
Title ARBITER: Adaptive rate-based intelligent HTTP streaming
algorithm

Authors Zahran, Ahmed H.;Sreenan, Cormac J.

Publication date 2016-07

Original Citation Zahran, A. H. and Sreenan, C. J. (2016) 'ARBITER: Adaptive
rate-based intelligent HTTP streaming algorithm', 2016
IEEE International Conference on Multimedia and Expo
Workshop (ICMEW), 11-15 July, Seattle, WA, USA. doi: 10.1109/
ICMEW.2016.7574709

Type of publication Article (peer-reviewed);Conference item

Link to publisher's
version

10.1109/ICMEW.2016.7574709

Rights © 2016 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-25 16:01:13

Item downloaded
from

https://hdl.handle.net/10468/4935

https://hdl.handle.net/10468/4935

ARBITER: ADAPTIVE RATE-BASED INTELLIGENT HTTP STREAMING ALGORITHM

Ahmed H. Zahran1,2 and Cormac J. Sreenan1

1Dept. of Computer Science, University College Cork, Ireland
2EECE Dept., Faculty of Engineering, Cairo University, Egypt

a.zahran, cjs@cs.ucc.ie

ABSTRACT
Dynamic Adaptive streaming over HTTP (DASH) is widely
used by content providers for video delivery and dominates
traffic on cellular networks. The inherent variability in both
video bitrate and network bandwidth negatively impacts the
user Quality of Experience (QoE), motivating the design
of better DASH-compliant adaptation algorithms. In this
paper we present ARBITER, a novel streaming adaptation
algorithm that explicitly integrates the variations in both
video and network dynamics in its adaptation decisions. Our
simulation-based performance evaluation, using real video
content and cellular bandwidth traces, shows that ARBITER
achieves an excellent tradeoff among streaming metrics in
terms of received video quality, stall count, stall duration, and
switching dynamics, leading to a relative improvement of 17-
45% in user QoE in comparison to state-of-the-art algorithms.

Introduction
The volume of mobile video traffic is growing rapidly. How-
ever, the shared and highly-variable nature of wireless nega-
tively impacts the streaming performance [1]. Hence, there is
a need to design intelligent streaming systems capable of ac-
commodating the frequent variations in operating conditions.

In HTTP streaming systems, the video is split into mul-
tiple small duration chunks, known as segments, that are re-
quested from the content distribution networks (CDN) using
HTTP. Each segment is encoded into different representations
that may vary in resolution, quality, and/or data rate. The
DASH standard [2] defines the structure of a media presen-
tation description (MPD) file that specifies segment encoding
and related details. However, the DASH standard does not
define the algorithm used by the client for deciding which
segment quality to request or how to adapt so as to achieve
good Quality of Experience (QoE).

The design of an adaptive streaming policy involves trade-
offs between several visual quality impairments, such as low
video quality, and temporal impairments, such as stalls. The
state-of-the-art in adaptive streaming algorithms can be gen-
erally classified as buffer-based [3], rate-based [4], and hy-
brid strategies [5, 6]. In wireless systems, the channel fea-

978-1-4799-0000-0

tures temporal variations due to its multi-path nature, user
mobility, and medium sharing. Additionally, the variable bi-
trate nature of video traffic further contributes to the inherent
system variability. Such highly variable operating conditions
may significantly affect the performance of different adapta-
tion algorithms leading to degrading the user QoE.

In this paper, we propose ARBITER as a novel algorithm
that integrates application state, network state, and video dy-
namics to intelligently adapt to operating conditions. Funda-
mentally, ARBITER is a rate-based algorithm that establishes
an estimate for the available bandwidth based on the mea-
sured throughput of previously downloaded segments. How-
ever, we include a new algorithmic feature that scales the
throughout estimate based on the variations in the measured
throughput samples for segments and on a buffer level. Addi-
tionally, ARBITER considers a short-term average for qual-
ity representation bitrate in its adaptation decisions. In our
evaluation, we compare the performance of ARBITER to the
state-of-the-art algorithms BBA [3] and ELASTIC [6], show-
ing a significant improvement in user QoE. For example, with
a typical 60 second client buffer and 4 second segment dura-
tion, ARBITER reduces stalls by 33% in comparison to BBA
while maintaining similar average video quality and switch-
ing dynamics, yielding 26% improvement in QoE. Over a
wide variety of parameters, ARBITER improves QoE over
the state-of-the-art algorithms by 17-45%.

