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Offset-free Energy-optimal Model Predictive Control
for Point-to-point Motions with High Positioning Accuracy

Xin Wang1 and Jan Swevers2

Abstract— This paper discusses Offset-free Energy-optimal
Model Predictive Control (offset-free EOMPC) which is a MPC
algorithm to realize time-constrained energy-optimal point-to-
point motion control with high positioning accuracy for linear
time-invariant (LTI) systems. The offset-free EOMPC approach
is developed based on our previous research - Energy-optimal
Model Predictive Control (EOMPC) - which aims at performing
energy-optimal point-to-point motions within a given motion
time. A drawback of the EOMPC method is that it cannot
achieve high positioning accuracy in the presence of unmodelled
disturbances or model-plant mismatch. In order to cope with
this problem, a ’disturbance model’ strategy is adopted: the
system state is augmented with disturbance variables. Based on
the ’disturbance model’, the disturbances are estimated and the
effect of which is cancelled. Numerical validation of the offset-
free EOMPC using a model of a linear motor with coulomb
friction and cogging disturbances has been performed and
the results show that time-constrained energy-optimal point-
to-point motion with high positioning accuracy is achieved.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
technique that determines the control action by solving on-
line, at every sampling time, an open-loop optimal control
problem, based on the current state of the system [1]-[3].
The optimization generates an input sequence for a specified
time horizon. However, only the first input is applied to the
system.

MPC algorithms became very popular in the eighties
and were aimed to solve multivariable constrained control
problems typical for the oil and chemical industries due to
the limitation of the computation efficiency. Since the end of
the nineties, the research on the development of fast MPC
solution methods (’fast MPC’ in short) has intensified to
extend its application area to systems with fast sampling rates
such as mechatronic or motion systems. Nowadays, an im-
portant application for this type of system is energy-optimal
point-to-point motion control due to the growing social
awareness to achieve an environmentally sustainable future.
Our previous work EOMPC [4]-[5] has been developed for
this type of applications. A main drawback of EOMPC is
that a mechanisms is lacking to reduce or eliminate steady-
state positioning errors caused by unmodelled disturbances
or plant-model mismatch. This paper proposes an extension
of EOMPC to cope with this problem.

In the MPC framework, offset-free control means that the
controlled outputs are driven to their desired targets in steady
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state, that is, the elimination of steady-state output errors
is guaranteed. One way to achieve offset-free performance
is suggested in [6]-[8]: the system state is augmented with
an integrating disturbance. Inspired by this idea, Offset-free
model predictive control methods [9]-[11] propose a general
disturbance model that accommodates disturbances entering
through the process input, state, or output. Based on the
general disturbance model, the unmeasured disturbances are
estimated and the effect of which can be removed by shifting
the input to its steady-state target value so that offset-free
control is achieved. These works only consider slow dynamic
systems, sampling time of which is several seconds or even
several minutes.

This paper discusses the EOMPC algorithm for mecha-
tronic systems [5] in combination with the general dis-
turbance model strategy proposed in [9], yielding the so-
called offset-free EOMPC approach for linear-time invari-
ant (LTI) systems. Offset-free EOMPC is able to perform
time-constrained energy-optimal point-to-point motions with
high positioning accuracy. Energy optimality is achieved
by setting the object function of the optimization problem
equal to the system’s energy losses. The required motion
time is guaranteed by minimizing the settling time of the
system until the requested motion time is reached. The
general disturbance model strategy is the key to achieve high
positioning accuracy.

Outline of the paper: Section II and III briefly discuss
the offset-free MPC approach [9] and EOMPC approach [5],
respectively. Section IV explains the formulation of the de-
veloped offset-free EOMPC approach. Numerical validation
of the developed method is shown in section V. In addition,
a comparison with EOMPC and offset-free MPC is provided.
Conclusions are drawn in the last section.

II. OFFSET-FREE MODEL PREDICTIVE CONTROL

For readers’ convenience, this section summarizes two key
steps of the offset-free MPC methods [9]: (i) construction of
a general disturbance model that accommodates unmeasured
disturbances entering through the process input, state, or
output. (ii) calculation of the target input such that the effect
of the disturbance is cancelled by shifting the control input
to its target value.

