.
Neural Codebook is realized by learning a mapping function
between the grid pairs, i.e.,

Ṽr
σ, Ṽ

r
c = fr(Ṽσ, Ṽc,P). (5)

where fr is instantiated with the architecture shown in
Fig. 2(d). The output grid model Ṽr = {Ṽr

σ, Ṽ
r
c} is gen-

erated by the refinement. Specially, we first lift the coordinates
to a higher-dimensional embedding. Each voxel v in the grid
is encoded by a high-dimensional mapping γ with a set of
sinusoidal functions [25]:

γ(v) = [cos(2πa⊤1 v), sin(2πa
⊤
1 v), · · · ,

cos(2πa⊤Lv), sin(2πa
⊤
Lv)],

(6)

where each entry of the basis A = [a1, · · · ,aL] is sampled
from a standard normal distribution. The output position em-
bedding is denoted by P.

We then leverage adaptive layer normalization (AdaLN)
to modulate the activation of each fully-connected (FC) layer
through a learned transformation on P. The output of the
transformation is denoted as y = (yb, ys). Let u denote the
activation of the FC layer. The AdaLN is formulated as:

AdaLN(u,y) = ys ·
u− µ (u)

ν (u)
+ yb, (7)

Fig. 3: Visual comparison. Top: Plenoxels vs Bottom: Ours.

Table 4: Comparison on forward facing scenes.

PSNR ↑ Test Time↓ Size↓
(dB) (ms) (MB)

NeRF[3] 26.50 3000 13.7
Plenoxels[5] 26.29 41 2575
Ours 26.03 5.5 55.9

where µ () and ν () respectively denote the mean and variance
operations across channels. Specially, two modal information
are fed into the module. As the correlation between them is
expected to be employed, we design the architecture with the
property of sharing features at lower layers adjacent to inputs
and learning features specialized to respective targets when
reaching at higher layers. Detailed architecture configuration
and training strategies can be found in supplemental material.

The parameters of NCB are model-specific, i.e. preserving
detailed properties for each scene model. The network is
trained by minimizing the L1 loss,

L = λc

∣∣∣Ṽr
c −Vc

∣∣∣+ λσ

∣∣∣Ṽr
σ −Vσ

∣∣∣ . (8)

The module optimization is fairly fast, typically costing
about 20 minutes in a single GPU (NVIDIA A100). It is
possible to accelerate training with a tailored training schedule,
or train a codebook with a shared stem and multi-head for
different scenes, which we leave as future work. The grid
model can be efficiently restored through one-pass forward
propagation during the decompression phase, which does not
hinder rendering efficiency given novel views.

4. EXPERIMENTS

4.1. Datasets

Synthetic-NeRF[3] composed of 8 synthetic objects. Each
scene has 100 training views and 200 testing views at 800x800
resolution, with precisely known camera pose.
LLFF [28] contains real-world images at resolution 1008×
756 in a forward facing setting. Each scene contains images
from 20 to 60. Camera pose is estimated by COLMAP.



Fig. 4: Visual comparison between directly compressed model
and recovered model with NCB on LLFF dataset.

Table 5: Ablation of saving with different percentage of most
important voxels.

PSNR↑ SSIM↑ LPIPS↓ Add Size↓

0 % 31.02 0.950 0.068 -
2.5 % 31.35 0.954 0.062 2.6 MB
5.0 % 31.45 0.943 0.058 5.2 MB
7.5 % 31.50 0.956 0.056 7.6 MB
10 % 31.54 0.957 0.055 10.0 MB

4.2. Results

Synthetic Scenes. We compare NCB with other real-time
inference methods on multiple metrics including rendering
quality (PSNR), deployment time (in minutes), test time (in-
ference cost given views in ms) and storage size, and list the
performance of original NeRF for reference. The results are
shown in Table 8. Our method shows significant advantage
on storage cost compared to these methods, specially achiev-
ing over 40× reduction over the direct counterpart Plenoxels
with minimal quality loss (0.26 dB). We also provide visual
comparison between rendering results of Plenoxels and ours
in Fig. 3, showing negligible visual difference between the
original and restored models. Moreover, compared to other
baselines, our method can also achieve competitive perfor-
mance on rendering quality, deployment and inference cost,
meanwhile realizing a low storage cost.

