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ABSTRACT

When image authenticity verification has to be carried out
without any knowledge about the possible processing under-
gone by the image under analysis, it is fundamental to rely on
a multi-clue approach, that merges the information stemming
from several complementary forensic tools. This paper intro-
duces a fully automatic framework for fusing the maps cre-
ated by a set of unsupervised forgery localization algorithms,
indicating possible manipulated areas. The framework takes
into account the forgery maps, their reliability and the com-
patibility among the different traces considered by the tools.
The achieved localization map is then refined by exploiting
image content, thus improving the performance of the pro-
posed system with respect to state of the art approaches.

Index Terms— Image Forensics, Forgery Localization,
Decision Fusion, Background Information

1. INTRODUCTION

Nowadays it is increasingly common to find on the web digi-
tal images standing as proof of news or events. Despite their
immediacy, digital images are also very easy to manipulate;
for this reason, assessing their trustworthiness is of paramount
importance. Authenticity verification for web images poses
some challenging requirements. Firstly, it is desirable to pre-
cisely localize possibly forged regions, instead of just classi-
fying the whole image as authentic or tampered. Secondly, it
is common to have no knowledge about what kind of process-
ing an image may have undergone, thus calling for the use
of several complementary analysis tools. Finally, the huge
amount of data on the web rules out supervised approaches,
where a human patiently guides the image analysis.

While a good number of image authenticity verification
tools have been developed in the last years, only a few of them
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are able to localize manipulated regions in an unsupervised
(i.e., fully automatic) way. Moreover, each tool usually works
in very specific settings, thus requiring the analyst to combine
the answer of multiple tools; doing this combination manually
is time consuming and requires a strong expertise.

In this paper we propose a novel framework allowing to
automatically merge the forgery localization maps produced
by an arbitrary group of complementary tools. The pro-
posed method, based on Dempster-Shafer Theory of Evidence
(DST) [1], allows not only to fuse information coming from
different unsupervised forensic tools, but also to exploit sev-
eral kinds of background information to increase the relia-
bility of the results. More precisely, our approach is able to
exploit: i) tool-based information, since the fusion algorithm
knows the reliability of each tool under different working con-
ditions and exploits information about local and global prop-
erties of the analyzed content to better interpret the output of
tools; ii) trace-based information, meaning that the fusion al-
gorithm exploits knowledge of the compatibility relationships
between traces and manages the case where two incompatible
traces are simultaneously detected; iii) semantic-based infor-
mation, which means exploiting the content of the analyzed
image to improve the forgery localization map.

2. PREVIOUS WORKS ON UNSUPERVISED
FORGERY LOCALIZATION

A first class of unsupervised forgery localization algorithms
looks for the presence of tampered objects by decomposing
the image under analysis into subparts, either using segmen-
tation [2] or through a block-wise approach [3, 4]. How-
ever, since a sufficiently large portion of the image is usually
needed for a reliable statistical analysis, only a coarse grained
localization of tampering is possible with these methods.

Another class of algorithms allows automatic localization
of the tampered regions with a fine-grained scale of B × B
pixels (usually B = 8). The output of these methods is a
likelihood map indicating for each pixel/block its probability



of being tampered. To the best of our knowledge, only few
algorithms exploiting the presence of double JPEG compres-
sion [5–7] or the artifacts due to CFA interpolation [8] belong
to this category. These approaches are strongly dependent on
local and global properties of the image (content, dimension,
compression etc) and often obtain noisy output maps.

An important limit of previous approaches is that they are
based on the observation of a single forensic trace, whereas in
practical scenarios, as those occurring on the web, the analy-
sis of different footprints is needed. As to traces detected on
the whole image, a number of techniques have been proposed
to fuse the information at the feature level, i.e., by devising a
complex classifier that accounts for multiple footprints [9,10].
Other approaches work at the score level, where the scalar
output of the tools is considered during fusion [11, 12]. The
overall performance of the above methods can be further im-
proved by taking into account background information during
fusion [13]. As to forgery localization, simple pixel-level fu-
sion of different forensic tool outputs has been investigated in
[14, 15]: however, these works do not consider tools reliabil-
ity and compatibility, and they are based on very simple rules
for fusion (sum, product, logical disjunction/conjunction).