A. General Disturbance Model

In this paper, we consider a discrete-time linear time-
invariant (LTI) system described by the following state-space
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model equation:

xk+1 = Axk +Buk, (1a)
yk = Cxk, (1b)

where y∈Rp is the output, u∈Rm is the input, and x∈Rn is
the state of the system. It is assumed that (A,B) is stabilizable
and (C,A) is detectable.

In order to achieve offset-free control, we augment the
system state with a disturbance vector dk ∈ Rnd and the
resulting augmented system is defined in Eq. (2), where
matrices Bd ∈ Rn×nd and Cd ∈ Rp×nd determine how the
disturbances influence the system (either through the input,
output or system state). The choice of the matrices is
discussed below.

[
xk+1
dk+1

]
=

[
A Bd
0 I

]
︸        ︷︷        ︸

Ã

[
xk
dk

]
︸ ︷︷ ︸

x̃k

+

[
B
0

]
︸︷︷︸

B̃

uk +wk, (2a)

yk =
[
C Cd

]︸       ︷︷       ︸
C̃

[
xk
dk

]
+ vk, (2b)

in which wk ∈ Rn+nd and vk ∈ Rp are noise vectors for the
system state and output respectively. In matrix Ã, I is an
identity matrix and it means that in absence of wk, dk+1 = dk
is assumed.

The estimate of the system state x̂k|k and the distur-
bance d̂k|k at each sampling instance k is formulated in
Eq. (3)-(4) and follows the classical Luenberger approach
[12]. It consists of two steps. First a ’prediction step’ is
performed, Eq.(3), yielding x̂k|k−1 and d̂k|k−1 based on the
known information at time k − 1. Eq. (4) is the second
step, the ’correction step’, and updates the prediction with a
’correction term’, which is based on yk, the measured output
at time k.

1) ’prediction’ step:

[
x̂k|k−1
d̂k|k−1

]
= Ã

[
x̂k−1|k−1
d̂k−1|k−1

]
+ B̃uk−1, (3a)

ŷk = C̃
[

x̂k|k−1
d̂k|k−1

]
. (3b)

2) ’correction’ step:[
x̂k|k
d̂k|k

]
=

[
x̂k|k−1
d̂k|k−1

]
+L(yk− ŷk), (4)

where L is the gain matrix of the state estimator, which can
be obtained using the pole placement approach [13] or the
Kalman filter strategy [14].

B. Target Calculation

Offset-free MPC requires the controlled output y to be
equal to the reference output, y= yre f , in steady state. At each
time step l, assuming that the estimate of the disturbance d̂l|l

is equal to the real disturbance dl , d̂l|l = dl , the steady-state
condition is defined as follows:[

I−A −B
C 0

][
xre f
ure f

]
=

[
Bdd̂l|l

yre f −Cdd̂l|l

]
, (5)

where xre f and ure f are the target values for the state and
the input in steady state respectively. Combining the MPC
optimization problem with the steady-state condition Eq.
(5) yields the offset-free MPC [9] optimization problem,
formulated in Eq. (6), that determines the control signal over
a specified time horizon Nmax.

min
y0,...,yNmaxu0,...,uNmax−1

Nmax−1

∑
k=0
‖uk−ure f ‖2

Ru +‖yk− yre f ‖2
Qy

(6a)

s.t. x̃0 =
[
x̂l|l d̂l|l

]′
(6b)

x̃k+1 = Ãx̃k + B̃uk, k = 0,1, · · · ,Nmax−1 (6c)

yk = C̃x̃k, k = 0,1, · · · ,Nmax (6d)
u≤ Euk ≤ u, k = 0,1, · · · ,Nmax−1 (6e)
x≤ Fxk ≤ x, k = 0,1, · · · ,Nmax (6f)[

I−A −B
C 0

][
xre f
ure f

]
=

[
Bdd̂l|l

yre f −Cdd̂l|l

]
, (6g)

where (y0, . . . ,yNmax ,u0, . . . ,uNmax−1) are the optimization
variables over time horizon Nmax and x̃0 in Eq. (6b) is the
current augmented state which contains the estimated system
state x̂l|l and the estimated disturbance d̂l|l at time l. The con-
trol input sequence is optimized considering the Euclidean
norm of the control effort and positioning error, weighted
with semi-definite positivity matrices Ru and Qy respectively,
while respecting the current state x̃0, disturbance model
Eq. (6c-6d), system constraints Eq. (6e) and Eq. (6f) and
steady-state condition Eq. (6g).