In Section 2 we highlight the background and related
work. ARBITER design is presented in Section 3 followed
by its performance evaluation in Section 4. Conclusions are
then presented in Section 5.

Background and Related Work
DASH is dominating video transmission due to its ability to
traverse firewalls and the availability of HTTP infrastructure.
A DASH client implements a media buffer as an interface
between the media transmission and decoding process. As
the buffer depletes, the media playout stalls and only resumes
when sufficient media is replenished in the media buffer.
HTTP streaming clients implement an adaptation algorithm
so that the next segment quality is selected so as to maintain
sufficient media in the buffer while avoiding visual impair-
ments such as reduced video quality and irritating quality

changes.
In [3], Huang et al. propose multiple versions of buffer-

based strategies that select the video representation based on
the buffer level. A couple of the proposed variants adopt rate-
based strategies for the initial buffering to improve the video
quality while initially filling the buffer. In rate-based strate-
gies, the selected quality rate is bounded by the client estimate
for the average network throughput. In [4], Jiang et al. pro-
pose FESTIVE as a streaming heuristic that employs a har-
monic mean estimate for the network throughput, a random-
ized request scheduler, stateful rate switching, and delayed
rate update. These different components target improving the
streaming performance when multiple users share a network
bottleneck. Li et al. [7] propose PANDA as a streaming
heuristic that selects the segment quality that ensures an ac-
curate estimate for the measured segment throughput by us-
ing the network persistently. This is smoothed using a har-
monic mean as a rate bound for the selected quality. All of
the aforementioned rate-based algorithms abstract the mea-
sured throughput by its mean. ARBITER goes beyond this
by using both the first and second moments of the throughput
samples to better accommodate the high variability in wire-
less network throughput. In [8], Xie et al. exploit physical
layer information to improve the available network through-
put estimation and hence, enhance the streaming performance
in cellular networks. In contrast, ARBITER only depends on
application level information and can be used with any access
technology.

Hybrid adaptation algorithms consider both application
and network states in their decision. In [6], De Cicco et al.
propose ELASTIC that employs a proportional integral con-
troller combined with a harmonic network throughput estima-
tor to determine the next representation quality. In [9], Bokani
et al. present an adaptation engine using a Markov Decision
Process (MDP) framework. The authors propose three heuris-
tics that use online or offline estimates for bandwidth statistics
to accommodate MDP complexity. In [5], Yin et al. propose
model predictive control (MPC) as a QoE optimised adapta-
tion framework that combines both network and application
status. Additionally, they propose a heuristic by quantising
their decision parameter space. In [10], OSCAR optimises
visual quality subject to a probabilistic constraint on the stalls
using a detailed optimisation framework. In contrast, AR-
BITER is a generic light-weight decision heuristic that in-
telligently integrates application and network states without
relying on any optimisation tools or stored guiding data.

ARBITER Design
We consider a client streaming a video split into N segments
each of which contains T seconds of video. We assume a per-
sistent HTTP connection over which segments are sequen-
tially requested using HTTP GET requests. Each segment
is encoded into Q quality representations with each repre-
sentation having an average encoding rate Rq , where q ∈

{1, ..., Q}. For every segment n, the streaming client chooses
the streaming rate rn ∈ {R1, ..., RQ} and the corresponding
segment size of this segment is denoted as Srn .

The main objective of ARBITER is to improve the user
streaming experience by realising a balanced profile of rel-
evant performance metrics, such as number of stalls, dura-
tion of stalls, average quality rate, average number of quality
switches, and average level of quality switching. ARBITER
includes two components in its segment quality selection: an
adaptive throughput estimator and a quality-aware adaptation
policy.

