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ABSTRACT

Weakly supervised video anomaly detection (WSVAD) is a
challenging task since only video-level labels are available
for training. In previous studies, the discriminative power of
the learned features is not strong enough, and the data im-
balance resulting from the mini-batch training strategy is ig-
nored. To address these two issues, we propose a novel WS-
VAD method based on cross-batch clustering guidance. To
enhance the discriminative power of features, we propose a
batch clustering based loss to encourage a clustering branch
to generate distinct normal and abnormal clusters based on a
batch of data. Meanwhile, we design a cross-batch learning
strategy by introducing clustering results from previous mini-
batches to reduce the impact of data imbalance. In addition,
we propose to generate more accurate segment-level anomaly
scores based on batch clustering guidance further improving
the performance of WSVAD. Extensive experiments on two
public datasets demonstrate the effectiveness of our approach.

Index Terms— anomaly detection, weakly supervised
learning, cross-epoch learning

1. INTRODUCTION

An efficient and accurate video anomaly detection algorithm
can help maintain social security and stability. Therefore,
video anomaly detection has high practical value and broad
application prospects. With the development of weakly su-
pervised learning, the weakly supervised video anomaly de-
tection (WSVAD) method is an effective method for detecting
anomalies, which uses weakly labeled training data contain-
ing both normal and anomalous videos to train the model.
Recently, WSVAD has been formulated as a multiple in-
stance learning (MIL) task. Sultani et al. [1] constructed a
large-scale anomaly dataset and proposed a deep MIL ranking
based method for WSVAD. Wan et al. [2] replaced the max
anomaly score selection policy with a k-max value selection
policy. Li et al. [3] selected the sequence with the highest
sum of anomaly scores instead of selecting the instance with
the highest anomaly score. Gong et al. [4] introduced tem-
poral continuity of multiple neighboring instances at different

time scales.
However, most of the existing work [1][2][3] have only

used MIL-based classification loss. Although MIL-based
classification loss ensures the inter-class separability of the
learned features to some extent, it is not sufficient for accu-
rate anomaly detection. Therefore, we propose a batch clus-
tering based loss to further increase the discriminative power
of the features, and our framework is shown in Figure 1. The
abnormal videos in a batch are clustered into two clusters,
and then the loss encourages the network to maximize the
distance between these two clusters. Meanwhile, for normal
videos in a batch, the loss encourages the network to mini-
mize the distance between these two clusters. Compared to
clustering each video individually [5][6], batch clustering im-
proves the robustness of the model and reduces the influence
of the model affected by the noise.

Considering the data in WSVAD task is highly unbal-
anced, it may negatively affect model training when only us-
ing a small portion of data. Previous mini-batches can provide
valuable knowledge enabling the model to better understand
the underlying distribution of the data [7][8]. Therefore, we
use a cross-batch learning strategy to provide guidance for the
current batch clustering by introducing clustering results from
previous batches. The introduced cross-batch learning strat-
egy can make the clustering results more accurate, model the
temporal-spatial distribution of the data better, and improve
the adaptability of the model to unbalanced samples.

In addition, the knowledge that the model can learn in
WSVAD directly from supervised learning is limited, since
only video-level labels are available. The clustering branch
can obtain potential information reflecting the similarity of
video segments. Therefore, we propose anomaly score gen-
eration based on batch clustering guidance to generate more
discriminative anomaly scores and further improve the model
performance. We first generate pseudo labels for video seg-
ments based on the batch clustering results, and then uses the
pseudo labels to guide the backbone network to rectify the es-
timated anomaly scores for video segments. In summary, our
main contributions are as follows:

1) We propose a loss based on batch clustering to comple-
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Fig. 1. Overview of our proposed method. The feature extractor extracts features from video segments. The extracted features
are fed into a fully connected layer and three graph convolution layers to generate segment-level anomaly scores. Simultane-
ously, the batch clustering branch uses intermediate representations of a batch of videos learned from the GCN-1 layer to create
clusters. And we design a cross-batch learning strategy to store the clustering results of previous batches and introduce them
into the batch clustering of the current batch. Finally, the pseudo labels generated by the batch clustering branch guide the
generation of anomaly scores.

ment and enhance the separability of the features guided by
MIL-based classification loss.