3. ELEMENTS OF DEMPSTER-SHAFER THEORY

Dempster-Shafer Theory [1] is a mathematical theory pro-
viding a way to model uncertainty and to combine infor-
mation coming from multiple sources. Let us denote with
Θ = {θ1, θ2, . . . , θn} the exhaustive set of mutually exclu-
sive possible conclusions to be drawn. The frame of discern-
ment of Θ is its power set 2Θ, that is the set of all possible
subsets of Θ. A Basic Belief Assignment (BBA) over Θ is a
function mΘ : 2Θ → [0, 1] assigning a mass to elements of
the frame of discernment associated to Θ, defined as:

mΘ(∅) = 0;
∑
A⊆Θ

mΘ(A) = 1 (1)

where the summation is taken over all possible subset A of
Θ. Intuitively, the mass assigned to a set is the amount of
certainty supporting exactly that set, and not any of its sub-
sets; for example it may be thatmΘ({θ1∪θ2}) < mΘ({θ1}).
The function accumulating the certainty about a set and all its
subsets is called belief function:

Definition Given a BBA mΘ over Θ, the Belief function
Bel : 2Θ → [0, 1] is defined as follows:

BelΘ(A) =
∑
B⊆A

mΘ(B). (2)

BelΘ(A) summarizes all our reasons to believe inA based on
the available knowledge. Going back to the previous example,
we surely have: BelΘ({θ1 ∪ θ2}) ≥ BelΘ({θ1}). The reader
can find more details and properties in [1].

DST is widely known as a tool for combining the evi-
dence coming from multiple independent sources of informa-
tion. Indeed, given two BBAs mΘ

1 and mΘ
2 , we can obtain a

fused BBA by using Dempster’s Combination Rule:

Definition Let Bel1 and Bel2 be belief functions over the
same frame Θ with BBAs m1 and m2. For all non-empty
X ⊆ Θ the function m12 defined as:

m12(X) =
1

1−K
·
∑

A,B⊆Θ:
A∩B=X

m1(A)m2(B) (3)

where K =
∑
A,B:A∩B=∅m1(A)m2(B),K < 1, is a BBA

function defined over Θ and is called the orthogonal sum of
Bel1 and Bel2, denoted by Bel1 ⊕Bel2.

4. DST-BASED MULTI-CLUE ANALYSIS
FOR FORGERY LOCALIZATION

The framework we propose aims at exploiting the output of an
arbitrary set of unsupervised tamper localization algorithms
and several kinds of background information so as to produce
a single comprehensive and more reliable map.

Our system is reminiscent of the data fusion scheme de-
scribed in [11]. In this scheme, the user manually selects a
sufficiently large region and runs a set of tools assigning to
the region a scalar value measuring the presence of a certain
forensic trace in it. Then, the goal is to merge these outputs,
by also taking into account some local properties of the re-
gion that may influence the reliability of the forensic tools.
The way this is performed is briefly sketched below:

1. output from each tool is converted to a BBA about pres-
ence/absence of a trace in the selected region;

2. BBAs obtained from different tools are combined using
Dempster’s rule (3), after applying belief extension for
combining the information about different traces;

3. compatibility relationships between traces (modeled as
a BBA) are introduced using Dempster’s rule;

4. final decision: the total belief that the region has been
forged is computed based on the merged information.