Forward-facing Scenes. Our method also supports un-
bounded forward-facing scenes. Following the setting in [3],
We use 7/8 data as the training set, and the left 1/8 data for test.
The quantitative results are shown in Table 4, and the visual
results are shown in Figure 4. Our method can also achieve
a over 40× reduction rate with comparable rendering quality
and better inference performance.

Table 6: Ablation of inference acceleration for rendering a
800x800 image on Synthetic-NeRF.

PSNR↑ Test Time↓
Baseline 31.58 41.8 ms
+ Combine thread 31.58 21.6 ms
+ Larger step 31.50 12.1 ms
+ Early termination 31.45 7.8 ms
+ Prefetch neighbor 31.45 5.5 ms

Table 7: Deployment time analysis for Plenoxels and ours.

Plenoxels Ours

Disk IO & Decode 1257 ms 97 ms
Host-device transfer 110 ms 52 ms
Trilinear upsample - 30 ms
NCB inference - 1219 ms

Sum 1367 ms 1398 ms

4.3. Ablation Study

Non-uniform Compression. We conduct the experiments
with different downsampling scales on color features and den-
sity to estimate their effects on rendering quality. The results
in Table 1 show that density contributes more to preserving
quality while color features occupy much more storage cost.
Therefore we use a smaller scale on color features (1/4 by
default) and a moderate scale on density (1/2 by default).

We also conduct experiments on the effect of saving differ-
ent percentage of most important voxels for rendering quality
and storage addition in Table 5. We can observe that saving
with a small fraction can bring obvious benefit on rendering
quality with acceptable storage size.

Neural Codebook. We further investigate the benefit of
neural codebooks by comparing the results with and without
NCB, and use GT for reference. As shown in Figure 4, the
module is capable of preserving high-frequency details which
are lost in the model via directly compression. We also conduct
the experiments by learning two networks independently for
volume density and color features which achieves 31.38 dB in
PSNR (0.07 dB drop) with a larger number of parameters.

Inference & Deployment Time Analysis. We show the
ablation in Table 6 by adding acceleration strategies, to esti-
mate their effect on speed and PSNR. The strategies can boost
inference efficiency obviously with minimal quality drop (0.1
dB). We further compare the deployment time with original
Plenoxels through a step-by-step analysis in Table 7. Plenox-
els’ disk io time is much longer due to large model size. Our
framework can still achieve comparable deployment time, al-
though it need additional decompression procedure.



5. CONCLUSION

We propose a compression framework to significantly reduce
the storage cost of voxel grid models by the use of non-uniform
compression. The introduction of Neural Codebooks enables
effective encoding high-frequency information to better pre-
serve scene-specific details. Experiments on two widely-used
datasets demonstrate remarkable advantage of our method on
storage cost compared to existing real-time rendering methods.

6. REFERENCES

[1] M. Michalkiewicz, J.K. Pontes, D. Jack, M. Baktashmot-
lagh, and A. Eriksson, “Implicit surface representations
as layers in neural networks,” in ICCV, 2019.

[2] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik,
B. Mildenhall, and J. T. Barron, “Nerv: Neural re-
flectance and visibility fields for relighting and view
synthesis,” in CVPR, 2020.

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes
as neural radiance fields for view synthesis,” in ECCV,
2020.

[4] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun, “Nerf++: Analyzing and improving neural radi-
ance fields,” arxiv CS.CV 2010.07492, 2020.

[5] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht,
and A. Kanazawa, “Plenoxels: Radiance fields without
neural networks,” in CVPR, 2022.

