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ABSTRACT

This paper addresses the problem of aggregating local binary
descriptors for large scale image retrieval in mobile scenarios.
Binary descriptors are becoming increasingly popular, espe-
cially in mobile applications, as they deliver high matching
speed, have a small memory footprint and are fast to extract.
However, little research has been done on how to efficiently
aggregate binary descriptors. Direct application of methods
developed for conventional descriptors, such as SIFT, results
in unsatisfactory performance. In this paper we introduce and
evaluate several algorithms to compress high-dimensional bi-
nary local descriptors, for efficient retrieval in large databases.
In addition, we propose a robust global image representation;
Binary Robust Visual Descriptor (B-RVD), with rank-based
multi-assignment of local descriptors and direction-based ag-
gregation, achieved by the use of L1-norm on residual vec-
tors. The performance of the B-RVD is further improved by
balancing the variances of residual vector directions in order
to maximize the discriminatory power of the aggregated vec-
tors. Standard datasets and measures have been used for eval-
uation showing significant improvement of around 4% mean
Average Precision as compared to the state-of-the-art.

Index Terms— visual search, binary descriptors, global
descriptor, image retrieval

1. INTRODUCTION

Many contemporary pipelines for object recognition and re-
trieval choose to employ local binary descriptors in order to
reduce extraction and matching complexity. This is particu-
larly important in mobile applications, where at least some
processing is performed on a terminal with limited resources;
but even when server resources are available computational
complexity is still an issue due to the ever increasing scale
of databases, image resolutions and the required accuracy
and speed of search. Consequently, local binary descrip-
tors become increasingly popular, as they deliver high match-
ing speed, small memory footprint and are relatively fast
to extract. However, descriptor-by-descriptor matching and
matching based on inverted index is too complex for mobile
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visual search (MVS). Hence the majority of MVS systems
have to rely on global descriptors. While many techniques
exist for extracting global representations from floating-point
local descriptors, such as SIFT [1], surprisingly hardly any
research exists on how to efficiently aggregate local binary
descriptors. Binary descriptors, such as ORB [2], FREAK [3]
and BRISK [4], are significantly faster to compute compared
to SIFT and even SURF [5], and deliver comparable perfor-
mance. However direct application of aggregation methods
developed for conventional floating-point descriptors results
in suboptimal or even poor performance.

In this paper we conduct an in-depth evaluation of appli-
cability of various existing aggregation schemes to binary de-
scriptors and propose a novel aggregation technique, which
delivers state-of-the art performance. Our scheme builds on
the original VLAD [6] descriptor, and its extension by Hu-
sain and Bober [7] which combined VLAD aggregation with
rank-based multi-assignment and robust norm on residual
vectors. Here we further extend their approach by introduc-
ing cluster-level de-correlation and whitening of normalized
residual vectors. We show that the proposed extension brings
significant improvement to performance on all datasets, for
all operating points and input binary feature combination.

The key contributions of this paper include (i) analy-
sis of the behavior and performance of existing aggrega-
tion schemes with local binary features, (ii) a new B-RVDW
pipeline (shown in Figure 1) delivering superior perfor-
mance and (iii) its optimization with intensity-based (BRISK,
FREAK) and gradient-based (BRIGHT) binary descriptors.

The remainder of this paper is organized as follows. In
Section 2, we briefly review existing techniques for aggrega-
tion of local descriptors and discuss previous work on binary
descriptors. We also outline three designs of local descriptors
that we subsequently evaluate in our pipeline. In Section 3
we introduce our global descriptor based on binary local fea-
tures, which will be referred to as B-RVD and propose a novel
extension by whitening normalized residual vectors forming
B-RVDW descriptor. Results of an extensive evaluation are
presented in Section 4. Finally, conclusions and future work
are summarized in Section 5.



IMAGE BINARY 
DESCRIPTORS

(BRISK, FREAK)

COMPRESSION 
OF 

DESCRIPTORS

RANK BASED 
MULTIPLE 

ASSIGNMENT

L1-NORM on 
RESIDUAL 
VECTORS

B-RVDW DIM 
REDUCTION 

via PCA

CLUSTER-WISE 
WHITENING

SIMILARITY 
SEARCH

CLUSTER-WISE 
PCA

Fig. 1. B-RVDW extraction pipeline using rank-based multi-
assignment, residual normalization, cluster-wise whitening
and B-RVDW dimensionality reduction