The most intuitive approach to extend the above analysis
to forgery localization would be to simply apply the whole
procedure separately to each single element of the map (also
called “analysis block”, from now on). However, this choice
is potentially misleading because of the nature of forgery lo-
calization tools. Indeed, as stated in Section 1, the accu-
racy of forgery localization tools is strongly affected by the
local properties of the image: for example, very smooth or
saturated regions are critical for many tools (see, for exam-
ple, [6,8]), so that values assumed by the map in those regions
are less reliable. As a consequence, attention must be paid in
properly interpreting the output of the tool locally. To this



Fig. 1. Block scheme of the proposed framework for forgery localization, where two tools A and B searching for a forensic
trace α are considered. For the sake of clarity, global variables for Tool A are omitted in the drawing.

aim, for a forensic trace α, we define the set Θα = {tα, nα},
where tα is the proposition “trace α is present in the analysis
block” and nα is the proposition “trace α is not present in the
analysis block”. We model this local information provided by
the tool τ with the following BBA over the frame Θα:

mΘα
τ (X) =

Lτ (i) for X = {(tα)}
Nτ (i) for X = {(nα)}
Dτ (i) for X = {(tα) ∪ (nα)}

. (4)

In the above equation Lτ (i), Nτ (i) and Dτ (i) are scalar val-
ues obtained by interpreting the output of the tool in the i-th
analysis block. It is here that tool-based background infor-
mation enters the picture: besides considering the value of
the localization map in the block i, a set of local properties of
the image is evaluated (e.g., mean value or variance of pixels
in the analysis block i) and used to determine the mentioned
values for equation (4). To perform this mapping from tool
outputs and background information to BBAs, we rely on the
method recently proposed in [13]: such method exploits a set
of training images to learn how local properties affect the out-
put of the tool. Thus, given image and forgery localization
map, using this approach we obtain values for (4) for each
block of pixels. This stage of the framework is represented in
the left-most side of Fig. 1 (“BBA mapping” blocks).

4.1. Global variables

Independently from the analysis domain (e.g., pixel or DCT
domain), unsupervised forgery localization tools typically as-
sume that the signal under analysis is the mixture of two
components: one component deriving from parts of the im-
age that were manipulated, and one deriving from unaltered
parts [5,6,16]. A statistical model is defined for each compo-
nent, and the parameters of the models are estimated from
available data. Finally, each (block of) pixels is assigned
a probability of belonging to each model, thus producing a
forgery localization map. However, when for some reason
the two components are not correctly separated, the produced
localization map is practically useless, although it assigns a
sensible value to each region. A simple way to understand
whether the tool successfully separates the two components
is to analyze the produced localization map as a whole: when
the components are not separated, the whole map takes val-
ues in a narrow range, meaning that all pixels belong to the

same component, while the opposite happens when two com-
ponents are separated.

The above discussion suggests that we cannot simply in-
terpret elements of the map as “stand alone small blocks”, but
we should also model the global information obtained from
the map as a whole. We then introduce for each forensic trace
also a global variable. Taking again the general forensic trace
α as reference, we define the frame Γα = {Tα,Nα} where
Tα is the proposition “the two components related to α were
separated” while Nα has the opposite meaning. After run-
ning a localization tool searching for α, a BBA over Γα must
be defined. We are not forced to give a binary interpretation:
indeed the border between the two cases is not always sharp.
Hence, for a generic tool τ , we propose to model this infor-
mation through the following BBA:

mΓα
τ (X) =

 (1−Wτ )Gτ for X = {(Tα)}
(1−Wτ )(1−Gτ ) for X = {(Nα)}

Wτ for X = {(Tα) ∪ (Nα)}
. (5)

If the tool τ is based on model separation, then Gτ ∈ [0, 1]
quantifies the confidence about the two components of the
mixture being successfully separated, and Wτ = 0. Instead,
if τ is not based on model separation, we assign all the mass
to the doubt by setting Wτ = 1, thus yielding the neutral
element for Dempster’s combination rule [1] and disabling
the contribution of this BBA. This phase of the framework is
drawn in the lower part of Fig. 1. Notice that, for the mo-
ment, the above BBA is not linked in any way to that in eq.
(4) (they are also defined on different frames, Γα and Θα re-
spectively), that is we are not still logically linking local and
global information about the presence of the trace.