[6] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
“Plenoctrees for real-time rendering of neural radiance
fields,” in ICCV, 2021.

[7] Cheng Sun, Min Sun, and Hwann-Tzong Chen, “Di-
rect voxel grid optimization: Super-fast convergence for
radiance fields reconstruction,” in CVPR, 2022.

[8] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,
and Christian Theobalt, “Neural sparse voxel fields,” in
NeurIPS, 2020.

[9] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin, “Fastnerf: High-
fidelity neural rendering at 200fps,” in ICCV, 2021.

[10] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger, “Kilonerf: Speeding up neural radiance fields
with thousands of tiny mlps,” in ICCV, 2021.

[11] M. Piala and R. Clark, “Terminerf: Ray termination
prediction for efficient neural rendering,” in 3DV, 2021.

[12] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller,
C. R. Alla Chaitanya, A. S. Kaplanyan, and M. Stein-
berger, “Donerf: Towards real-time rendering of compact
neural radiance fields using depth oracle networks,” Com-
puter Graphics Forum, 2021.

[13] R. Shao, H. Zhang, H. Zhang, Y. Cao, T. Yu, and Y. Liu,
“Doublefield: Bridging the neural surface and radiance
fields for high-fidelity human rendering,” in CVPR, 2022.

[14] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron,
and P. E. Debevec, “Baking neural radiance fields for
real-time view synthesis,” in ICCV, 2021.

[15] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant
neural graphics primitives with a multiresolution hash
encoding,” ACM Trans. Graph., 2022.

[16] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu,
and Hao Su, “Tensorf: Tensorial radiance fields,” arXiv
preprint arXiv:2203.09517, 2022.

[17] S. Han, H. Mao, and W. J Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” in ICLR, 2016.

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko, “Quantization and training
of neural networks for efficient integer-arithmetic-only
inference,” in CVPR, 2018.

[19] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman,
“Speeding up convolutional neural networks with low
rank expansions,” in BMVC, 2014.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[21] Towaki Takikawa, Alex Evans, Jonathan Tremblay,
Thomas Müller, Morgan McGuire, Alec Jacobson, and
Sanja Fidler, “Variable bitrate neural fields,” in ACM
SIGGRAPH, 2022.

[22] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and
Liefeng Bo, “Compressing volumetric radiance fields to
1 mb,” in CVPR, 2023.

[23] Ky Giang Nguyen and Dietmar Saupe, “Rapid high
quality compression of volume data for visualization,”
Computer Graphics Forum, 2001.

[24] T. Karras, S. Laine, and T. Aila, “A style-based generator
architecture for generative adversarial networks,” TPAMI,
2021.

[25] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-
Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T.
Barron, and R. Ng, “Fourier features let networks learn
high frequency functions in low dimensional domains,”
in NeurIPS, 2020.

[26] David B. Lindell, Julien N. P. Martel, and Gordon Wet-
zstein, “Autoint: Automatic integration for fast neural
volume rendering,” in CVPR, 2020.

[27] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong
Wang, and David Forsyth, “Diver: Real-time and accu-
rate neural radiance fields with deterministic integration
for volume rendering,” in CVPR, 2022.

[28] B. Mildenhall, P. P. Srinivasan, R. OrtizCayon, N. K.
Kalantari, R. Ramamoorthi, R. Ng, and A. Kar, “Local
light field fusion: Practical view synthesis with prescrip-
tive sampling guidelines,” ACM TOG, 2019.

[29] Jean loup Gailly and Mark Adler, “zlib,” 2017.



[30] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[31] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng,
“Rectifier nonlinearities improve neural network acoustic
models,” in ICML, 2013.