III. ENERGY-OPTIMAL MPC

In this section, the basic formulation of EOMPC is taken
from our own previous work [5] and is repeated here for
convenience. EOMPC is a MPC approach for linear time-
invariant (LTI) systems aiming at performing energy-optimal
point-to-point motions within a required motion time T [s].
Energy optimality is achieved by setting the object function
of the MPC optimization problem equal to the system’s
energy losses Eloss. In the EOMPC approach the settling time
is defined as the number N of discrete time sampling instants
required for the system to be at rest at the desired set point.
In order to guarantee the motion time, the settling time of
the system is minimized until the requested motion time T
is reached. It is assumed that T is integer multiple K? of the
sampling time Ts, T = K?×Ts. Normally N = K∗ such that
the motion time is guaranteed. If for some reason T is too
short considering the system constraints, EOMPC approach
will automatically find the shortest possible motion time and
realizes the motion in a time-optimal way.

The EOMPC optimization problem is formulated as a
two-layer optimization problem [5]. The top layer is called
’Problem B’ and determines the settling time. Finding the
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settling time involves solving a series of feasibility problems.
This feasibility problem is the second layer and is called
’Problem A’. The optimal control sequence is the last
feasible solution of ’Problem A’. Hence, at each time step
l the following two optimization problems are to be solved:

1) ’Problem A’, denoted as PA(x̂l|l ,N), calculates the
energy optimal control signal for a given settling time
N (which is obtained by solving ’Problem B’) while
respecting the system constraints as defined as follows.

V ∗A = min
u

Eloss(u) (7a)

s.t. x0 = x̂l|l , (7b)

xk+1 = Axk +Buk, k = 0,1, · · · ,Nmax−1 (7c)
yk = Cxk, k = 0,1, · · · ,Nmax (7d)

u≤ Euk ≤ u, k = 0,1, · · · ,Nmax−1 (7e)
x≤ Fxk ≤ x, k = 0,1, · · · ,Nmax (7f)

yk = yre f , k = N, · · · ,N +n−1 (7g)
uk = 0, k = N, · · · ,Nmax−1 (7h)

In the object function (7a), energy losses Eloss is mini-
mized while respecting the current state x0, the system
model Eq. (7c) - (7d) and system constraints Eq.(7e)
and Eq.(7f). In Eq.(7e) and Eq.(7f), the matrices E
and F determine which input and state constraints are
being considered respectively, e.g. if E and F are both
defined as an identity matrix I, u and u in Eq.(7e)
are the lower and upper bound of the system input
and x and x in Eq.(7f) are the lower and upper bound
of the system state. Eq. (7g-7h) are moving endpoint
equality constraints and mean that no control input is
imposed once the reference yre f is reached hence the
system is guaranteed to be at rest at yre f at time N.
The outcome of problem PA(x̂l|l ,N) is that it is either
feasible or not. Infeasibility of PA(x̂l|l ,N) means that
the system can not be at rest at yre f within N time
steps while respecting system constraints Eq.(7e) and
Eq.(7f). Therefore, an admissible set X(N) is defined:

XA(N) = {x̂l|l |PA(x̂l|l ,N)is feasible}, (8)

where XA(N) is the set of system states from which
yre f can be reached within N time steps, while respect-
ing all system constraints.

2) ’Problem B’, denoted by PB(x̂l|l), calculating the set-
tling time N, is defined as follows:

V ∗B (x̂l|l) =min
N∈N

N (9a)

s.t. x̂l|l ∈XA(N), (9b)

max(K∗,Nmin)≤ N ≤ Nmax, (9c)

where N is bounded by Nmax and the maximum of K∗ and
Nmin. To guarantee unconstrained solvability, Nmin should be
selected bigger than n/m with n the number of states and m
the number of inputs [15].

qpOASES, an open-source C++ implementation of the
online active set strategy [17]-[18], can be utilized to solve
EOMPC problems efficiently.

