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ABSTRACT
Currently, great numbers of efforts have been put into
improving the effectiveness of 3D model quality assessment
(3DQA) methods. However, little attention has been paid to
the computational costs and inference time, which is also im-
portant for practical applications. Unlike 2D media, 3D mod-
els are represented by more complicated and irregular digital
formats, such as point cloud and mesh. Thus it is normally
difficult to perform an efficient module to extract quality-
aware features of 3D models. In this paper, we address this
problem from the aspect of projection-based 3DQA and de-
velop a no-reference (NR) Efficient and Effective Projection-
based 3D Model Quality Assessment (EEP-3DQA) method.
The input projection images of EEP-3DQA are randomly
sampled from the six perpendicular viewpoints of the 3D
model and are further spatially downsampled by the grid-
mini patch sampling strategy. Further, the lightweight Swin-
Transformer tiny is utilized as the backbone to extract the
quality-aware features. Finally, the proposed EEP-3DQA and
EEP-3DQA-t (tiny version) achieve the best performance
than the existing state-of-the-art NR-3DQA methods and
even outperforms most full-reference (FR) 3DQA methods
on the point cloud and mesh quality assessment databases
while consuming less inference time than the compared
3DQA methods.

Index Terms— 3D model, point cloud, mesh, effective
and efficient, projection-based, no-reference, quality assess-
ment

I. INTRODUCTION
3D models such as point cloud and mesh have been widely

studied and applied in virtual/augmented reality (V/AR),
game industry, film post-production, etc. However, the 3D
models are usually bothered by geometry/color noise and
compression/simplification loss during generation and trans-
mission procedures. Therefore, many 3D model quality as-
sessment (3DQA) methods have been proposed to predict the
visual quality levels of degraded 3D models. Nevertheless,
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due to the complex structure of the 3D models, efficient
feature extraction is difficult to perform and most 3DQA
methods require huge computational resources and inference
time, which makes it hard to put such methods into practical
use and calls for more efficient 3DQA solutions.

Normally speaking, 3DQA methods can be categorized
into model-based and projection-based methods. Different
from model-based 3DQA methods that extract features di-
rectly for the 3D models, projection-based 3DQA methods
evaluate the visual quality of 3D models via the 2D pro-
jections (regardless of the 3D models’ digital representation
formats and resolution), which can take advantage of the
mature 2D vision backbones to achieve cost-effective perfor-
mance. Unfortunately, the projections are highly dependent
on the viewpoints and a single projection is not able to cover
sufficient quality information. Therefore, many projection-
based 3DQA methods try to utilize multiple projections or
perceptually select the main viewpoint to achieve higher
performance and gain more robustness [1], [2], [3], [4],
[5]. Namely, VQA-PC [2] uses 120 projections for analysis
and G-LPIPS [3] needs to select the main viewpoint that
covers the most geometric, color, and semantic information
in advance. However, multiple projections and perceptual
selection lead to taking up extra rendering time and huge
computational resources, which motivates us to develop an
Efficient and Effective Projection-based 3D Model Quality
Assessment (EEP-3DQA) method based on fewer projec-
tions.

Specifically, we propose a random projection sampling
(RPS) strategy to sample projections from the 6 perpen-
dicular viewpoints to reduce the rendering time cost. The
tiny version EEP-3DQA-t only employs 2 projections while
the base version EEP-3DQA employs 5 projections. The
number of the projections is defined according to the exper-
imental discussion in Section IV-E. Then, inspired by [6], we
employ the Grid Mini-patch Sampling (GMS) strategy and
adopt the lightweight Swin-Transformer tiny (ST-t) as the
feature extraction backbone [7] since ST-t has a hierarchical
structure and processes inputs with patch-wise operations,
therefore it is naturally suitable for processing grid mini-
patch maps.) With the features extracted from the sampled
projections, the fully-connected layers are used to map
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Fig. 1. The framework of the proposed method.

the features into quality scores. Finally, we average the
quality scores of the sampled projections as the final quality
value for the 3D model. The extensive experimental results
show that the proposed method outperforms the existing
NR-3DQA methods on the point cloud quality assessment
(PCQA) and mesh quality assessment (MQA) databases, and
is even superior to the FR-3DQA methods on the PCQA
databases. Our proposed tiny version only takes about 1.67s
to evaluate one point cloud on CPU (11.50× faster than
VQA-PC) while still obtaining competitive performance.