4.2. Inclusion of trace-based background information

Decision fusion is particularly interesting when the merged
tools search for different traces, since, by knowing the the-
oretical properties of each forensic trace, in many cases the
analyst can explicitly tell whether a combination of traces is
plausible or not: this is what we call trace-based background
information. As shown in [11], DST allows to write rather
easily such information in terms of BBAs, and to combine it
with the information provided by tools.

Also in this case, as we turn to forgery localization some
noticeable differences appear. In the framework proposed



Θα Γα Θβ Γβ Plausible Interpr.
tα Tα nβ Tβ Y Tamp.
nα Tα nβ Tβ Y Auth.
tα Tα tβ Tβ N -

Table 1. Example of traces relationships.

in [11] each forensic trace is modelled with one variable, so
that only relationships between different traces are to be con-
sidered. Here, instead, each trace is better represented with
two variables (one referring to the local presence of the trace
and one to the suitability of the global model). Hence, we also
have a relationship between these two variables establishing
the link between local and global information about the trace,
and allowing to change the interpretation of the local output
of the tool based on the global information. It is worth noting
that the global information about the presence of one trace
can also affect the interpretation of different forensic traces.
Therefore, we write together these compatibility relationships
through a table listing on rows the combinations of variables:
each row is then labelled by the analyst as either plausible or
not plausible. For plausible rows, the analyst also specifies
the interpretation associated to that row in terms of authentic-
ity of the block. Of course, this has to be done only once for
a set of forensic traces. An example for two traces α and β is
given in Table 1: the first row states that, for any image block
where the global models of both trace α and β were success-
fully separated, it is plausible to find only the trace α and not
the other; moreover, the interpretation associated to this com-
bination is “the block is tampered”. The second row of the
table tells that local absence of both traces is plausible and is
to be interpreted as the block being authentic. The last row,
instead, states that the two traces cannot be present simulta-
neously in the same block. The table is truncated for the sake
of brevity; the complete version has 16 rows, even though it
makes sense to write explicitly only plausible combinations.

Compatibility tables can be easily written in terms of a
BBA as follows: for a given set T of considered traces, let
us define as Ψ =

∏
j∈T Θj × Γj the common frame of dis-

cernment, where
∏

and × denote the Cartesian product. Let
us also denote by ΨPL ⊆ Ψ the union set of all combinations
that are considered plausible. Then, the following BBA de-
clares that implausible combinations have to be considered as
conflicting information (in Fig. 1 it corresponds to the block
outputting mΨ

rel):

mΨ
rel(X) =

{
1 for X ∈ ΨPL
0 for X /∈ ΨPL

. (6)

4.3. Obtaining the fused localization map

By applying Dempster’s combination rule to the BBA result-
ing from traces relationship and those available from single
tools, we obtain a single BBA summarizing the available in-
formation. Then, it makes sense to compute the belief of the

set composed by all plausible combinations whose interpre-
tation is “tampered”, using equation (2). Notice that this for-
mula is computed only once for a given set of forensic traces,
then it can be stored and evaluated when needed in O(N)
time. By evaluating the formula for each analysis block of an
image, a map taking values in [0,1] is produced, which tells
the total belief for each block of being tampered.

As localization tools process each analysis block indepen-
dently of the others [5,6,8], the resulting localization maps are
typically affected by noise. In some cases, authors proposed
to filter the map (as with median filtering [6]), but this solution
could be not sufficient when several maps have to be fused.
Moreover, the use of filtering based on fixed window rises
the problem of how to set the window size. As solution, we
propose to exploit what we call semantic-based background
information, meaning that we let the content of the analyzed
image to drive the map processing. Recently, [17] proposed
to use guided filtering [18] to accomplish this task: guided
filter computes the output by considering the content of the
guidance image. In our case, the input is the localization map
and the guidance image is the image under inspection; more-
over, the guided filter transfers the structures of the guidance
image to the filtered output in O(N) time.