2. GLOBAL REPRESENTATIONS FROM LOCAL
BINARY FEATURES

The Bag-of-Words (BoW) [8] is frequently used to create a
fixed-length global image representation. It is a histogram,
where each local descriptor is assigned to the nearest visual
word. The histogram is normalized using tf-idf weighting
and retrieval can be performed using an inverted list. Per-
onnin et al. [9] employed Fisher kernels to aggregate local
image descriptors into compact vector representations, called
Fisher Vectors (FV). This assumes that samples of local de-
scriptors are distributed according to the Gaussian Mixture
Model (GMM). Jegou et al. [6] proposed a non-probabilistic
version of FV called VLAD, that builds an image represen-
tation by aggregating residual vectors for descriptors, clus-
tered according to proximity criterion in the feature space.
All the above representations were originally derived for the
SIFT descriptor, which is a 128-dimensional floating-point
vector formed by computing local image gradient histograms.
We pose here an important question - how will these rep-
resentations perform when derived directly from binary fea-
tures? Can they match the performance of global descriptors
based on floating-point features? What is the best pipeline
and the optimal parameters? These are non-trivial questions,
as binary descriptors exhibit very different characteristics and
many underlying assumptions are clearly no longer fulfilled.
For example, it is known that while the centering operations
and least squares criteria of PCA are well suited to real-valued
data (such as SIFT), they are not generally appropriate for bi-
nary data types [10].

There are few works addressing aggregation of binary de-
scriptors. Grana et al. [11] integrated an ORB descriptor into
the BoW model for image classification. Opdenbosch et al.
[12] adapted VLAD to the 256D BRIEF binary descriptor
[13]. While their approach works with a limited database in
a navigation context, they unfortunately do not present any
evaluation on reference databases.

For our investigation, we select three local binary de-
scriptors: two intensity-based (BRISK [4] and FREAK [3])
and one gradient-based (BRIGHT [14]). Our choice is mo-
tivated by their high level of performance in retrieval us-

Fig. 2. Sampling patterns for BRISK (left), FREAK (mid)
and BRIGHT (right).

ing descriptor-by-descriptor matching with bi-directional ra-
tio test, but without geometric verification. We also want to
verify if the type of features used (intensity-test vs histogram
of gradients) impacts performance. In all cases we employ
BRISK key-point detection, as it is fast, delivers good per-
formance and is the de-facto standard in mobile applications.
The binary descriptors used in this study are briefly summa-
rized below.

The binary BRISK descriptor is constructed by concate-
nating the results of simple brightness comparison tests. The
test pattern, shown in Fig 2-left, defines L locations equally
spaced on four concentric circles centered at the key-point.
Gaussian smoothing with standard deviation σi proportional
to the distance between the points on the corresponding circle
i is used to increase robustness by reducing aliasing. FREAK
also uses a circular sampling grid, however the density of
points is not constant (Fig 2-center ) - it drops exponentially
when moving away from the center, as in the human retina.
The difference with BRISK is the exponential change in sam-
pling density and the overlap in receptive fields. The 512
pairs are selected using an algorithm similar to ORB to be
un-correlated and hence highly discriminant. The BRIGHT
descriptor is based on a hierarchical Histogram of Gradients
(HOG). Three layers of hierarchical pyramid of HOG, with
different block partitioning of 5 × 5, 4 × 4, and 3 × 3 are
extracted (Fig 2-right). The elements of the histogram are bi-
narized, and a subset of bits may be progressively selected to
form a scalable descriptor with a size between 32-150 bits.
We used the full 150 bit descriptor in our study. Compared
to BRISK and FREAK, the BRIGHT descriptor is three times
more compact and exhibits a similar level of performance in
descriptor-by-descriptor matching tests; it is also similar to
SIFT as it uses histograms of gradients. The next section
presents the design of our aggregation scheme and demon-
strates its performance with the three selected binary features.

3. AGGREGATION OF BINARY DESCRIPTORS

Before designing the aggregation pipeline, experiments are
performed to investigate the type of dimensionality reduction
that should be applied to the input binary vectors. The ex-
periments have shown that direct aggregation in the binary
domain (i.e keeping the input vectors and cluster centers in
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Fig. 3. Energy in each dimension of weighted residual vectors
ztj before aggregation into a global descriptor.

binary format) delivers generally poor results. This is par-
ticularly prominent when the dimensionality of the input de-
scriptors is significantly reduced, e.g. from 512 to 128 or 64
for the BRISK or FREAK. The best results are achieved by
applying PCA directly to the binary vectors and using PCA to
reduce dimensionality. Dimensionality reduction has a very
significant impact, beyond what can be explained as selection
of the dominant components.