II. RELATED WORK
In this section, we briefly review the development of

model-based and projection-based 3DQA methods.

II-A. Model-based 3DQA
The early FR-PCQA methods only use the geometry

information to estimate the quality loss at the point level
[8], [9]. Further, to deal with the colored point clouds, both
geometry and color information are incorporated for analysis
by calculating the similarity of various quality domains
[10], [11], [12], [13]. Later, 3D-NSS [14] is proposed by
quantifying the distortions of both point clouds and meshes
via some classic Natural Scene Statistics (NSS) distributions.
ResSCNN [15] proposes an end-to-end sparse convolutional
neural network (CNN) to learn the quality representation of
the point clouds. Unlike the 3D models used for classifica-
tion and segmentation, the 3D models for quality assessment
are usually denser and contain more points/vertices, thus
making the feature extraction more complicated.

II-B. Projection-based 3DQA
Similar to the FR image quality assessment (IQA) meth-

ods, the early projection-based FR-3DQA methods compute
the quality loss between the projections rendered from the
reference and the distorted 3D models [16], [17], [18].
Namely, Tian et al. [16] introduces a global distance over
texture image using Mean Squared Error (MSE) to quantify
the effect of color information. Yang et al. [17] uses both
projected and depth images upon six faces of a cube for
quality evaluation.

The performance of the projection-based methods is fur-
ther boosted by the development of deep learning networks.

PQA-net [1] designs a multi-task-based shallow network and
extracts features from multi-view projections of the distorted
point clouds. VQA-PC [2] proposes to treat the point clouds
as moving camera videos by capturing frames along the
defined circular pathways, and utilize both 2D-CNN and 3D-
CNN for spatial and temporal feature extraction respectively.
G-LPIPS [3] perceptually selects the main viewpoint of
the textured meshes and assesses the quality of the main
viewpoint projection with CNN.

III. PROPOSED METHOD

The framework of the proposed method is illustrated in
Fig 1, which includes the projection sampling process, the
feature extraction module, and the feature regression module.

III-A. Projection Sampling Process

Following the mainstream projection setting employed in
the popular point cloud compression standard MPEG VPCC
[19], we define 6 perpendicular viewpoints of the given 3D
model M represented by point cloud or mesh, corresponding
to the 6 surfaces of a cube:

P = ψ(M), (1)

where P = {Pi∣i = 1,⋯,6} indicates the set of the 6
projections and ψ(⋅) denotes the projection capture process.
Additionally, the white background of the projections is
cropped out. There may exist redundant quality information
among the 6 projections and the efficiency can be improved
by extracting sufficient quality information from fewer pro-
jections since fewer projections consume less rendering
time and computational resource. Therefore, we propose
a Random Projection Sampling (RPS) strategy to improve
the efficiency, which functions by randomly selecting N
projections for evaluation:

PN = α(P), (2)

where α(⋅) denotes for the RPS operation and PN =
{PNj ∣j = 1,⋯,N} stands for the set of sampled projections.
It’s worth noting that only the selected projections are
rendered.

Further inspired by the boosted efficiency benefited from
Grid Mini-patch Sampling (GMS) [6], we similarly cut the
projections into uniformly none-overlapped spliced spatial
grids as the sampled results:

P̂N = β(PN), (3)

where β indicates the GMS operation and P̂N = {P̂Nj ∣j =
1,⋯,N} represents the set of projections after GMS op-
eration. From Fig. 2, we can see that the spatial grids
can maintain the local quality-aware patterns that can be
bothered with resize operation.
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Fig. 2. An example of the projection sampling process. N projections are randomly selected from the 6 perpendicular
viewpoints, which are further sampled into spatial grids by GMS. The details of GMS can be referred to in [6].

III-B. Efficient Feature Extraction

To take up fewer flops and parameters, we select the
light-weight Swin-Transformer tiny (ST-t) [7] as the feature
extraction backbone. Given the input projections set P̂N, the
quality-aware features can be obtained as:

FNj =γ(P̂Nj),
FNj =Avg(FNj),

(4)

where γ(⋅) represents the feature extraction operation with
ST-t, FNj indicates the extracted feature maps from the Nj-
th input sampled projection, Avg(⋅) stands for the average
pooling operation and FNj denotes the pooled features.