5. EXPERIMENTAL RESULTS

In this section we discuss the experiments that we carried out.
The tools we employ are based on aligned double JPEG com-
pression (AJPEG) footprints [6], non-aligned double JPEG
(NAJPEG) footprints [16] and Color Filter Array (CFA) in-
consistencies [8]. Let us summarize the underlying scenar-
ios. In [6] the case where an original JPEG image, after some
localized forgery, is saved again in JPEG format is consid-
ered: DCT coefficients of unmodified areas undergo a double
aligned JPEG compression, thus exhibiting double quantiza-
tion (DQ) artifacts, while DCT coefficients of forged areas do
not. The tool in [16] assumes that a region from a JPEG im-
age is pasted onto a host image that does not exhibit the same
JPEG compression statistics, and that the resulting image is
JPEG re-compressed: here, the forged region likely exhibits
not aligned double compression artifacts, whereas the origi-
nal region does not. In the scenario used in [8], a local forgery
destroys the correlation introduced by in-camera demosaic-
ing: the forged region does not show CFA artifacts, whereas
the remaining part of the image does.

In order to define the mapping from the localization maps
to BBAs (Eq. (4)), we adopt the method proposed in [13],
choosing the following set of properties to locally character-
ize the reliability of each tool τ : the value of the last compres-
sion factor (if any) q2, the mean value µ and the std. deviation
σ of pixels intensity and the the first compression factor q1, if
present. Note that q1 is not directly observable, but it is esti-
mated by AJPEG and NAJPEG tools, and it is employed only
for CFA traces of CFA artifacts could be removed by strong



past compression [8]. The generic analysis block is thus de-
scribed by the vector v = (oτ , q2, µ, σ, q1), where oτ denotes
the value of the block in the map produced by tool τ (in our
case, τ ∈ T = {AJPEG; NAJPEG; CFA}). By applying
the approach proposed in [13], each vector is associated to
scalar values Lτ , Nτ and Dτ (see Eq. 4); as to the parameters
required in [13], we used α = 0.85 and k = 12 for all tools,
whereas γ = 0.5 for CFA tool, γ = 512 for AJPEG tool and
γ = 2048 for NAJPEG tool. Values were obtained through
5-fold cross validation and grid search.

Finally, we define an empirical method to assign values to
global variables, telling to what extent the tool successfully
separated the two components for its own trace. Since the
considered tools are based on model separation, according to
eq. (5) we set Wτ = 0 ∀τ ∈ T , and we define a linear
piecewise function: Gτ (ρ) = ρ/a for ρ < a, and Gτ (ρ) = 1
for ρ ≥ a, where ρ is the percentage of blocks belonging to
the less populated model, as explained in Sec. 4.1. The value
of a, representing the minimum percentage of blocks allowing
a model to be detected, was set from experimental evidence
to a = 1/8. So, two components are separated if at least 1/8
of the blocks shows the footprints searched for.

5.1. Results

Here we show the improvements in localizing forgeries in an
unsupervised scenario. To quantify it, we generate three dif-
ferent sets of images to train and test the proposed frame-
work. Firstly, we define a training set to train the BBA map-
ping module, incorporating tool-based background informa-
tion. The second step is to design a testing dataset to compare
the performance of each tool employed individually with re-
spect to those of the framework. It is worth noting that we
assume a blind case, i.e. each tool is applied without any a
priori information about the type of tampering. Finally, we
built a dataset of realistic spliced images to show the capabil-
ities of localizing a forged region, listed below.

Training: Starting from 100 1024 × 1024 uncompressed
TIFF images, three different tampering are applied separately,
in such a way that the traces detected by each algorithm have
been inserted (or deleted) from the left half of each image.
For the AJPEG and NAJPEG traces, the quality factors of the
first and second compression are in {50, 60, 70, 80, 90, 100},
whereas for the CFA footprint, the quality factors employed
are in {50, 60, 70, 80, 90, 100, Inf}, where Inf represents the
case of TIFF uncompressed images. By combining all possi-
ble compression factors, we obtain a set composed by 3600
images for AJPEG, 3600 for NAJPEG and 700 for CFA case.