2) We propose a cross-batch learning strategy to generate
more accurate clustering results.

3) We propose to use the knowledge learned from batch
clustering to guide the predition of more discriminative
anomaly scores.

2. PROPOSED METHOD

2.1. Backbone network

Our approach employs a backbone netwwork based on graph
convolutional neural network (GCN) to model video se-
quences. The backbone network consists of a feature extrac-
tion module and a graph convolution module [9]. The Inflated
3D (I3D) [10] pretrained on the Kinetics dataset is used as the
feature extraction network to extract the appearance and mo-
tion information of the video segments. Before each video
Vi is fed into the feature extraction module, the video is di-
vided into non-overlapping segments containing 16 consec-
utive frames, and we denote the number of segments by Ti.
The graph convolution module consists three graph convolu-
tion layers, where the first two layers are followed by a ReLU
activation function and a dropout layer, and the last layer is
followed by a Sigmoid activation function. For each video
Vi, the input layer receives the temporal-spatial features ex-
tracted from the feature extraction module and the adjacency

matrix of a global graph constructed based on feature sim-
ilarity and temporal proximity of the video segments. The
output layer produces the anomaly score vector of the video
S̃i = {s̃i,j}Ti

j=1. The network is trained using video-level la-
bels. yi ∈ {0, 1} is the video-level label of video Vi, where
yi = 0 indicates that video Vi is a normal video and yi = 1
indicates that Vi is an abnormal video.

2.2. Batch clustering based on K-means

Although MIL-based classification loss ensures the inter-class
separability of learned features to a certain extent, it cannot
ensure a more discriminative power of features since there
is no explicit supervision. Several studies on unsupervised
anomaly detection [11] have enlightened us, in which nor-
mal samples are compulsorily clustered in a compact space
such that they can be kept away from the anomaly space.
Therefore, we have reasonable grounds to believe that the nor-
mal activities should be compact in the feature space. Con-
sequently, we use batch clustering to cluster normal video
segments to enhance the intra-class compactness of normal
features. A larger inter-class distance in abnormal video in-
dicates that normal and abnormal are separated by a higher
probability. Therefore, we perform batch clustering on ab-
normal video segments to enhance the inter-class dispersion
of normal and abnormal features.

Here, we propose batch clustering to provide supervision
to enhance the discriminative power of features as shown in



Figure 1. For all normal videos in a batch, the feature repre-
sentations of each video are clustered into two clusters. Since
all segments in normal videos are normal, we try to close the
distance of the two clusters to ensure the intra-class compact-
ness of the normal features. All the abnormal videos in a
batch are also clustered into two clusters. Since there are
both abnormal and normal video segments in the abnormal
videos, we try to push the centers of the two clusters away
from each other to achieve the inter-class dispersion of nor-
mal and abnormal features. Specifically, for the abnormal or
normal videos in a batch, we use the K-means algorithm to
cluster the normalized intermediate feature representations,
which is the output of the first layer of GCN. The loss based
on batch clustering is shown below:

Lbc =

{
min(d, µ), if {Vi}bi=1 are normal videos

1
d , if {Vi}bi=1 are abnormal videos

(1)

where d = c1−c2 is the distance between two cluster centers,
and c1, c2 are the two cluster centers. µ is an upper bound that
helps the model to be robust to different videos, and b is the
batch size.