III-C. Quality Regression

To map the quality-aware features into quality scores,
we simply adopt a two-stage fully-connected (FC) layer for
regression:

QNj = FC(FNj), (5)

where QNj indicates the quality score for the Nj-th sampled
projection. Then the final quality Q for the given 3D model
can be computed by averaging the quality values:

Q = 1

N

N

∑
j=1

QNj , (6)

where Q indicates the final quality score for the 3D model.
The Mean Squared Error (MSE) is utilized as the loss
function:

Loss = 1

n

n

∑
η=1

(Qη −Q′η)2, (7)

where Qη is the predicted quality scores, Q′η is the quality
label of the 3D model, and n is the size of the mini-batch.

IV. EXPERIMENT

IV-A. Benchmark Databases
To investigate the efficiency and effectiveness of the

proposed method, the subjective point cloud assessment
database (SJTU-PCQA) [17], the Waterloo point cloud as-
sessment database (WPC) proposed by [20], and the tex-
tured mesh quality (TMQ) database proposed by [3] are
selected for validation. The SJTU-PCQA database introduces
9 reference point clouds and each reference point cloud is
degraded into 42 distorted point clouds, which generates 378
= 9×7×6 distorted point clouds in total. The WPC database
contains 20 reference point clouds and augmented each point
cloud into 37 distorted stimuli, which generates 740 = 20×37
distorted point clouds. The TMQ database includes 55 source
textured meshes and 3,000 corrupted textured meshes with
quality labels. The 9-fold cross validation is utilized for
the SJTU-PCQA database and the 5-fold cross validation is
used for the WPC and the TMQ databases respectively. The
average performance is recorded as the final performance
results.

IV-B. Competitors & Criteria
For the PCQA databases, the compared FR quality as-

sessment methods include MSE-p2point (MSE-p2po) [8],
Hausdorff-p2point (HD-p2po) [8], MSE-p2plane (MSE-
p2pl) [9], Hausdorff-p2plane (HD-p2pl) [9], PSNR-yuv [21],
PCQM [10], GraphSIM [11], PointSSIM [12], PSNR, and
SSIM [22]. The compared NR methods include 3D-NSS
[14], ResSCNN [15], PQA-net [1], and VQA-PC [2]. For
the TMQ database, the compared FR quality assessment
methods include PSNR, SSIM [22], and G-LPIPS (specially
designed for textured meshes) [3]. The compared NR meth-
ods include 3D-NSS [14], BRISQUE [23], and NIQE [24].
It’s worth mentioning that PSNR, SSIM, BRISQUE, and
NIQE are calculated on all 6 projections and the average
scores are recorded.



Table I. Performance results on the SJTU-PCQA and WPC databases. The best performance results are marked in RED
and the second performance results are marked in BLUE.

Ref Type Methods SJTU-PCQA WPC
SRCC↑ PLCC↑ KRCC↑ RMSE ↓ SRCC↑ PLCC↑ KRCC↑ RMSE ↓

FR
Model-based

MSE-p2po 0.7294 0.8123 0.5617 1.3613 0.4558 0.4852 0.3182 19.8943
HD-p2po 0.7157 0.7753 0.5447 1.4475 0.2786 0.3972 0.1943 20.8990
MSE-p2pl 0.6277 0.5940 0.4825 2.2815 0.3281 0.2695 0.2249 22.8226
HD-p2pl 0.6441 0.6874 0.4565 2.1255 0.2827 0.2753 0.1696 21.9893
PSNR-yuv 0.7950 0.8170 0.6196 1.3151 0.4493 0.5304 0.3198 19.3119
PCQM 0.8644 0.8853 0.7086 1.0862 0.7434 0.7499 0.5601 15.1639
GraphSIM 0.8783 0.8449 0.6947 1.0321 0.5831 0.6163 0.4194 17.1939
PointSSIM 0.6867 0.7136 0.4964 1.7001 0.4542 0.4667 0.3278 20.2733

Projection-
based

PSNR 0.2952 0.3222 0.2048 2.2972 0.1261 0.1801 0.0897 22.5482
SSIM 0.3850 0.4131 0.2630 2.2099 0.2393 0.2881 0.1738 21.9508

NR

Model-based 3D-NSS 0.7144 0.7382 0.5174 1.7686 0.6479 0.6514 0.4417 16.5716
ResSCNN 0.8600 0.8100 - - - - - -

Projection-
based

PQA-net 0.8500 0.8200 - - 0.7000 0.6900 0.5100 15.1800
VQA-PC 0.8509 0.8635 0.6585 1.1334 0.7968 0.7976 0.6115 13.6219
EEP-3DQA-t 0.8891 0.9130 0.7324 0.9741 0.8032 0.8124 0.6176 12.9603
EEP-3DQA 0.9095 0.9363 0.7635 0.8472 0.8264 0.8296 0.6422 12.7451

Table II. Performance results on the TMQ database. The
best performance results are marked in RED and the second
performance results are marked in BLUE.