Based on the conclusions from the initial experiments, we
design our pipeline, which is presented in Figure 1. More pre-
cisely, let X = {xt ∈Rd, t = 1...T} be the set of binary local
descriptors, such as BRISK or FREAK, extracted from an im-
age. The descriptors are compressed to d′ dimensions using
bit selection or Principal Component Analysis (refer Section
4). The compressed descriptors are rank-assigned to multiple
clusters and a robust representation of residual vectors in each
cluster is derived forming the B-RVD global descriptor. The
high-dimensional global descriptor is converted into a com-
pact signature by application of PCA.

In the B-RVD aggregation scheme each binary descrip-
tor xt is defined by its position with respect to the K nearest
cluster centers (typically K=3) in the high dimensional space.
More precisely, K-means clustering is performed to learn a
codebook of {v1, ..., vn} of n cluster centers typically be-
tween 64 and 512. Each local descriptor xt is quantized to
K nearest cluster centers thus increasing the number of de-
scriptors assigned to each center, resulting in more populous
cluster-level representations, which are more robust. For each
cluster, the residual vectors xt − vj are computed and subse-
quently L1-normalized. The application of L1-norm on resid-
ual vectors ensures that the influence of each local descriptor
on the cluster-level representation is comparable. The nor-
malized residual vectors are weighted for each neighborhood
rank (N) before aggregation to reflect the fact that the de-
scriptors belonging to rank-1 nearest neighbor (N1) are con-
sidered more reliable and stable - the reliability and stability
of features decreases as we increase the neighborhood rank.
The neighborhood weights wN are computed as the empiri-
cal probability that two descriptors forming a matching pair

(inliers) with specific neighborhood rank are assigned to the
same cluster. In the B-RVD representation, the weights are:
1, 0.5 and 0.25 for the assignments with rank one, two and
three respectively. The weighted residual vectors ztj are com-
puted as:

ztj = wN
xt − vj
||xt − vj ||1

(1)

The cluster level representation δj is computed by aggregat-
ing vectors ztj across all N . Each δj is L2-normalized [15]
and concatenated to form the final B-RVD descriptor R. The
dimensionality of B-RVD is D = d′ × n.

δj =

K∑
N=1

∑
xt∈rankNof vj

wN
xt − vj
||xt − vj ||1

(2)

R =

{
δ1
||δ1||2

;
δ2
||δ2||2

; ...;
δn
||δn||2

}
(3)

Binary RVD Local Whitening (B-RVDW)

The variance in each dimension of vector ztj is different
which affects the discriminability of the B-RVD representa-
tion. We solve this problem by applying cluster level PCA
and a whitening operation on ztj vectors before aggregation.
Given a set of m weighted residual vectors z1j , z2j , ..., zmj

in Rd′
extracted from training images I , we form the column

data matrix Zj = (z1j , z2j , ..., zmj) for each cluster j.
1) Centering data: To center the data in matrix Zj , the

first step is to compute the mean vector µj = E[ztj ].

µj =
1

m

∑
I

K∑
N=1

∑
xt∈rankNofvj

wN
xt − vj
||xt − vj ||1

(4)

Every ztj vector is subtracted by the mean vector µj , i.e.,
ztj ← (ztj−µj), then we get the centered column data matrix
Zc
j = (z1j , z2j , ..., zmj).

2) PCA projection matrix: Based on the centered vectors
z1j , z2j , ..., zmj , the covariance matrix is computed:

Σj =
1

m

m∑
t=1

ztjz
>
tj =

1

m
Zc
jZ

c
j
> (5)

For each cluster j, we compute a PCA matrix Pj whose
columns consists of the eigenvectors of Σj corresponding to
the d′ largest eigenvalues λ1 ≥ λ2... ≥ λd′ . Finally, the clus-
ter level whitening matrix Pw

j is computed as, Pw
j =PjΩj

− 1
2 ,

where Ωj = diag(λ1, λ2..., λd′).
3) B-RVDW representation: Given an image I , the vec-

tors ztj are extracted for each cluster j. The mean subtracted
ztj vector is projected using Pj and subsequently whitened
before aggregation into δj .

δj =

K∑
N=1

∑
xt∈rankNof vj

Pw
j
>

(
wN

xt − vj
||xt − vj ||1

− µj

)
(6)
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Fig. 4. (a) Compression of Brisk descriptor. (b) Impact of
binary descriptor compression and vocabulary size.

