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ABSTRACT
In recent years, large amounts of effort have been put
into pushing forward the real-world application of dynamic
digital human (DDH). However, most current quality as-
sessment research focuses on evaluating static 3D models
and usually ignores motion distortions. Therefore, in this
paper, we construct a large-scale dynamic digital human
quality assessment (DDH-QA) database with diverse motion
content as well as multiple distortions to comprehensively
study the perceptual quality of DDHs. Both model-based
distortion (noise, compression) and motion-based distortion
(binding error, motion unnaturalness) are taken into con-
sideration. Ten types of common motion are employed to
drive the DDHs and a total of 800 DDHs are generated
in the end. Afterward, we render the video sequences of
the distorted DDHs as the evaluation media and carry out
a well-controlled subjective experiment. Then a benchmark
experiment is conducted with the state-of-the-art video qual-
ity assessment (VQA) methods and the experimental results
show that existing VQA methods are limited in assessing
the perceptual loss of DDHs. The database is available at
https://github.com/zzc-1998/DDH-QA.

Index Terms— Dynamic digital human, model-based
distortion, motion-based distortion, subjective experiment

I. INTRODUCTION
Digital humans indicate digital models represented by

computer graphics, which are usually static and fixed. Dy-
namic digital humans (DDHs) are digital models driven
by predefined animations [1], which have been widely
adopted in applications such as the game industry, film post-
production, metaverse, etc. As shown in Fig. 1, the DDHs
suffer from both model-based and motion-based distortions.
The model-based distortions represent the degradations di-
rectly affecting the digital human models. For example, the
slight geometry shift and inevitable camera noise can intro-
duce noise disturbance to the geometry structure and texture
maps during the generation procedure [2], [3]. Moreover, to
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Fig. 1. Distortion sources of DDHs.

support real-time VR/AR applications under restricted band-
width, the digital human models always undergo compres-
sion through the transmission procedure. The motion-based
distortions stand for the incoherence and unnaturalness of the
animation, which are often caused by inappropriate skeleton
binding and confusing motion. Nowadays, researchers are
mainly paying attention to the generation, representation,
rendering, and animation of digital humans [4]. However, the
quality assessment for DDHs has fallen behind and effective
approaches along with databases are urgently needed.

Therefore, we propose the first dynamic digital human
quality assessment (DDH-QA) to tackle the mentioned chal-
lenge. One male and one female digital humans represented
by texture meshes are collected as the reference. Then we
introduce six model-based distortions (color noise, geometry
noise, texture compression, texture downsampling, position
compression, and UV map compression) and two motion-
based distortions (skeleton binding error and motion range
unnaturalness) to reference models, which generate 800
distorted DDHs in total. Afterward, we carry out a sub-
jective experiment to collect the perceived quality ratings
for the distorted DDHs. Finally, we conduct a benchmark
experiment on the DDH-QA database with state-of-the-art
video quality assessment (VQA) methods, which shows that
current quality assessment methods are not effective for pre-
dicting the visual quality levels of DDHs. Our contributions
can be summarized as followed:

● To the best of our knowledge, we construct the first
dynamic digital human quality assessment database,
which provides 800 distorted DDHs with both model-
based and motion-based distortions.

● We carry out a subjective study to collect the perceptual
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quality labels of the distorted DDHs. A total of 32,800
= 41×800 quality ratings are gathered.

● We conduct a benchmark experiment to exhibit the
performance of the existing state-of-the-art quality as-
sessment methods.

Table I. The comparison of 3D-QA databases and our
database, where ‘Num’ represents the number of the models
provided with quality labels.

Database Num Content

SJTU-PCQA [5] 378 Colored Point Cloud
WPC [6] 740 Colored Point Cloud
LSPCQA [7] 1,240 Colored Point Cloud
CMDM [8] 80 Colored Mesh
TMQA [9] 3,000 Textured Mesh
VVDB2 [10] 152 Volumetric Video
DHHQA [11] 1,540 Static Digital Human Head
DDH-QA(Ours) 800 Dynamic Digital Human

II. RELATED WORKS
II-A. 3D Model Quality Assessment Database

In this section, we give a brief review of the 3D model
quality assessment (3D-QA) databases. Mainstream 3D-QA
databases focus on static point cloud quality assessment
(PCQA) and mesh quality assessment (MQA) [12], [13],
[14]. Namely, the SJTU-PCQA [5], WPC [6], and LSPCQA
[7] databases contain 378, 740, and 1,240 subjective anno-
tated colored point clouds respectively, which are distorted
by noise, downsampling, and compression. Some researchers
are also interested in MQA tasks. For example, the CMDM
[8] database employs simplification and quantization algo-
rithms to obtain 80 distorted colored meshes. The TMQ
database further provides 3,000 distorted textured meshes
by compressing both the geometry structure and texture
maps. All the databases mentioned above are constructed
for common 3D objects, then some databases are proposed
to focus on 3D digital humans. The VVDB2 [10] database
provides 152 3D human volumetric videos and the DHHQA
[11] database includes 1,540 distorted static digital human
heads. However, none of these databases specifically inves-
tigate the perceptual quality of DDHs and all of them ignore
the motion distortion.