[32] Jens Axboe, “fio,” https://github.com/axboe/fio, 2022.

https://github.com/axboe/fio


Compact Real-time Radiance Fields with Neural Codebook

Appendix

A. IMPLEMENTATION DETAILS

Nonuniform compression. We treat Vσ and Vc as dense
voxel grid and directly apply trilinear downsampling. We
follow the sparsification operation in [5] pipeline to re-sparsify
the downsapled voxel grids, and keep the full-resolution mask
for future decompression. Finally all tensors are covert to
float 16 and compressed with zlib [29] for saving. During
decompression phase, we trilinear upsample V̂σ and V̂c to
get the full-size voxel grid and sparsify it with the saved full-
resolution mask.

The data pointers (both used in importance map and sparse
array storage) are converted to a binary mask indicating if a
voxel in the grid is occupied, and the conversation is reversible
to derive data pointers from the mask. A 4-byte for saving a
data pointer consequentially reduces to 1-bit.
Neural Codebook. We train separate Neural Codebooks
(NCB) for each scene. Detailed architecture can be found in
the following section. The network is trained using Adam[30]
optimizer with β1 is 0.9 and β2 is 0.999, we also apply a
weight decay of 1e-5. The learning rate is set as 5e-3 at first
and then is multiply 0.3 for every 5,000 iterations. We train
a total of 20,000 iterations with a batch size of 100,000 vox-
els. After the training phase, the NCB is then cast to float16.
All test experiments and storage sizes are reported using the
float16 model.

B. NETWORK STRUCTURE

The configuration of Neural Codebook architecture is shown
in Figure 5. LeakyReLU [31] is used as layer activation. The
color features Ṽc and volume density Ṽσ share network lay-
ers at lower level adjacent to input and learn modality-specific
features through two separate branches at higher level for the
refined model {Ṽr

c , Ṽ
r
σ}, which is optimized by minimizing

its difference to the original grid model. The skip connection
enables the basic information stored in the compressed model
pass through, encouraging the network parameters to capture
high-frequency details supplement to the compressed model.
By the consideration of higher dimension of color informa-
tion, the branch corresponding to color information is slightly
deeper (with two additional layers) and wider than the density
branch.

C. INFERENCE ACCELERATION

The volume rendering implementation is inherited from
Plenoxels [5]. We introduce several strategies on both CUDA
rendering kernel and rendering strategy to achieve inference

Fig. 5: Detailed structure of Neural Codebook



speedup. 1) In the original Plenoxels’ CUDA kernel, one ray is
handled by a full CUDA warp (32 threads) where each thread
processes one dimension in SH coefficients in order to take
advantage of memory coalescing. We found that such oper-
ation would incur large additional computational cost on ray
marching which is even more than the benefit of memory coa-
lescing during inference. We instead simplify the procedure to
launch one kernel for each ray. 2) The sampling step is twice
as the original setting which can decrease the overall sample
points. 3) We apply the standard early termination strategy
on ray marching. The ray marching would be stopped when
the accumulated transmittance is lower than 1%. 4) Both SH
coefficients and density information are stored in a sparse 3D
array with a full-scale mask. As the SH coefficients of each
point is stored in a a contiguous memory space, we only need
the data pointer to access the first dimension of SH coefficients
and use a fixed stride to prefetch the memory address for the
rest dimension, eventually achieving speed-up on the trilinear
interpolation kernel.

D. HARDWARE DETAILS

All the experiments ran in a cloud virtual machine, which is
equipped with a Intel Xeon Platinum 8369B and 8x NVIDIA
A100. As the storage device is undisclosed in the machine,
we benchmark the disk with the I/O tester in [32] for a fair
comparison. The average sequential read speed is 540 MB/s
and the average random read speed is 375 MB/s.

E. RESULTS FOR EACH SCENE

Table 8 also provides the performance on SSIM and LPIPS
besides PSNR. Table 9 and Table 10 show full results for
each scene on the Synthetic-NeRF [3] dataset and the LLFF
[28] dataset, respectively, demonstrating that compared to
Plenoxels our method can achieve comparable rendering qual-
ity with significant advantage on storage overhead. We further
present qualitative comparison among Plenoxels (i.e., Uncom-
pressed), directly compressed model, and refined by using
Neural Codebook, by selecting a random view for every scene
in Figure 6 and 7. We can clearly observe that NCB is capable
of preserving high-frequency details supplement to the loss in
compressed model.