The L2-normalized δj vectors are stacked to form the final B-
RVDW representation Rw. Figure 3 shows the energy distri-
bution in each dimension of residual vectors before aggrega-
tion using B-RVD and B-RVDW representations. In B-RVD
the energy in each dimension of ztj is different while in B-
RVDW, after performing PCA+Whitening the energy is bal-
anced between dimensions leading to improved performance.

Compact Global Descriptor
The global descriptor can be compacted by performing di-
mensionality reduction via PCA while retaining its discrimi-
native power. The compact B-RVDW vector Rs is computed
using equationRs = P>×(Rw−R0), whereR0 is the mean
of the signatures of Rw and P is D×D′ matrix (D′ ≤ D) of
eigenvectors associated with the largest eigenvalues of the co-
variance matrix of signatures of Rw. The similarity between
Rs vectors is computed using standard Euclidean distance.

4. EXPERIMENTAL EVALUATION

The purpose of this section is to establish B-RVD and B-
RVDW as the state-of-the-art global image representations.
First we present the datasets and evaluation measures used for
benchmarking. Then we investigate the impact of dimension-
ality reduction techniques and the optimal size of vocabulary.
Finally we perform retrieval experiments to compare the per-
formance of several global image representations including
VLAD+, FV, B-RVD and B-RVDW.

Datasets. The performance is evaluated on two standard
image retrieval benchmarks: the INRIA Holidays and the Ox-
ford building dataset. Independent datasets were used for all
learning stages, to eliminate any bias.

The INRIA Holidays dataset [16] contains 1491 high res-
olution holiday photos with 500 of them used as queries.
Retrieval accuracy is measured by mean Average Precision
(mAP), as defined in [17].

The Oxford5k dataset [17] contains 5062 images gath-
ered from Flickr by searching for particular Oxford land-
marks. This dataset has been manually annotated to gener-
ate 55 query images corresponding to 11 different landmarks.
The performance is evaluated using mAP.

(a) (b)
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Fig. 5. Comparison of BRISK, FREAK and BRIGHT de-
scriptors (a) Holidays dataset (b) Oxford dataset.

Unless otherwise stated, key-points were detected using
a multi-scale version of the AGAST detector [4]. This de-
tector is fast but does not compensate for affine distortions,
hence our results cannot be directly compared to the results
obtained with Hessian-affine detector which helps to rectify
the orientation ambiguity of affine-covariant points[18].

Impact of descriptor compression and vocabulary size
Aggregating 512-dimensional binary descriptors (e.g. BRISK
or FREAK) using a small vocabulary of n = 64 visual
words results in a 32k-dimensional global descriptor. This
size is prohibitive due to memory and complexity constraints,
hence it is necessary to reduce dimensionality of the input de-
scriptors. We investigate the optimum parameters using the
BRISK descriptor and the following three compression ap-
proaches: (i) PCA, (ii) Random bit selection, (iii) Top bit se-
lection. Figure 4 (a) shows the performance of the B-RVD
representation on the Holidays dataset as a function of the di-
mension after compression (d′). It can be observed that pro-
jecting the binary descriptor using PCA provides significantly
better performance compared to selecting dimensions. There
is only a relatively small gain in performance (+0.5%) by in-
creasing the output PCA dimensions from 128 to 256.

The full optimization of the B-RVD pipeline requires ex-
haustive experiments of all different combinations of param-
eters. To reduce the complexity of the analysis and keep the
experimental load reasonable we keep the dimensionality of
B-RVD representation fixed at 16k and search for the best
combination of input descriptor dimensionality and number
of clusters n. Figure 4 (b) shows the performance of B-RVD
on the Holidays dataset using different combinations of d′ and
n where (PCA 128 ctrs 128) indicates that the dimensionality
of a binary descriptor is reduced from 512 to 128 via PCA
and aggregation is performed using 128 clusters. It can be
observed from that the best performance is achieved at (PCA
128 ctrs 128), the same operating point is also optimal for the
FREAK descriptor.