We train the model using the k-max loss function to ex-
pand the inter-class distance between abnormal and normal
segments, denoted as follows:

Lk−max = − 1

ki

∑
si,j∈pi

[yi log (si,j) + (1− yi) log (1− si,j)]

(2)
where pi is the first ki large elements in Si of video Vi, ki =⌊
Ti

8 + 1
⌋
, yi is the video-level label of video Vi. So, the total

loss function is expressed as:

L = Lk−max + λ1Lbc (3)

where λ1 is a trade-off hyperparameter to keep the balance
between two losses.

2.3. Cross-batch learning strategy

The data in WSVAD task is highly imbalanced. However,
only a mini-batch of samples can be accessed in each itera-
tion. The performance of anomaly detection models can be
improved when the batch size becomes larger on large-scale
datasets. However, simply scaling up the batch is not an ideal
solution because batch size is limited by GPU memory and
computational cost. A simple solution to collect rich informa-
tion is to introduce information from previous batches at each
training iteration to enable the model to better understand the
underlying distribution of the data. Thus, video segments
from past batches can also serve as an important reference
when performing K-means clustering on video segments of
the current batch. Previously, we perform batch clustering
based on K-means by directly selecting any two video seg-
ments from all video segments as the initial clustering cen-
ters, but the final clustering results of the K-means depend

on the selection of the initial clustering centers heavily. In
order to select the most appropriate initial clustering centers,
we introduce the clustering results of previous batches to pro-
vide guidance for the current batch clustering, which can help
model training.

Specifically, at the t-th epoch, Ca and Cn are constructed
in the iteration process to store the learned knowledge. That
is, during the i-th iteration, we cluster all abnormal video seg-
ments in a batch, and add the two clustering centers into Ca.
We will obtain Ca =

{
cai,1, c

a
i,2

}m
i=1

at the end of the t-th
epoch, where m is the number of iterations in an epoch. We
also do the above operation for all normal video segments in
a batch to get Cn =

{
cni,1, c

n
i,2

}m
i=1

.
At the (t + 1)-th epoch, we use the stored information to

guide the batch clustering. We cluster the data in Ca to obtain
the clustering centers ca1 , ca2 , which are used as the initial clus-
tering centers for the batch clustering of all abnormal video
segments in each batch of the current epoch. Meanwhile, the
data inCn are clustered to obtain the clustering centers cn1 , cn2 ,
which are used as the initial clustering centers for all normal
video segments in each batch of the current epoch. Dynami-
cally updating the data in Ca and Cn among different epochs
and introducing them into the batch clustering as a priori in-
formation can improve the effect of batch clustering and fur-
ther improve the performance of the anomaly detection task.

2.4. Anomaly score generation based on batch clustering
guidance

When the available labels are limited, the labeled samples of-
ten do not provide sufficient supervised information for the
model, so the deep model is prone to overfitting. Since WS-
VAD only considers video-level labels, the knowledge that
the model can learn will be limited. To address this problem,
we use cluster labels obtained from batch clustering to guide
backbone network to predict the anomaly scores of segments.
The unsupervised information is effectively transferred to the
weakly supervised learning process to improve the perfor-
mance of the anomaly detection task.

For the labeled normal videos, each segment of these
videos can simply be annotated as normal because there are
no abnormal events in it. However, in the case of abnormal
videos, there are also some normal events, so we use batch
clustering results to generate pseudo label for each segment
of the abnormal video. All segments of abnormal videos are
clustered into two clusters assuming that one cluster would
contain normal segments, while the other would contain ab-
normal. Therefore, we need to analyze which of the two
clusters contains mostly normal segments and which contains
mostly abnormal segments so that we can assign the appropri-
ate pseudo labels for video segments. We obtain the pseudo
labels of the segments by the similarity score between the
anomaly scores and the clustering labels. Specifically, we
compute the cosine similarity score S1 between the anomaly



score si ∈ [0, 1] of video Vi predicted by the backbone net-
work and the label yci ∈ {0, 1} generated by clustering, and
the cosine similarity score S2 between si and the inverted
clustering label ¬yci . Finally, the pseudo label ypi,j of the j-th
segment of video Vi is given by the following equation:

ypi,j =

{
yci,j , if s1 > s2
¬yci,j , otherwise (4)