Ref Methods TMQ
SRCC↑ PLCC↑ KRCC↑ RMSE ↓

FR
PSNR 0.5295 0.6535 0.3938 0.7877
SSIM 0.4020 0.5982 0.2821 0.8339
G-LPIPS 0.8600 0.8500 - -

NR

3D-NSS 0.4263 0.4429 0.2934 1.0542
BRISQUE 0.5364 0.4849 0.3788 0.9014
NIQE 0.3731 0.3866 0.2528 0.8782
EEP-3DQA-t 0.7350 0.7430 0.5439 0.6468
EEP-3DQA 0.7769 0.7823 0.5852 0.5975

Afterward, a five-parameter logistic function is applied to
map the predicted scores to subjective ratings, as suggested
by [25]. Four popular consistency evaluation criteria are
selected to judge the correlation between the predicted
scores and quality labels, which consist of Spearman Rank
Correlation Coefficient (SRCC), Kendall’s Rank Correlation
Coefficient (KRCC), Pearson Linear Correlation Coefficient
(PLCC), and Root Mean Squared Error (RMSE). A well-
performing model should obtain values of SRCC, KRCC,
and PLCC close to 1, and the value of RMSE near 0.

IV-C. Implementation Details

The employed Swin-Transformer tiny [7] backbone is
initialized with the weights pretrained on the ImageNet
database [26]. The RPS parameter N discussed in Section
III-A is set as 2 for the tiny version EPP-3DQA-t and 5
for the base version EPP-3DQA respectively. The adam
optimizer [27] is employed with the 1e-4 initial learning rate
and the learning rate decays with a ratio of 0.9 for every 5
epochs. The default batch size is set as 32 and the default
training epochs are set as 50. The average performance of
k-fold cross validation is reported as the final performance
to avoid randomness.
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Fig. 3. Illustration of the varying SRCC values correspond-
ing to the different projection number N selection.

IV-D. Experimental Results

The experimental results are listed in Table I and Table
II. From Table I, we can observe that the proposed EEP-
3DQA outperforms all the compared methods while the tiny
version EEP-3DQA-t achieves second place on the SJTU-
PCQA and WPC databases, which proves the effectiveness
of the proposed method. What’s more, all the 3DQA methods
experience significant performance drops from the SJTU-
PCQA database to the WPC database. This is because the
WPC database introduces more complicated distortions and
employs relatively fine-grained degradation levels, which
makes the quality assessment tasks more challenging for
the 3DQA methods. From Table II, we can find that the
proposed EPP-3DQA is only inferior to the FR method G-
LPIPS. However, G-LPIPS operates on the projections from
the perceptually selected viewpoints, which thus gains less
practical value than the proposed method.

IV-E. Projection Number Selection

In this section, we exhibit the performance with different
RPS N selections in Fig 3 and give the reasons for why



setting N as 2 for the tiny version and 5 for the base
version of the proposed EPP-3DQA. From Fig 3, we can
see that randomly sampling 5 projections obtains the highest
performance among all three databases, which is why we
set N=5 for the base version. Interestingly, using all 6
projections causes performance drops. We attempt to give
the reasons for such a phenomenon. Randomly selecting a
smaller subset of projections could lead to better quality
assessment performance than using all six projections, as it
could reduce the influence of outliers and biases. Moreover,
redundancy could be a possible reason why using all six
projections may not necessarily lead to better quality assess-
ment results. After experimenting with different numbers of
projections, 5 projections seem to be the optimal choice for
3DQA tasks, especially for the TMQ database. Additionally,
when N increases from 1 to 2, the SRCC values gain the
largest improvement on the SJTU-PCQA databases and gain
relatively significant improvement on the WPC and TMQ
databases. Therefore, we set N=2 for the tiny version rather
than setting N=1 to get more cost-effective performance.