PSNR↑ SSIM↑ LPIPS↓ Deploy Time↓ Test Time↓ Storage Size↓
NeRF[3] 31.01 0.947 0.081 - 3000 ms 5 MB

Real-Time Inference Methods
FastNeRF[9] 29.97 0.941 0.053 - 4.2 ms -
SNeRG[14] 30.38 0.950 0.050 - 12 ms 86 MB
KiloNeRF[10] 31.00 0.950 0.030 5.67 s 11 ms 153 MB
AutoInt[26] 26.83 0.926 0.151 7.65 s 386 ms 14.8MB
DIVeR [27] 32.12 0.958 0.033 1.28 s 11.1 ms 68 MB
PlenOctrees[6] 31.71 0.958 0.053 3.97 s 3 ms 1976 MB

⌞ compressed 29.60 - - - 1.5 ms 300 MB
Plenoxels [5] 31.71 0.958 0.049 1.36 s 41 ms 779 MB
Ours 31.45 0.955 0.058 1.39 s 5.5 ms 18.4 MB

Table 8: Comparison with other real time methods in synthetic-NeRF.

Table 9: Full results on synthetic-NeRF dataset.

PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 33.51 25.24 31.74 36.13 33.50 29.02 33.11 29.36 31.45
Plenoxels 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.973 0.929 0.975 0.978 0.970 0.947 0.984 0.887 0.955
Plenoxels[5] 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.040 0.079 0.030 0.044 0.039 0.066 0.020 0.148 0.058
Plenoxels 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134 0.049

Storage ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 15.1MB 14.4MB 11.9MB 19.4MB 19.7MB 15.9MB 10.8MB 39.7MB 18.4MB
Plenoxels[5] 701MB 677MB 623MB 814MB 811MB 713MB 595MB 1300MB 779MB



Table 10: Full results on LLFF dataset.

PSNR ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 25.20 27.50 30.80 27.33 21.01 20.28 29.91 26.20 26.03
Plenoxels 25.46 27.83 31.09 27.58 21.41 20.24 30.22 26.48 26.29

SSIM ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.821 0.843 0.874 0.847 0.717 0.680 0.933 0.882 0.824
Plenoxels 0.832 0.862 0.885 0.857 0.760 0.687 0.937 0.890 0.839

LPIPS ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.248 0.215 0.201 0.250 0.257 0.259 0.207 0.257 0.237
Plenoxels 0.224 0.179 0.180 0.231 0.198 0.242 0.192 0.238 0.210

Storage ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 53.8 MB 56.7 MB 61.5 MB 69.5 MB 44.6 MB 64.3 MB 53.6 MB 66.5 MB 58.9 MB
Plenoxels 2600 MB 2500 MB 2600 MB 2800 MB 2100 MB 2800 MB 2500 MB 2700 MB 2575 MB



GT Uncompressed Compressed Refined

L
eg

o
M

ic
S

h
ip

C
h
air

F
icu

s
M

aterials
D

ru
m

s
H

o
td

o
g

Fig. 6: Qualitative comparison on Synthetic-NeRF dataset.



F
ern

s
F

lo
w

ers
F

o
rtress

H
o
rn

s
L

eav
es

O
rch

id
s

R
o
o
m

s
T

rex

GT Uncompressed Compressed Refined

Fig. 7: Qualitative comparison on LLFF dataset.


	 Introduction
	 Related Work
	 Method
	 Overview
	 Nonuniform Compression on Grid Models
	 Neural Codebook for Details Recovery

	 Experiments
	 Datasets
	 Results
	 Ablation Study

	 Conclusion
	 References
	 Implementation Details
	 Network Structure
	 Inference Acceleration
	 Hardware Details
	 Results for Each Scene