IV. OFFSET-FREE ENERGY-OPTIMAL MPC

Offset-free EOMPC is a control method to realize time-
constrained energy-optimal point-to-point motions with high
positioning accuracy. It is developed by combining offset-
free MPC and EOMPC discussed in the previous two sec-
tions in one formulation. The offset-free EOMPC problem is
formulated similar as EOMPC. The two-layer optimization
problem of offset-free EOMPC consists of ’Problem C’,
PC(x̂l|l , d̂l|l ,N), and ’Problem D’, PD(x̂l|l , d̂l|l).

1) ’Problem C’, denoted by PC(x̂l|l , d̂l|l ,N), calculating
the offset-free time optimal control signal for a given
N, which is obtained by solving ’Problem D’, while
respecting the system constraints, is formulated in the
following :

V ∗C = min
u

Eloss(u) (10a)

s.t. x̃0 =
[
x̂l|l d̂l|l

]′
, (10b)

x̃k+1 = Ãx̃k + B̃uk, k = 0,1, · · · ,Nmax−1 (10c)

yk = C̃x̃k, k = 0,1, · · · ,Nmax (10d)
u≤ Euk ≤ u, k = 0,1, · · · ,Nmax−1 (10e)
x≤ Fxk ≤ x, k = 0,1, · · · ,Nmax (10f)

yk = yre f , k = N, · · · ,N +n−1 (10g)
uk = ure f , k = N, · · · ,Nmax−1 (10h)[

I−A −B
C 0

][
xre f
ure f

]
=

[
Bdd̂l|l

yre f −Cdd̂l|l

]
, (10i)

In offset-free EOMPC, system’s energy losses Eloss
is minimized with respect to the current augmented
state x̃0, the disturbance model Eq. (10c-10d) and
the system constraints Eq. (10e) and Eq. (10f). Given
the disturbance estimate d̂l|l , the target input ure f
calculated in Eq. (10i) is a none zero value. This means
that for the moving endpoint equality constraints, uk in
Eq. (10h) has to be equal to ure f such that the system
is guaranteed to be at rest at yre f at time N as shown
in Eq. (10g). Similar as EOMPC, problem ’C’ defines
an admissible set,

XC(N) = {x̂l|l |PC(x̂l|l , d̂l|l ,N) is feasible}. (11)

2) ’Problem D’, denoted by PD(x̂l|l , d̂l|l), calculating the
settling time N, is defined as follows:

V ∗D(x̂l|l , d̂l|l) = min
N∈N

N (12a)

s.t. x̂l|l ∈XC(N), (12b)

max(K∗,Nmin)≤ N ≤ Nmax. (12c)

qpOASES is also utilized to solve the offset-free EOMPC
optimization problems.
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Remark that with the offset-free EOMPC, positioning at
yre f is imposed using equality constraints Eq. (10g)-(10h).
The offset-free MPC realizes positioning through the object
function Eq. (6a) and an appropriate selection of Qy.

V. NUMERICAL VALIDATION

This section discusses the numerical validation of the
developed offset-free EOMPC algorithm using a model of
a linear motor test setup in our lab. Details of the linear
motor are described in the following subsection.

A. Considered Test Setup

Fig. 1. The linear motor test setup

The considered test setup is a current-controlled
permanent-magnet linear motor shown in Fig. 1. The control
input to the system is motor current [A], and the output is
the position of the carriage [m]. Gaussian measurement noise
with a standard distribution of 0.5µm is added to the carriage
position. A second order discrete-time state-space model of
the system as shown in Eq. (1) is identified, where dy-

namic matrices A=

[
1.8311 −0.8311

1 0

]
,B=

[
0.0156 0

]′
,C=[

0.0144 0.0101
]

with the sampling frequency fs = 100Hz.
The system poles are: one at z = 1, corresponding to an
integrator and the other one at z = 0.8311 resulting from
viscous friction. This model is a discrete-time equivalent of
a mass-damper model actuated by a force input, which is
proportional to the motor current.