Adaptive Throughput Estimation
Our throughput mean estimate µs is based on an exponen-
tially weighted moving estimation window that accommo-
dates W samples. Let k be the index of the last downloaded
segment. Segment k throughput would be assigned a weight,
denoted as ω. The throughput of previous segments in the
throughput estimation window would be assigned a weight
ω(1−ω)k−i, where i is the segment index. These weights are
then normalised to their geometric sum and the final weights
are expressed as

wi =
ω(1− ω)k−i

1− (1− ω)W
∀i ∈ {1, ..,W}. (1)

The weighted throughput mean µscan be expressed as

µs =

W∑
i=1

wibk−i, (2)

where bn represents the measured throughput for segment n.
Typically, ω would be a fraction, i.e., ω ∈ (0, 1). Large val-
ues of ω would improve the responsiveness of the estimator
to changes in the bandwidth but also could lead to frequent
irritating switches in video quality level. ARBITER adjusts
this average throughput estimate based on network and ap-
plication state information. A scale parameter is estimated
based on the variations in the observed segment throughput
samples.

In highly variable link conditions, such as wireless, the
streaming client should be more cautious about its rate esti-
mate. Many of the algorithms [6, 7, 4, 5] employ a harmonic
mean estimator, which tends to be conservative and could lead
to streaming low video quality and under-utilising the system
resources. ARBITER adopts a different approach by employ-
ing adaptively scaling its estimate based on the second mo-
ment of the throughput samples. We define our throughput
variance scaling factor, denoted as ρv , as

ρv = ρv + (1− ρv) (1−min(θ, 1))
2
, (3)

where ρv represents a minimum bound on ρv and θ repre-
sents the coefficient of variation of segment throughput sam-
ples and is expressed as

θ =

√√√√ W

W − 1

W−1∑
i=0

wi(bk−i − µs)2/µs. (4)

Hence, if the throughput measurements feature a small
variation, θ tends to 0 and; hence, ρv would tend to 1 and
no reduction is applied to the estimated mean rate µs. On
the contrary, as the throughput variance increases, ρv would
tend to the minimum bound ρv . This design implies that the
average throughput is a considered a good estimate at stable
network condition. Alternatively, ρv would kick in to provide
a more network-cautious estimate.

Our throughput estimate so far is unaware of the appli-
cation state. Typically, a low application buffer level is a
good indicator of imminent stalls that noticeably affect the
user-perceived QoE. A high buffer-level could be an indicator
for good network conditions. However, as the buffer satu-
rates, the streaming client stops requesting new segments un-
til there exists enough buffer space for one or more segments.
This documented ON-OFF [11] behaviour may significantly
affect the performance of rate-based algorithms as the client
would not have an accurate estimate for the available network
throughput during OFF periods. Hence, ARBITER employs
a buffer-based rate scaling factor, denoted as ρb, to reduce the
throughput estimate at low buffer levels to avoid stalls and
build up the buffer. At high buffer levels, ρb scales the es-
timated rate up to avoid OFF periods and improve the video
quality. The buffer-based scaling factor ρb is expressed as

ρb = ρb + (ρb − ρb)
Bk

Bm
, (5)

where Bk represents the buffer level on receiving segment k,
Bm represents a buffer size, ρb and ρb respectively represent
lower and upper bounds for ρb. Finally, our adaptive through-
put estimate, denoted as rt, is calculated as

rt = µs ∗ ρv ∗ ρb. (6)

Video-Aware Adaptation Policy
Encoded video features significant variations in the actual
segment bitrate from the average representation rate ad-
vertised in the MPD file. Such variations may mislead an
adaptation policy that establishes its decision based on the
advertised average representation rate, which represents a
long-term average rate. Hence, ARBITER bases its adapta-
tion decision based on a short-term average rate estimated for
the next few segments, denoted as ra, for a window of future
video segments for each candidate quality rate. The actual
rate is estimated as

ra(q) =

∑Wv

i=1 Sk+i(q)

Wv ∗ T
, (7)

where Wv represents the size of the look ahead window in
segments and Si(q) represents the size of segment i at quality
q. ARBITER then identifies a set of candidate qualities whose
actual rates are upper bounded by rt and selects the high-
est quality representation among the candidate set provided
that quality up-switches are limited to ns levels. The latter
constraint is added to ensure progressive quality improvement

Algorithm 1 ARBITER
INPUT: bn, ω, W , ρv , ρb, ρb, Bm, rk, Wv

OUTPUT: selected rate rs
estimate µs, θ, ρv , ρb, rt [i.e., 1-6]
rs = max ri ∈ R|ri < rt
s = Index(rs) // index of last selected representation
l = Index(rk); // index of last received segment
if (s− l ≥ ns)
s = l + ns

while (Not(ra(s) ≤ rt))
s- -; // reduce representation rate if short-term rate is larger

than target rate
request rs

Fig. 1: Evaluation Setup

and avoiding abrupt quality changes. The implementation of
ARBITER is presented in Algorithm.