II-B. VQA Development
Since most DDHs are presented in the format of rendered

2D videos, it is reasonable to transfer the VQA models to
the DDH-QA tasks. The VQA methods can be generally
categorized into full-reference (FR) and no-reference (NR)
VQA methods according to the availability of the refer-
ence videos. The FR-VQA methods usually compare the
frame-level difference with the assistance of image quality
assessment (IQA) metrics such as PSNR and SSIM [15]. For
the NR-VQA development, some handcrafted-based methods
[16], [17], [18], [19] are proposed to extract features based

(a) Male (b) Female

Fig. 2. Illustration of the source male and female digital hu-
man models. The male digital human model is displayed in
‘A’ pose while the female digital human model is displayed
in ‘T’ pose respectively.

on natural scene statistics (NSS) and regress the features
via the Support Vector Machine. With the development of
deep neural networks (DNN), some researchers [20], [21],
[22] propose to utilize DNNs for feature extraction and have
greatly boosted the performance of NR-VQA models.

III. DATABASE CONSTRUCTION
III-A. Source Model Collection

To build the dynamic digital human quality assessment
(DDH-QA) database, we collect one male and one female
digital human models which can be freely downloaded from
Cgtrader1 and are represented by textured meshes. The male
model contains 19,528 vertices and 2K texture maps while
the female model contains 16,351 vertices and 2K texture
maps. The front projections of the digital human models are
illustrated in Fig. 2.

III-B. Distortion Generation
To fit the practical situation of producing DDHs, we in-

troduce two types of distortions, including model-based and
motion-based distortions. The overview of the introduced
distortion is shown in Table II.

(1) Model-based Distortion: The model-based distortions
focus on the noise and compression artifacts during the gen-
eration and transmission procedure, which include: (a) Color
Noise (CN): Gaussian noise is added to the texture maps
with σc set as {20, 40, 60, 80, 100}; (b) Geometry Noise
(GN): Gaussian noise is introduced to the vertices with σg set
as {0.01, 0.02, 0.03, 0.04, 0.05}; (c) Texture Compression
(TC): The texture maps are compressed with JPEG and the
quality levels are set as {3, 7, 15, 20, 25}; (d) Texture
Downsampling (TD): The texture maps are downsampled
with the sampling rate of {2, 4, 8, 12, 16}; (e) Position
Compression (PC): The position attributes are quantified wit
the Draco [23] library and quantization parameters qp are set

1https://www.cgtrader.com/



Table II. Overview of the introduced distortion.

Type Distortion Description

Model-
based

CN Color noise on the texture maps
GN Geometry noise on the vertices
TC Texture maps JPEG compression
TD Texture maps downsampling
PC Position quantization by Draco

UMC Texture coordinate quantization by Draco
Motion-
based

SBE Skeleton binding error
MRU Unnatural motion range

as {6, 7, 8, 9, 10}; (f) UV Map Compression (UMC): The
texture coordinate attributes are quantified with the Draco
library and the quantization parameters qt are set as {3, 4,
5, 6, 7}; The distorted samples are exhibited in Fig. 3

(2) Motion-based Distortion: The motion-based distor-
tions focus on the skeleton rigging bias along with the
motion unnaturalness. In most piratical situations, digital
humans are first processed with skeleton binding and then
animated with the designed motion. The skeleton binding
error and the poor-designed motion can cause confusion
and unnaturalness to the dynamic digital human animation.
Therefore, we introduce the motion-based distortions from
two aspects: (a) Skeleton Binding Error (SBE) : Mismatch
of skeleton key points are added under five manual defined
levels to cover most quality ranges (slight mismatch ∼ severe
mismatch); (b) Motion Range Unnaturalness (MRU) : We
manually adjust the motion range to model the motion
unnaturalness under five strengthens. The examples of the
motion-based distortions are shown in Fig. 4.