The pseudo labels generated by batch clustering for video
segments and the anomaly scores generated by adaptive graph
convolutional networks for video segments can complement
each other in the anomaly detection task. In an anomalous
video, if the pseudo label of a video segment is 1, the seg-
ment has a high probability of being abnormal. Therefore, we
expand the anomaly score of the segments with a pseudo label
1 in the abnormal video. In particular, in an abnormal video,
if the pseudo label of the video segment is 1, the abnormal
score of the video segment becomes min (α× si,j , 1); if the
pseudo label of the video segment is 0, the abnormal score of
the video segment remains unchanged. The anomaly score of
each video segment is given by the following equation:

si,j =

{
min (α× s̃i,j , 1) , if yi = 1 and ypi,j = 1

s̃i,j , otherwise
(5)

where α is the expansion factor.

3. EXPERIMENTAL RESULTS

3.1. Datasets and evaluation metrics

UCF-Crime [1] is a large-scale dataset which spans over 128
hours of surveillance videos. It covers 13 realistic anomalies.
The entire dataset contains 1,900 long untrimmed videos, of
which 1610 videos with video-level label are used for training
and the rest for testing.

ShanghaiTech [12] is a medium-scale campus surveil-
lance dataset containing 437 videos. Following Zhong et al.
[13], we split the data into two subsets: the training set con-
sisting of 175 normal videos and 63 anomalous videos, and
the test set containing 155 normal videos and 44 anomalous
videos.

Following previous work [1], we use the area under curve
(AUC) of the receiver operating characteristic curve (ROC)
at the frame level as the criterion for the model, and a higher
AUC value indicates a better detection of the model.

3.2. Experimental details

We extract the 2048-dimensional features from the “mix 5c”
layer of I3D [10]. Following previous work [14], we extract
T segments from the video uniformly to represent the whole
video. By default, we set T to 150 for UCF-Crime and 100
for ShanghaiTech. The fully connected layer in the model
has 512 nodes, and the graph convolutional network layer has

Table 1. Frame-level AUC performance comparisons.
Model Feature UCF-Crime ShanghaiTech

Sultani et al. [1] I3D RGB 76.92 86.30
Zhong et al. [13] C3D RGB 81.08 76.44

AR Net [2] I3D RGB 78.96 85.38
SRF [5] I3D RGB 79.54 84.17

Wu et al. [14] I3D RGB 82.44 /
CLAWS [6] C3D RGB 83.03 89.67
MIST [15] I3D RGB 82.30 94.83

BN-SVP [16] I3D RGB 83.39 96.00
MCR [4] I3D RGB 81.0 90.10

MSLNet [3] I3D RGB 85.30 96.08
Ours I3D RGB 85.8785.8785.87 96.4596.4596.45

Table 2. Ablation study on UCF-Crime dataset(Lbc: batch
clustering based loss, CBL: cross-batch learning strategy,
BCG: anomaly score generation based on batch clustering
guidance).

backbone Lbc CBL BGG AUC(%)
X 84.67
X X 85.21
X X X 85.56
X X X X 85.87

128, 32 and 1 nodes, respectively. Our model is trained with
a mini-batch size of 64 using the Adam optimizer. For hyper-
parameters, α is set to 1.3.

3.3. Experimental results

We compare our method with the current methods on two
datasets, and show results in Table 1. For the UCF-Crime
dataset, comparison results show that our method outperforms
all comparison methods. Using the same I3D-RGB features,
our method outperforms the previous GCN-based method by
4.79% over Zhong et al. [13] and 3.43% over Wu et al. [14].
Our method also surpasses previous methods using clustering
by 6.33% over SRF [5] and 2.84% over CLAWS [6]. It also
achieves better performance compared to previous weakly su-
pervised methods on the ShanghaiTech dataset. It is 20.01%
higher than the GCN-based method [13], 12.29% and 6.78%
higher than the clustering-based method [5] and [6], respec-
tively.