Performance Evaluation
We first present our evaluation setup and performance metrics
followed by our performance evaluation results.

Evaluation Setup
We evaluate the performance of ARBITER using ns-31. Our
evaluation setup is shown in Figure 1. We implemented a new
module to emulate DASH operation in ns-3. The DASH client
communicates with a DASH server over a single TCP con-
nection over which HTTP requests and responses are com-
municated. In our implementation, we consider a fixed HTTP
header size of 100 bytes for both requests and responses. To
emulate wireless links, we connect the client and server us-
ing a point-to-point link whose bandwidth is varied according
to cellular throughput traces [12]. These traces are collected
with the users riding different transportation means including
car, ferry, tram, metro, and bus. Since these traces do not
include information about the link delay, we tested different
RTT delays including 20ms, 40ms, and 80ms. Due to space
limitations, we show the results for 40ms only; we observed
that varying RTT does not have a significant impact on the
performance trends and conclusions. Hence, we believe that
bandwidth variations in the cellular systems has the dominant
impact on DASH performance.

In our simulations, we used seven different five-minute
clips including A New Hope, An Idiot Abroad, Avatar, Big
Hero 6, Casino Royal, Game Plan, and Harry Potter from

1https://www.nsnam.org/

Table 1: The parameters of streaming algorithms

BBA [3] r = 2T r̄ = 0.6Bm ∆B = 0.875T
τh = 0.9Bm

ELASTIC [6] W = 5 kp = 0.01 kI = 0.001

ARBITER ω = 0.4 W = 10 Wv = 5
ρv = 0.3 ρb = 0.5 ρb = 1.5

Dash dataset [13]2, where videos are encoded at {235, 375,
560, 750, 1050, 1750, 2350, 3000, 3850, 4300}. We used
multiple videos in our evaluation as we were interested in in-
vestigating the interaction between bandwidth changes and
temporal variation in rate demands of different videos. In-
terestingly, we found there exist significant differences in the
performance of different videos with the same network trace.

We compare the performance of different streaming algo-
rithms including ARBITER, BBA [3]3, and ELASTIC [6] in
different configurations of segment and buffer sizes. ELAS-
TIC represents the class of hybrid streaming clients while and
BBA represents the class of buffer-based streaming clients.
Table 1 shows the main parameters of different algorithms.
The parameters of ARBITER identified based on scanning for
its parameter space. In our experiments, we consider differ-
ent application buffer sizes including 60 Sec and 120 seconds.
Additionally, we consider different segment sizes including 4
sec and 10 sec.

Our performance metrics per-session include the average
received quality rate (rav) in kbps, the average number of
stalls (nst), the average total stall duration (tst) in seconds,
the average number of switches (nsw), the average switch-
ing level (lsw), and DASH-user experience (DASH-UE) QoE
metric (χ) [14], which is highly correlated with subjective re-
sults. DASH-UE models temporal (initial startup delay, stall
count, and stall delay) and visual impairments (persistence on
low quality video and performing down switching). The qual-
ity and switching penalties are estimated based on the objec-
tive video quality metric that is known for its high correlation
to subjective evaluation. The highest DASH-UE value is 100
and reduces as the level of impairment increases. Our results
represent the average of 448 evaluation scenarios - all combi-
nations of 64 mobility traces and 7 videos.

Simulation Results
Table 2-a shows the averaged results using a 60 sec buffer and
4 second segment. With 4 sec segment, we consider two seg-
ments for initial buffering and one segment rebuffering be-
fore resuming playout after stalls. ARBITER strikes a bal-
ance between different key performance metrics leading to
the highest user QoE. On comparing ARBITER to BBA, we
find that it closely attains the same average quality rate rav
with only 103kbps drop. This drop may not be perceived by

2http://www.cs.ucc.ie/~jq5/www_dataset/
3We implemented BBA-2 variant with linear mapping between the reser-

voir and the upper buffer threshold.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300

R
ep

re
se

n
ta

ti
o
n

 R
a

te
 (

kb
p

s)

Time (Sec)

ELASTIC BBA ARBITER

Fig. 2: Quality rates as determined by the algorithms in one
of the tram traces

users considering that the average difference between quality
rates is 445kbps. However, this insignificant quality reduc-
tion is accompanied by a noticeable 33% drop in the number
of stalls nst and 35% in the average stall duration per ses-
sion. ARBITER has a similar relative number of switches
nsw as BBA, performed with lower amplitudes as suggested
by lsw and as shown in Figure 2 , which plots the selected
quality rates of the compared algorithms in one of simulated
scenarios. Hence, such quality transitions are probably less
noticeable by the end-user. ARBITER scores a QoE metric χ
that 1.26x BBA’s QoE.