−0.2 −0.1 0 0.1 0.2

−0.5

0

0.5

position[m]

d
[A

]

positive velocity negative velocity

Fig. 2. Coulomb friction and cogging of the linear motor

The main disturbances in this test setup are Coulomb
friction dcou[A] and cogging dcog[A] and we define d =
dcou + dcog. Remark that the disturbance d is expressed in
[A] because it is an input disturbance. Coulomb friction is a

constant which depends on the sign of the velocity. Cogging,
which is independent of motion velocity, is more or less a
periodic function of the position and the period corresponds
to the distance between the magnetic poles of the linear
motor. [19] discusses the identification of the disturbance
d of this linear motor setup, the result of which is shown in
Fig. 2. The solid and the dashed line represent disturbance
d for positive and negative velocity respectively.

Since the disturbance d is an input disturbance, the distur-
bance matrices in the system model Eq. (2) are defined as
Bd = B and Cd = 0, yielding that the disturbance is added
directly to the input. Hence, the augmented system matrices
are defined as follows:

Ã =

1.8311 −0.8311 0.0156
1 0 0
0 0 1

 , (13a)

B̃ =
[
0.0156 0 0

]′
, (13b)

C̃ =
[
0.0144 0.0101 0

]
. (13c)

B. Formulation of the Optimization Problem

Energy losses of the linear motor, Eloss, are copper losses
which are proportional to the square of the motor current u
[A] as shown in Eq. (14),

Eloss = Ts ·
Nmax−1

∑
k=0

c ·uk
2, (14)

where c is a constant depending on the ohmic resistance of
the motor. Ts is the sampling time and Nmax is length of
the prediction horizon. Due to the limitations of the system,
position and motor current constraints, ±0.25 m and ±3 A
respectively, are taken into account.

PC(x̂l|l , d̂l|l ,N) of the offset-free EOMPC optimization
problem is hence defined as following:

min
u

u′Ru (15a)

s.t. x̃0 =
[
x̂l|l d̂l|l

]′
, (15b)

x̃k+1 = Ãx̃k + B̃uk, k = 0,1, · · · ,Nmax−1 (15c)

yk = C̃x̃k, k = 0,1, · · · ,Nmax (15d)
umin,ymin ≤ uk,yk ≤ umax,ymax (15e)

yk = yre f , k = N, · · · ,N +n−1 (15f)
uk = ure f , k = N, · · · ,Nmax−1 (15g)[

I−A −B
C 0

][
xre f
ure f

]
=

[
Bd̂l|l
yre f

]
, (15h)

where Ã, B̃, C̃ are defined in Eq. (13). R in Eq. (15a) is
equal to ct × I with I the identity matrix and ct = c× Ts,
such that the cost function Eq. (15a) corresponds to Eloss in
Eq. (14). Remark that the value of ct does not influence the
optimal solution and hence can be omitted. This optimization
problem is a convex QP because the dynamics of the system
and the constraints are linear. The on-line active set method
qpOASES can be utilized to solve this optimization problem.
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C. Simulation Results

The comparison of the offset-free EOMPC, EOMPC and
offset-free MPC are performed using the discussed test setup
and disturbance model and the control scheme is shown in
Figure 3. Measurement noise, with an rms value of 0.5µm,
is taken into account.

yPlant
X(k+1) = A X(k) + B[u(k)+d(k)]

y(k) = C X(k) 

     MPC 
Controller

u

state estimator L

(disturbance model)

X,d 

d measurement 
        noise

Fig. 3. Control scheme of the numerical validation using MPC controller
(offset-free EOMPC, EOMPC or offset-free MPC)

The following case is considered: the system is initially
at rest at position 0m, and a desired setpoint yre f = 0.2m is
requested at time t = 0.4s. The required motion time T =
0.6s, hence K∗ = T/Ts = 60. The prediction horizon Nmax =
80 > K∗, Nmin = 6 and the sampling rate fs = 100Hz. The
state estimator gain L = [76.75 47.40 541.07]′ is obtained
using pole placement [13], yielding an estimator bandwidth
of 13Hz, which corresponds for the considered case to a
good trade-off between accuracy of the estimation and noise
sensitivity.

Figure 4 - 6 show the simulation results. When the desired
setpoint yre f = 0.2m is requested at t = 0.4s as shown in Fig.
4(b) (dotted line), the requested motion time T shown in Fig.
4(a) jumps to the given value 0.6s and after that gradually
decreases until it reaches zero at time t = 1s, at which time
the position of the system using offset-free EOMPC arrives at
the requested setpoint as shown in Fig. 4(b) (solid line) with
high positioning accuracy as illustrated by its output error
shown in Fig. 4(d). Using offset-free MPC, the system arrives
at yre f with high positioning accuracy as well (dashed line),
but the motion time T can only be achieved approximately by
tuning the weights Ru and Qy. In this case, Ru = I and Qy =
1000× I. However, the position of the system using EOMPC
( dash-dot line) has a large steady-state error due to the fact
that the effect of the disturbance d is not compensated.