3.4. Ablation experiments

We perform ablation study to investigate the contribution of
each component of our proposed method. We start by evaluat-
ing only the backbone network and observe the performance
gain while adding different modules. The result on UCF-
Crime is shown in Table 2. The backbone network achieves
84.67% AUC while the addition of batch clustering based



Table 3. Performance comparison of batch clustering with
different network layer outputs on UCF-Crime.

clustering layer AUC(%)
FC 84.96

GCN-1 85.21
GCN-2 84.27

Table 4. Performance comparison of different cross-batch
learning strategies on UCF-Crime.

different strategies AUC(%)
way1 85.56
way2 85.42
way3 85.51
way4 85.34

loss improves the performance to 85.21% and the addition
of cross-batch learning strategy further improves the perfor-
mance to 85.56% which validates their effectiveness. Addi-
tion of the anomaly score generation based on batch cluster-
ing guidance improves the performance to 85.87%, demon-
strating that the pseudo labels generated by batch clustering
can guide the backbone network.

We select different network layer outputs for batch clus-
tering to investigate their effects on model performance. We
choose the outputs of FC layer (FC), the first GCN layer
(GCN-1), and the second GCN layer (GCN-2), respectively.
As shown in Table 3, using GCN-1 achieves the best re-
sult with 0.25% higher than that using FC, probably because
GCN-1 exploits the temporal relationship between video seg-
ments. The performance using GCN-2 is 0.94% lower than
that using GCN-1 because GCN-1 contains more information
due to its higher dimensionality compared to GCN-2.

We conduct experiments and show comparison results to
evaluate the effects of different cross-batch learning strate-
gies. The first method is the one mentioned in Section 2.3.
The second method is to save the clustering centers obtained
from the previous batch clustering as the initial clustering cen-
ters when clustering the current batch. The third method is to
save the clustering centers obtained from all previous batch
clustering and use the clustering centers obtained by cluster-
ing them again as the initial clustering centers for the current
batch clustering. The fourth method is to save the clustering
centers of all the batches from the previous epoch as clus-
tering samples to participate in the clustering of each batch
in the current epoch. The Table 4 shows that all our pro-
posed cross-batch learning strategies improve the model per-
formance. The first method has the best performance, and
the fourth method performing less well, with only a small im-
provement.

We also conduct experiment to further investigate the ex-

Fig. 2. Performance comparison with different expansion fac-
tors α on UCF-Crime.

pansion factor α, and show the change of performance with
different expansion factors α on UCF-Crime in Figure 2. We
can observe that the AUC first increases and then decreases
as the value of α increases. The model achieves the best per-
formance when α is 1.3.

3.5. Qualitative Result and Analysis

To further evaluate the performance of our method, we visu-
alize the anomaly score curves, as shown in Figure 3. The fig-
ure shows the ground truth and the predicted anomaly scores
of three abnormal videos and one normal video from UCF-
Crime. It is obviously that our model exactly localizes the
anomalous events, showing the effectiveness and robustness
of our model. Our method successfully predicts both short-
term anomalous events and long-term anomalous events. In
addition, our method can also detect multiple anomalous
events in a video.

4. CONCLUSION

In this work, we propose a novel WSVAD model based on
cross-batch clustering guidance. The method enhances fea-
ture discrimination by binary batch clustering for normal and
abnormal videos within a batch separately. In addition, a
cross-batch learning strategy is incorporated to solve the data
imbalance problem caused by the mini-batch training strat-
egy, allowing the model to better capture the potential distri-
bution of the data. Finally, the pseudo labels generated by
batch clustering guide the backbone network to generate the
anomaly scores, which further enhances the separability of
normal and anomalous. The experimental results show that
the proposed method achieves significant improvements on
commonly-used WSVAD datasets.
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