III-C. Video Rendering
Since the DDHs are usually perceived in the format of 2D

animation videos, we decide to render the DDHs into videos
for evaluation. We bind the skeleton of the digital human
models and render the animation videos with a resolution
of 1080P by using Maya software 2 (the viewpoints are
manually selected to cover sufficient quality content). To
enrich the motion content diversity, we select ten types of
common motion, including baseball, boxing, dance, golf,
jog, jump, pushup, roll, walk, and wave. The overview of
the ten kinds of motion is exhibited in Fig. 5. To sum up, a
total of 800 = 2×8×5×10 (digital human models×distortion
types×distortion levels×motion types) DDH video sequences
are generated for evaluation.

III-D. Subjective Experiment
We carry out the subjective quality assessment exper-

iment in a well-controlled laboratory environment under
the instructions of ITU-R BT.500-13 [24]. The rendered
distorted dynamic digital human videos along with the

2https://www.autodesk.com/products/maya/

(a) CN (b) GN (c) TC

(d) TD (e) PC (f) UMC

Fig. 3. Projection samples of the model-based distortions,
from which we can see that different kinds of distortions can
cause diverse perceptual loss to the digital human models.

(a) SBE (b) MRU

Fig. 4. Examples of the motion-based distortions. The SBE
distortions can severely discord the digital human body and
rigidly twist the body joints. The MRU distortions usually
cause model clipping, which makes the motion awkward and
unnatural.

corresponding reference ones are randomly displayed on a
customized graphical subjective quality assessment interface,
whose screenshot is shown in Fig. 6. We employ an iMac
monitor for display, which supports a resolution up to 4096
× 2304.

A total of 41 subjects (20 males and 21 females) are
invited to participate in the subjective experiment. All the
subjects are seated from a distance of twice the screen
height to the screen in an indoor environment with normal
illumination levels. Before the subjective experiment, an
instruction session is performed to help the subjects get fa-
miliar with the quality assessment task. The whole subjective
experiment is split into 16 sessions and each session contains
50 distorted DDH video sequences. There is a 30-minutes



Baseball Boxing Dance Golf Jog

Walk

Jump

Pushup

Roll

Wave

Fig. 5. Illustration of the selected kinds of motion. Simple
daily activities such as walk and wave are included. Com-
plicated sports such as baseball and gold are considered as
well.

Fig. 6. The screenshot of the subjective quality assessment
interface. The reference videos (left) and the distorted videos
(right) are displayed at the same time.

break between each session and each subject is allowed to
attend no more than 4 sessions in a single day. During each
session, the distorted video sequence is played only once and
the participants can rate the DDH quality according to the
rendered DDH video from 1 to 5, with a minimum interval
of 0.1. We ensure that each distorted DDH video is evaluated
by the 41 invited participants and 32,800=800×41 subjective
ratings are collected in all.
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Fig. 7. Distributions of the MOSs corresponding to the
distortion and motion types.

III-E. Subjective Data Processing
Following the recommendation of ITU-R BT.500-13 [24],

we calculate the z-scores as the quality labels of correspond-
ing DDHs:

zij = rij − µi

σi
, (1)

where rij represents the quality rating given by the i-
th subject on the j-th DDH, µi = 1

Ni
∑Ni

j=1 rij , σi =√
1

Ni−1
∑Ni

j=1 (rij − µi), and Ni is the number of DDH
assessed by subject i. Additionally, we reject the quality
ratings from unreliable subjects with the recommended sub-
ject rejection procedure proposed in [24]. In the end, the
z-scores are linearly rescaled to [1,5] and the mean opinion
score (MOS) of DDH j is obtained by averaging the rescaled
z-scores:

MOSj = 1

M

M

∑
i=1

z
′

ij , (2)

where MOSj represents the MOS for the j-th DDH, M is
the number of the valid subjects, and z

′

ij are the rescaled
z-scores.

III-F. Subjective Data Analysis
We further plot the distributions of the MOSs from the

perspective of distortion and motion types, which are shown



in Fig. 7. From the distortion MOS distributions, we can see
that the TC distortion tends to have a less negative impact
while the SBE distortions seem to cause more severe damage
to the visual quality of DDHs. With closer inspections, we
can observe that all types of motion exhibit similar MOS
distributions, which indicates that the added distortions result
in similar perceptual loss regardless of the motion types.
Therefore the proposed DDH-QA database can provide
useful guidelines for other types of DDH motion.