ELASTIC shows the best stall performance with 30% less
stalls and 60% average session stall duration in comparison
to ARBITER. Additionally, ELASTIC reduces the average
number of switches relative to ARBITER by 50%. These
gains are due to the conservative throughput estimate, as
shown in Figure 2, that enables ELASTIC to fill in its buffer
without making many switches. Hence, ELASTIC becomes
more immune to stalls when the network conditions deterio-
rate for long periods. However, these gains are accompanied
by a huge reduction in the average video quality rate that is
approximately 63% of the rate achieved by ARBITER. This
huge quality gap enables ARBITER to achieve a QoE metric
that is 1.29x ELASTIC’s QoE.

Large Buffer Size
Table 2-b shows the key performance metrics for the adapta-
tion algorithms with 120 Sec client buffer and 4 Sec segment.
Clearly, the larger buffer size enables all algorithms to im-
prove their stall performance by reducing both the number of
stalls and stall duration. ARBITER and ELASTIC shows the
best stall performance followed by BBA. ELASTIC performs
the least number of representation switches followed by BBA
and then ARBITER. This is interpreted by the conservative
throughput estimate of ELASTIC the leads to persisting on
low representation qualities for longer periods. Hence, both
ARBITER and BBA achieves an average quality rate that is
1.9x that achieved by ELASTIC. Interestingly, BBA shows
a great improvement in its switching dynamics as the buffer

Table 2: Key Performance metrics

(a) 60 sec buffer - 4 Sec segment (b) 120 sec buffer - 4 Sec segment (c) 120 sec buffer - 10 Sec segment
nst tst rav nsw lsw χ nst tst rav nsw lsw χ nst tst rav nsw lsw χ

ARBITER 0.34 2.8 1055 26.3 1.1 48.7 0.08 0.8 935 22.8 1.1 47.8 0.06 1.0 928 11.6 1.2 40.3
BBA2 0.44 4.3 1158 25.3 1.7 38.5 0.10 0.9 983 15.2 1.3 40.8 0.09 1.5 987 10.8 1.7 30.3
ELASTIC 0.24 1.7 662 13.3 1.2 37.3 0.08 0.7 495 10.4 1.2 30.5 0.03 0.8 474 5.5 1.5 27.9

was increased from 60 sec to 120 sec. We believe this is due
to the larger cushion region that mandates larger buffer sub-
regions for each representation quality. Hence, larger buffer
size would improve both switching and stall performance of
BBA but reduces its average quality rate. However, use of
larger client buffers leads to wasted link use (and possibly
increased user cost) in cases where a user abandons the ses-
sion [15]. The improved switching performance and higher
average quality enabled BBA to achieve a QoE that is 1.56x
ELASTIC’s QoE. ARBITER scores the highest QoE metric
that is 1.17x BBA’s QoE score.

Figures 3 plots the cumulative distribution function (CDF)
of different performance metrics for different algorithms and
buffer sizes. Fig. 3a confirms that ELASTIC’s low average
rate is due to picking lower quality rates in comparison to
both BBA and ARBITER. It is also clear that with smaller
buffer, all algorithms tends to pick higher rates for different
reasons. BBA streams higher rates because the buffer gets
full faster and hence the client starts to request higher quality
representations. On the other hand, ARBITER tends to pick
higher rates because the upscaling buffer factor is activated
earlier as the buffer occupancy increases.

Figure 3b plots the CDF of number of stalls encountered
by different algorithms. The figure shows that doubling the
buffer size from 60 sec to 120 sec helps increasing the number
of stall free sessions from 85% to 95% for BBA, from 88%
to 96.5% for ARBITER and from 90% to 97% for ELASTIC.
Increasing the buffer size also reduces the maximum number
of stalls for all algorithms to 5 stalls from 8, 13, and 17 stalls
for ELASTIC, ARBITER, and BBA, respectively.