Brisk vs Freak vs Bright
Figure 5 shows the results obtained on the Holidays and Ox-
ford datasets with B-RVD vector generated using BRISK,
FREAK and BRIGHT descriptors. The input descriptor di-
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Fig. 6. Performance of global descriptors on Holidays dataset
using (a) BRISK (b) FREAK . Performance of global descrip-
tors on Oxford dataset using (c) BRISK (d) FREAK (e) Hol-
idays100k using FREAK and (f) large scale experiments on
Holidays1Million using FREAK.

mensionality and visual vocabulary is fixed at d′ = 128 and
n = 128 respectively. It can be seen that the combina-
tion FREAK+B-RVD outperforms BRISK+B-RVD for high-
dimensional global descriptors (D’=8192, 4096 and 1024).
The performance is similar when the B-RVD dimension is
reduced to 512 and 128. The performance of BRIGHT is sig-
nificantly worse than BRISK and FREAK. This is most likely
due to the fact that the original dimensionality of BRIGHT, at
150 bits, is too low to be discriminative.

Evaluation of global descriptors
We compare our best representation B-RVDW with B-RVD,
FV and VLAD+. The VLAD+ [19] representation is a mod-
ified version of VLAD in which each residual vector is L2-
normalized before aggregation. The global descriptor dimen-
sionality is 128 × 128 = 16384. It can be observed from
Figure 6 (a-d) that B-RVDW significantly outperforms all
representations using both FREAK and BRISK as input de-
scriptors. Compared to FV, B-RVDW offers an average gain
of +3.4% and +3.8% in mAP on the Holidays and Oxford
datasets. We also compared the performance of FREAK+B-
RVDW and FREAK+FV using large scale dataset of Holi-
days + Flickr 1M distractors. Figure 6 (f) clearly shows that
B-RVDW significantly outperforms FV also on large scale.

Method Det. Desc. Dim Oxf Hol
FV BRISK BRISK 8k 35.3 58.1
FV BRISK FREAK 8k 36.7 59.8
VLAD+ BRISK BRISK 8k 33.5 55.3
VLAD+ BRISK FREAK 8k 34.8 56.7
B-RVD BRISK BRISK 8k 38.1 59.1
B-RVD BRISK FREAK 8k 39.0 61.1
B-RVDW BRISK BRISK 8k 38.5 60.9
B-RVDW BRISK FREAK 8k 40.9 63.3
BoW [6] HA SIFT 20k 35.4 43.7
FV [6] HA SIFT 8k 41.8 60.5
VLAD [6] HA SIFT 8k 37.8 55.6
VLAD [20] DoG SIFT 8k 24.3 56.1

Table 1. Comparison of the B-RVDW with the state-of-the-
art (Det:Detector, Desc:Descriptor, Dim:Dimensions)

Detector Descr. Loc. desc. Global desc. Total
extr. (ms) encoding (ms) time

BRISK BRISK 85 200 285
BRISK FREAK 85 200 285
DoG SIFT 900 190 1090
HA SIFT 1230 190 1420

Table 2. Average time required to compute B-RVDW
signature using different detectors+descriptors combinations
(DoG: Difference of Gaussian, HA: Hessian-Affine)

The upper section of Table 1 lists the performance of binary
descriptor aggregation schemes with the fast BRISK detector
and BRISK/FREAK descriptors. It can be seen that B-RVDW
significantly outperforms the state of the art global descriptors
by +3.5% on average.

Although this paper is about aggregation of binary de-
scriptors, we also compare our framework with global de-
scriptors that use Hessian-affine or DoG detector with SIFT
descriptor, which is fives times slower (lower part). It can be
clearly observed that the FREAK+B-RVDW is better or com-
parable to HA+SIFT and DoG+SIFT combined with BoW,
VLAD and FV. On large-scale dataset of Holidays1Million,
FREAK+B-RVDW achieves 35.1% compared to SIFT+FV
31.8% [6].

Complexity Analysis

Table 2 compares the average time required to compute B-
RVDW signature, for different combinations of detectors and
descriptors. The total time comprises local descriptors extrac-
tion (first column) and encoding of the global representation
(second column). It can be observed that use of binary local
descriptors reduced computational complexity by factor of 5,
as compared to working with SIFT.



5. CONCLUSIONS

We presented an in-depth investigation of aggregation strate-
gies for local binary descriptors, based on three high-
performance descriptors: BRISK, FREAK and BRIGHT, in
combination with the BRISK key-point detector. We have
compared various strategies to dimensionality reduction and
demonstrated the utility of the front-end PCA, which converts
binary input vectors into intermediate floating-point represen-
tations. Furthermore, we proposed a new binary aggregation
pipeline, extending the B-RVD representation by introducing
whitening of the normalized residual vectors, which leads to
significant gains in performance compared to the state-of-the-
art FV and VLAD. The new pipeline was optimized and eval-
uated, demonstrating improved mAP of 4% in large scale re-
trieval, and significantly reduced extraction complexity.
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