IV. BENCHMARK EXPERIMENT
IV-A. Benchmark Competitors

Since the DDH is usually perceived in the format of
animated videos, several state-of-the-art video quality as-
sessment (VQA) methods are employed for validation on
the DDH-QA database. The FR methods include PSNR,
and SSIM [15], which operate on the frames of DDH
videos. The NR methods include BRISQUE [16], NIQE [25],
VIIDEO [26], V-BLIINDS [17], TLVQM [18], VIDEVAL
[19], VSFA [27], RAPIQUE [20], SimpleVQA [21], and
FAST-VQA [22]. Additionally, BRISQUE, NIQE, VIIDEO,
V-BLIINDS, TLVQM, and VIDEVAL are handcrafted-based
methods while VSFA, RAPIQUE, SimpleVQA, and FAST-
VQA are DNN-based methods. It’s worth mentioning that we
use the source codes provided by the authors and maintain
the default setting parameters.

IV-B. Experimental Setup
The 5-fold cross validation strategy is utilized to train and

test the models. Specifically, we split the 10 groups of motion
into 5 folds and each fold contains 2 groups of motion. 4
folds are used as the training sets while the left 1 fold is
used as the testing set. Such procedure is repeated 5 times
so that every fold has been employed as the testing set. The
average performance is recorded as the final experimental
results. Additionally, for methods that require no training,
we simply operate them on the same testing sets and report
the average performance.

Four mainstream consistency evaluation criteria are uti-
lized to compare the correlation between the predicted
scores and MOSs, which include Spearman Rank Correlation
Coefficient (SRCC), Kendall’s Rank Correlation Coefficient
(KRCC), Pearson Linear Correlation Coefficient (PLCC),
and Root Mean Squared Error (RMSE). An excellent model
should obtain values of SRCC, KRCC, and PLCC close to
1, and the value of RMSE near 0.

IV-C. Performance Discussion
The experimental results are shown in Table III, from

which we can make several useful conclusions. (a) PSNR
and SSIM are the most widely used FR quality assessment
metrics in compression and transmission systems. Although
they achieve relatively better performance than the NR
handcrafted-based methods, they are not effective to deal

Table III. Benchmark Performance on the DDH-QA
database. Best in bold.

Ref. Model SRCC PLCC KRCC RMSE

FR
PSNR 0.4308 0.5458 0.3114 0.9013

SSIM 0.5408 0.6057 0.3920 0.8559

NR

BRISQUE 0.3664 0.4011 0.2568 1.0067

NIQE 0.0923 0.2489 0.0748 1.0418

VIIDEO 0.1219 0.1829 0.0732 1.0740

V-BLIINDS 0.4807 0.4936 0.3424 0.9564

TLVQM 0.2515 0.2824 0.1729 1.0480

VIDEVAL 0.2218 0.3470 0.1622 1.0246

VSFA 0.5406 0.5708 0.3858 0.9657

RAPIQUE 0.1815 0.2368 0.1246 1.0614

SimpleVQA 0.7444 0.7498 0.5452 0.7228
FAST-VQA 0.5262 0.5382 0.3657 1.0499

with practical DDH-QA tasks, which calls for better FR
DDH-QA solutions. (b) For the NR-VQA methods, the
DNN-based methods except RAPIQUE tend to yield better
performance than the handcrafted-based methods. This is
because the handcrafted-based methods are based on the
natural scene statistics (NSS) prior knowledge, which is
learned from natural videos. However, the rendered DDH
videos are quite different from the natural videos in both
content and distortions, which leads to the ineffectiveness of
the handcrafted-based methods. (c) SimpleVQA achieves the
highest performance among all the benchmark competitors
and is significantly superior to the second-ranking method.
We try to give some reasons. Besides using 2D-CNN for
spatial feature extraction, SimpleVQA also utilizes 3D-CNN
for motion feature extraction, which might be more capable
of describing the quality representation of DDHs. To sum
up, the existing quality assessment methods still have a long
way to go before accurately predicting the visual quality
levels of DDHs.

V. CONCLUSION
In this paper, we propose a large-scale dynamic digital

human quality assessment database. One male and one
female digital human models are selected as the reference.
Then we degrade the reference models with both model-
based and motion-based distortions. A total of 800 DDHs
are generated and we render the DDHs into 2D animation
videos for evaluation. Afterward, we carry out a subjective
study to collect the subjective quality judgment for the
distorted DDHs. Several state-of-the-art VQA methods are
chosen for validation on the proposed DDH-QA database.
A comprehensive performance discussion is made as well.
We hope our work will draw more attention to the quality
assessment of DDHs and inspire future research.
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