Testing: Starting from 50 uncompressed TIFF images,
different from the training set, we apply the same tampering
as before to the central 512×512 block. For AJPEG and NA-
JPEG traces, the quality factors of the first compression are
in {60, 70}, whereas the quality factors of the second are in
{80, 90}. For the CFA based tampering, a median filtering is

Unweigthed Weigthed
AJPEG 0.854 -

NAJPEG 0.607 -
CFA 0.588 -
Sum 0.681 0.627

Product 0.686 0.556
DST 0.692 0.895

Table 2. AUC values of different localization methods based
on single tool (AJPEG, NAJPEG, CFA), or fused (Sum, Prod-
uct and DST) by using or not global variable based weighting.

applied to remove traces of CFA artifacts. Overall, 750 test
images have been created: 200 with AJPEG tampering, 200
with a NAJPEG tampering, 150 with CFA tampering and 200
containing AJPEG and NAJPEG traces at the same time.

Realistic: 19 realistic forgeries have been created through
a cut and past strategy, by inserting a content (i.e. an ob-
ject) from an image onto another one, and keeping track of
the forgery position. The set is composed of 4 TIFF images,
whereby an object (without CFA artifacts) is pasted onto an-
other (with CFA artifacts), 6 images with AJPEG footprints,
5 images with NAJPEG footprints and 4 images whereby ob-
jects with NAJPEG traces have been inserted in images with
AJPEG traces. All forgeries were made in such a way that
each footprint is easily detected, since the aim of this dataset
is to evaluate the capability of localizing a realistic forgery.

To prove the validity of the framework, we use the true
positive rate (RTP ), measuring the fraction of tampered
blocks correctly detected as forgery, and the false positive
rate (RFP ), measuring the fraction of unchanged blocks er-
roneously detected as forgery. The overall performance of the
compared methods are evaluated by plotting its receiver op-
erating characteristic (ROC) curve.The area under the curve
(AUC) is finally employed to summarize the discrimination
capability of detectors. The first test is carried out on the
testing dataset, aiming to compare our framework to each tool
applied independently and in a blind way, and the methods
proposed in [14, 15]. The performance, evaluated in terms of
AUC, show that the DST-based framework outperforms the
single detectors , as shown in Table 2. It is worth noting that
no post-filtering has been applied. As we can see, the pro-
posed framework has the best capability of localizing forg-
eries, and the introduction of global variables dramatically
impacts the performance, since their use provides further in-
formation about the reliability of the value given by a tool.

Finally, we present the localization capability of the
framework when applied to the realistic dataset. In Fig. 2,
we show the performance of the method without post-filtering
and with guided filtering. Moreover, a comparison with each
tool performance is proposed. As expected, the refinement by
using guided filtering increases the accuracy in localizing re-
alistic forgeries. Even in this case, the DST-based framework
has better capabilities with respect to each single tool.



Fig. 2. Localization capability without post-filtering (dotted
curve), with guided filtering (solid) and of each single tool
AJPEG (circled), NAJPEG (crossed) and CFA (dashed).

6. CONCLUSIONS AND FUTURE WORK

In this paper a framework for unsupervised multi-clue forgery
localization has been proposed, which merges information
provided by a set of forensic tools with background informa-
tion freely available to the analyst. Such a framework ex-
ploits the peculiar properties of those localization tools that
are based on mixture models, by introducing global variables
that are taken into account by the system. Although the way
we assigned values to such variables is still rather empirical,
their impact on the overall performance is dramatic. The for-
malization of global variable assignments and the extension
to the case of copy-move detectors, that cannot distinguish
between original and pasted regions, is left for future work.
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