IV-F. Efficiency Analysis

Previous discussions have proven the effectiveness of
the proposed EEP-3DQA, this section mainly focuses on
efficiency. Three FR-3DQA methods (PCQM, GraphSIM,
and PointSSIM) and two NR-3DQA methods (3D-NSS and
VQA-PC) are selected for comparison. It’s worth men-
tioning that VQA-PC and the proposed EEP-3DQA are
deep-learning based methods, and the rest methods are all
handcrafted based methods. We test the operation time of the
3DQA methods on a computer with Intel 12500H @ 3.11
GHz CPU, 16G RAM, and NVIDIA Geforce RTX 3070Ti
GPU on the Windows platform. The efficiency comparison
is exhibited in Table III. We can see that the base version
of the proposed method requires only 1/2.09 inference com-
pared with the fastest competitor 3D-NSS while achieving
the best performance on CPU. Moreover, the tiny version
EEP-3DQA-t takes up even fewer flops and inference time
with the compared deep-learning based VQA-PC. All the
comparisons confirm the superior efficiency of the proposed
EPP-3DQA.

IV-G. Ablation Study

We propose two sampling strategies RPS and GMS in
Section III-A and we try to investigate the contributions of
each strategy. Note that we fix the projection viewpoints as
not using the RPS strategy and we test with 5 different sets of
fixed projection viewpoints to ease the effect of randomness.
The ablation study results are shown in Table IV, from
which we can see that using both RPS and GMS achieves
higher SRCC values than excluding either of the strategies.
This indicates that the proposed RPS and GMS all make
contributions to the final results. With closer inspections,
we can find that RPS makes relatively more contributions

Table III. Illustration of flops, parameters, and average
inference time (on CPU/GPU) per point cloud of the SJTU-
PCQA and WPC databases. The subscript ‘A×’ of the
consuming time indicates the corresponding method takes
up A× operation time of the proposed base version EEP-
3DQA.

Method Para. (M) Gflops Time (S) CPU/GPU
PCQM - - 12.234.99×/-

GraphSIM - - 270.14110.26×/-
PointSSIM - - 9.273.78×/-

3D-NSS - - 5.122.09×/-
VQA-PC 58.37 50.08 19.217.84×/16.4411.26×

EEP-3DQA-t 27.54 8.74 1.670.68×/1.120.77×
EEP-3DQA 27.54 21.87 2.451.00×/1.461.00×

Table IV. SRCC performance results of the ablation study.
Best in bold.

Ver. RPS GMS SJTU WPC TMQ

Tiny

× × 0.8711 0.7922 0.7255
✓ × 0.8834 0.8016 0.7347
× ✓ 0.8822 0.7953 0.7136
✓ ✓ 0.8891 0.8032 0.7350

Base

× × 0.8741 0.8012 0.7333
✓ × 0.8853 0.8140 0.7564
× ✓ 0.8933 0.8241 0.7704
✓ ✓ 0.9095 0.8264 0.7769

to the tiny version compared with the base version. This is
because the base version employs five random projections
out of the six perpendicular projections, which is not that
significantly different from fixing five projections out of
the six perpendicular projections. Additionally, the GMS
strategy tends to make more contributions for the base
version than the tiny version, which suggests that the GMS
strategy can better dig out the quality-aware information with
more projections.

V. CONCLUSION

In this paper, we mainly focus on the efficiency of 3DQA
methods and propose an NR-3DQA method to tackle the
challenges. The proposed EEP-3DQA first randomly samples
several projections from the 6 perpendicular viewpoints and
then employs the grid mini-patch sampling to convert the
projections into spatial grids while marinating the local
patterns. Later, the lightweight Swin-Transformer tiny is
used as the feature extraction backbone to extract quality-
aware features from the sampled projections. The base EEP-
3DQA achieves the best performance among the NR-3DQA
methods on all three benchmark databases and the tiny EEP-
3DQA-t takes up the least inference time on both CPU
and GPU while still obtaining competitive performance.
The further extensive experiment results further confirm the
contributions of the proposed strategies and the rationality
of the structure.
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[3] Yana Nehmé, Florent Dupont, Jean-Philippe Farrugia,
Patrick Le Callet, and Guillaume Lavoué, “Tex-
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