Fig. 4 (c) and (d) show the system inputs and output errors
respectively for these three methods. All the current inputs
satisfy the constraints ±3A. Only the current input using
offset-free MPC (dashed line) reaches the maximum value
3A since it is not determined by minimizing the system’s
energy losses, which are proportional to square of the current.
The output error using offset-free EOMPC is approximately
0.1mm at time t = 1s, at which time the system is supposed
to arrive at the setpoint. After that, the output error keeps
decreasing and reaches its lowest value within 0.15s. The
RMS of the remaining error is 0.5µm which corresponds to
the measurement noise level. The output errors using offset-
free MPC and EOMPC are approximately 1mm at time t =

0 1 2 3
0

0.1

0.2

po
s[

m
]

(b)

yre f

offset-free EOMPC
EOMPC
offset-free MPC

0 1 2 3
0

0.3

0.6

T
[s

]

(a)

0 1 2 3
−2

0

2

4

cu
rr

en
t[

A
]

(c)

offset-free EOMPC
EOMPC
offset-free MPC

0 1 2 3
10−8

10−4

100

time[s]

ou
tp

ut
er

ro
r[

m
]

(d)

offset-free EOMPC
EOMPC
offset-free MPC

Fig. 4. Simulation results: (a) motion time, (b) carriage positions, (c)
currents, (d) output error using offset-free EOMPC (solid), EOMPC (dashed)
and offset-free MPC (dash-dot)

1s. The output error using EOMPC remains at this level, but
offset-free MPC is able to further decrease the output error
to an RMS value of 0.5µm within 1s, which is considerably
slower than offset-free EOMPC. These results show that the
offset-free EOMPC and offset-free MPC achieve the same
positioning accuracy, but offset-free EOMPC is faster due to
the fact that positioning is imposed directly using equality
constraints Eq. (10g)-(10h).

The estimates of the disturbance using offset-free EOMPC
(solid line) and offset-free MPC (dashed line) shown in Fig.
5 are almost same since they are obtained using the same
state estimator gain L. Peaks of the disturbance d are not
estimated accurately because of the low bandwidth of the
state estimator, but both estimated disturbances corresponds
well to the average value of the disturbance d. Details of the
estimated disturbances when the system approaching yre f are
shown in Fig 6. Both estimates of the disturbance at yre f are
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Fig. 5. Estimated disturbances using offset-free EOMPC (solid) and offset-
free MPC (dash dot)

equal to the disturbance d at yre f , which is d(0.2m) = 0.369A.
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Fig. 6. Details of the estimated disturbances at yre f = 0.2m

Based on above simulation results, the performances of the
system using these three control methods are summarized in
the table I:

TABLE I
NUMERICAL VALIDATION RESULTS

Methods
Eloss
Ts·c RMS of output error motion time

offset-free EOMPC 122.52 1µm guaranteed

EOMPC 139.04 1mm guaranteed

offset-free MPC 200.81 1µm approximately

According to the table, the energy losses of offset-free
EOMPC is comparable to that of EOMPC and is 44.49%
less than that of offset-free MPC. The positioning accuracy
of offset-free EOMPC and offset-free MPC are equally good
and 0.5µm is the best positioning accuracy that can be
obtained due to the measurement noise. In short, offset-
free EOMPC achieves time-constrained point-to-point mo-
tion with the best positioning accuracy while guaranteeing
energy optimality.

VI. CONCLUSIONS
This paper presents offset-free energy-optimal MPC which

aims at performing time-constrained energy-optimal point-
to-point motions with high positioning accuracy. This ap-
proach is validated and compared with other two methods:

EOMPC and offset-free MPC, using a realistic model of
a linear motor setup with Coulomb friction and cogging
disturbances. The simulation results show that the offset-free
EOMPC yields the best performance: energy-optimal motion
with required motion time and accuracy positioning.
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