Figure 3c shows that increasing the application buffer re-
duces the number of switches for all algorithms. Clearly,
BBA features a larger reduction in the number of the switches
for the same reasons explained above. While ARBITER per-
forms more switches, its switches have smaller amplitude in
comparison to ELASTIC and BBA.

Figure 3d shows the CDF of the QoE metric for the simu-
lated algorithms and different buffer sizes. The figure shows
that ARBITER sessions have higher QoE metric values in
comparison to BBA and ELASTIC. This superiority is inter-
preted by ARBITER’s ability to maintain an excellent profile
of stall, switching and quality metrics. The lowest QoE met-
ric values are attained by BBA with small buffer (BBA-60)
and ELASTIC with large buffer (ELASTIC-120). BBA-60
low QoE is due to bad switching and stall performance while
ELASTIC-60 low QoE is due to persisting on low video qual-

ity due to conservative throughput estimates.
Clearly, the buffer size significantly affects the perfor-

mance of different streaming algorithms in different ways.
Note that, with the smaller buffer, ELASTIC scores higher
QoE even though it features worse stall performance. We
also see how BBA’s performance metrics are affected by the
buffer size. Hence, adjusting the buffer size plays a signifi-
cant role in achieving a balanced profile of streaming perfor-
mance metrics such that the user QoE is improved. Identi-
fying the optimal buffer size of different streaming strategies
based on streaming context, operating condition, and other
relevant factors represents an interesting future research point.

Larger Segment
Some content providers prefer using large segment sizes for
wireless networks. Table 2-c shows our key performance met-
rics for the tested algorithms when 10-sec video segments are
used. For this set of results, video client initial buffering and
rebuffering are set to 10 seconds (one segment). Note that the
client need to download fewer but larger segments. In com-
parison to the 4-seg segment and 120 sec buffer case, using
10 sec segments helps all algorithms to reduce their average
number of stalls by 25%, 9%, and 62% for ARBITER, BBA2,
and ELASTIC, respectively. However, the average stall dura-
tion increased by approximately 37%, 77%, and 10% for AR-
BITER, BBA and ELASTIC, respectively. The reduced num-
ber of stalls is steered by two factors. The first is the reduction
in stall opportunities as the client downloads fewer segments
while the second is the larger media duration available in the
buffer after every stall recovery. Yet, the second factor also
leads to increasing the stall duration as longer download time
is observed.

The impact of the segment size on the average received
quality rate is insignificant as it remains less than 5% for all
algorithms. The number of the switches is approximately
halved as the segment size increases because the number of
downloaded segments decreases. However, by estimating the
ratio of number of switches to the switching opportunities (74
for 4-sec segment and 29 for 10-sec segment in a five minute
video), all algorithms would have a higher relative switch-
ing frequency. The average quality level switching increases
for all algorithms because the client would have to deal with
larger variations that may take place over the longer segment
download time. With smaller segments, the client would be
able to promptly adapt to network changes leading to frequent
but smoother quality changes.

The results also show that ARBITER achieves the highest

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
D

F
 (

%
)

Average Representation Rates (kbit/s)

ARBITER-120s

ARBITER-60s

BBA-120s

BBA-60s

ELASTIC-120s

ELASTIC-60s

(a) Average received data rate

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20

C
D

F
 (

%
)

Number of Stalls

ARBITER-120s

ARBITER-60s

BBA-120s

BBA-60s

ELASTIC-120s

ELASTIC-60s

(b) Number of stalls per session

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
D

F
 (

%
)

Number of Switches

ARBITER-120s

ARBITER-60s

BBA-120s

BBA-60s

ELASTIC-120s

ELASTIC-60s

(c) Number of quality switches per ses-
sion

 0

 20

 40

 60

 80

 100

-40 -20 0 20 40 60 80 100

C
D

F
 (

%
)

QOE Metric Value

ARBITER-120s

ARBITER-60s

BBA-120s

BBA-60s

ELASTIC-120s

ELASTIC-60s

(d) User QoE

Fig. 3: CDF of Performance metrics (4 sec segment)

QoE score with an approximate improvement of 34% and
46% in comparison to BBA2 and ELASTIC, respectively.
Our analysis indicated that the drop in QoE is mainly due to
increasing the penalty of persisting on low qualities decreases
and a slight increase in switching penalty of ELASTIC and
ARBITER. These increases take over the drop in stall QoE
penalty that took place for all algorithms. Hence, one can
conclude that using a medium segment size (e.g., 4 sec)
would help intelligent clients to improve the user QoE.

Conclusions
The design of adaptive algorithms for HTTP-based stream-
ing systems is challenged by the inherent variability in both
network conditions and video dynamics. In this paper, AR-
BITER is presented as a novel streaming algorithm that in-
tegrates application and network states in its adaptation de-
cision. ARBITER captures the network condition by inte-
grating both the average and variance of the received seg-
ment throughput in the decision. Additionally, ARBITER
also considers the application state by integrating the buffer
occupancy and actual video segment rates in the representa-
tion rate selection decision. Our simulations, derived using
real video content and cellular network traces, show that AR-
BITER strikes a balance between achieved rate, stalls dynam-
ics and switching behaviour. ARBITER achieves the highest
QoE in comparison to state-of-the-art algorithms by a rela-
tively large margin.

Acknowledgment
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) un-
der Grant Number 13/IA/1892. The authors wish to thank Ja-
son Quinlan for providing us with access to the DASH video
dataset.

References

[1] F. Fund et. al., “Performance of DASH and WebRTC Video
Services for Mobile Users,” in Proc. PV’13, San Jose, CA, Dec
2013.

[2] I. Sodagar, “The MPEG-DASH Standard for Multimedia
Streaming Over the Internet,” IEEE MultiMedia, vol. 18, no. 4,
pp. 62–67, Oct. 2011.

[3] T.-Y. Huang et. al, “A Buffer-based Approach to Rate Adap-
tation: Evidence from a Large Video Streaming Service,” in

Proc. of the 2014 ACM SIGCOMM ’14, Chicago, Illinois,
USA, 2014, pp. 187–198.

[4] J. Jiang et. al., “Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE,” in
Proc. of CoNEXT ’12, Nice, France, 2012, pp. 97–108.

[5] X. Yin et. al., “A Control-Theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 5, pp. 325–338, Aug. 2015.

[6] L. De Cicco et. al., “ELASTIC: A Client-Side Controller for
Dynamic Adaptive Streaming over HTTP (DASH),” in Proc.
of PV ’13, San Jose, CA, Dec 2013.

[7] Z. Li et. al., “Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale,” IEEE J. Sel. Area in Commun.,
vol. 32, no. 4, pp. 719–733, 2014.

[8] X. Xie et. al., “piStream: Physical Layer Informed Adaptive
Video Streaming over LTE,” in Proc. of MobiCom ’15, Paris,
France, 2015, pp. 413–425.

[9] A. Bokani et. al., “HTTP-Based Adaptive Streaming for Mo-
bile Clients using Markov Decision Process,” in Proc. of
PV’13, San Jose, CA, Dec 2013.

[10] A. H. Zahran et. al., “OSCAR: An Optimized Stall-Cautious
Adaptive Bitrate Streaming Algorithm For Mobile Networks,”
in Proc. MoVid’16 (to appear), 2016.

[11] A. Saamer et. al., “What Happens when HTTP Adaptive
Streaming Players Compete for Bandwidth?” in Proc. of
NOSSDAV’12, ser. NOSSDAV ’12, 2012, pp. 9–14.

[12] H. Riiser et. al., “Commute Path Bandwidth Traces from 3G
Networks: Analysis and Applications,” in Proc. of MMSys ’13,
Oslo, Norway, 2013, pp. 114–118.

[13] J. J. Quinlan et. al, “Datasets for AVC (H.264) and HEVC
(H.265) for Evaluating Dynamic Adaptive Streaming over
HTTP (DASH),” in Proc. of MMsys dataset track (to appear),
2016.

[14] Y. Liu et. al., “Deriving and Validating User Experience Model
for DASH Video Streaming,” IEEE Trans. on Broadcasting,
vol. 61, no. 4, pp. 651–665, Dec 2015.

[15] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality
Impacts Viewer Behavior: Inferring Causality Using Quasi-
experimental Designs,” in Proc. of ACM IMC’12, Boston, Mas-
sachusetts, USA, 2012, pp. 211–224.

